JPS63313442A - Manufacture of electrode material - Google Patents

Manufacture of electrode material

Info

Publication number
JPS63313442A
JPS63313442A JP14802587A JP14802587A JPS63313442A JP S63313442 A JPS63313442 A JP S63313442A JP 14802587 A JP14802587 A JP 14802587A JP 14802587 A JP14802587 A JP 14802587A JP S63313442 A JPS63313442 A JP S63313442A
Authority
JP
Japan
Prior art keywords
base material
infiltration
copper
infiltration base
infiltrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14802587A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Yoshiyuki Kashiwagi
佳行 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP14802587A priority Critical patent/JPS63313442A/en
Publication of JPS63313442A publication Critical patent/JPS63313442A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Abstract

PURPOSE:To make the distribution of conductivity along both upper and lower directions of an electrode material to be obtained uniformly improvable and simultaneously any deformation such as a warp or the like preventable by superposing an infiltrating material on top and bottom of an infiltration base material, and infiltrating this infiltrating material into the infiltration base material from both upper and lower sides. CONSTITUTION:An infiltration base material 12 is set up in a vessel 11 made of alumina ceramic or the like by interposing more than one piece, while the copper ingot 13 formed into a disc form or the like is mounted on these infiltration base material 12, and furthermore a cover 14 of the same material as the vessel 11 is covered thereon and this vessel 11 is changed into a vacuum furnace, but another copper ingot 15 is inset between the vessel 11 and the infiltration base material 12 as well in advance. And, such a temperature as more than a melting point of copper and less than that of metal powder is maintained in a vacuum, and these copper ingots 13 and 15 are infiltrated in a void part of the infiltration base material from both upper and lower sides. As for metal powder, it is good enough to use such a metal whose melting point is higher than that of copper or an infiltrating material. With this constitution, conductivity in a portion at the underside of the infiltration base material is improved and simultaneously it leads to homogenization of an electrode material as a whole, thus any deformation such as a warp or the like is prevented from occurring.

Description

【発明の詳細な説明】 A 産業上の利用分舒 本発明は、例えば真空インタラプタの電極として用いら
れる溶浸形の複合金属からなる電極材料の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Applications The present invention relates to a method for manufacturing an electrode material made of an infiltrated composite metal, which is used, for example, as an electrode for a vacuum interrupter.

B、 発明の概要 銅或いは鋼合金を溶浸材として用い、この溶浸材の融点
よ外高い融点の金属粉末を焼結してなる多孔質の溶浸母
材に溶浸材を溶浸させて溶浸形の複合金属を製造するに
際し、溶浸母材を上下一対の溶浸材で挾むようにこれら
を重ね合わせ、溶浸母材の上下から溶浸材を溶浸させて
導電率分布の均一化を図ったものである。
B. Summary of the invention Copper or steel alloy is used as an infiltrant, and the infiltrant is infiltrated into a porous infiltration base material made by sintering metal powder with a melting point higher than that of the infiltrant. When manufacturing infiltrated composite metals, a pair of upper and lower infiltrant materials are stacked on top of each other, and the infiltrant materials are infiltrated from above and below the infiltrated base material to control the conductivity distribution. This is aimed at uniformity.

C1従来の技術 真空インタラプタの電極材料として特開昭59−274
18号公報等に開示された溶浸形の複合金属材料である
Mo −Cr −Cu複合金属は、従来から知られてい
るCu−B1複合金属やCu−W複合金属等と比較して
耐溶着性が良好であることに加え、電流遮断能力や絶縁
耐力等の電気的特性が優れた材料であることが知られて
いる。
C1 Prior art JP-A-59-274 as electrode material for vacuum interrupter
The Mo-Cr-Cu composite metal, which is an infiltration type composite metal material disclosed in Publication No. In addition to having good properties, it is also known to have excellent electrical properties such as current interrupting ability and dielectric strength.

このMo −Cr −Cu複合金属を製造する場合の従
来の製造方法の一例を第5図に示す。
An example of a conventional manufacturing method for manufacturing this Mo-Cr-Cu composite metal is shown in FIG.

第5図において、銅やモリブデン或いはクロムと反応し
ない高温でも安定なアルミナセラミックス製の容器1内
に銅よりも融点の高いモリブデンとクロムこの混合粉体
2を充填すると共にこの上に銅塊3を載せてアルミナセ
ラミックス製の蓋4を被せ、これらを非酸化性雰囲気に
て銅の融点以下の温度で加熱し、まずモリブデンとクキ
ムこの多孔質焼結体を容器1内に形成させたのち、脱ガ
ス処理しながら非酸化性雰囲気にて銅の融点以上且つモ
リブデン及びクロムの融点以下の温度でこれらを加熱し
、銅塊3を多孔質焼結体中に溶浸させてMo −Cr 
−Cu複合金属を製造していた。
In Fig. 5, a mixed powder 2 of molybdenum and chromium, which has a higher melting point than copper, is filled into a container 1 made of alumina ceramics, which is stable even at high temperatures and does not react with copper, molybdenum, or chromium, and a copper ingot 3 is placed on top of the container 1. The lid 4 made of alumina ceramics is placed on the container, and these are heated in a non-oxidizing atmosphere at a temperature below the melting point of copper to first form a porous sintered body of molybdenum and kukim in the container 1, and then desorbed. The copper ingot 3 is infiltrated into the porous sintered body by heating them in a non-oxidizing atmosphere with gas treatment at a temperature higher than the melting point of copper and lower than the melting points of molybdenum and chromium.
-Cu composite metal was manufactured.

非酸化性雰囲気でのこれらの加熱処理は、通常、真空炉
内で行われることが多い。
These heat treatments in a non-oxidizing atmosphere are typically performed in a vacuum furnace.

D、 発明が解決しようとする問題点 真空炉内での熱処理操作に際して昇温速度や降温速度を
早めると、アルミナセラミックス製の容器が熱応力によ
って破壊してしまう場合がある。このように容器に割れ
等が発生すると、モリブデンとクロムこの混合粉体が容
器外にこぼれたり銅が流出してしまう結果、真空炉内が
これらによって汚損を受ける可能性が高かった。
D. Problems to be Solved by the Invention If the temperature increase rate or temperature decrease rate is accelerated during heat treatment in a vacuum furnace, the alumina ceramic container may break due to thermal stress. When cracks or the like occur in the container, the mixed powder of molybdenum and chromium spills out of the container, and copper flows out, resulting in a high possibility that the inside of the vacuum furnace is contaminated by these powders.

又、Mo −Cr −Cu複合金属のインゴットは容器
の内壁に接触状態にあるため、容器からインゴットを抜
き出しに<<、容器の欠損を招(ことが多い。
Furthermore, since the Mo-Cr-Cu composite metal ingot is in contact with the inner wall of the container, removing the ingot from the container often results in damage to the container.

何れにしても、従来の方法にあっては容器内に溶浸形の
電極材料を形成する点で非常に簡便な方法であるが、容
器からの取出し及び容器の破損等を含めて見た場合には
、必ずしも生産性が良いものとは言えないものであった
In any case, the conventional method is a very simple method in that it forms an infiltration type electrode material in a container, but when looking at it including removal from the container and damage to the container, etc. However, productivity could not necessarily be said to be good.

E、 問題点を解決するための手段 本発明者らは、電極としての性能を向上すると共に生産
性の向上を図るため、溶浸母材となる多孔質焼結体を得
るに当9、金属粉末を加圧成形して溶浸母材の仮成形体
を形成し、これを焼結して溶浸材を溶浸することを試み
た。なお、真空インタラプタにあっては電極を真空中に
て使用することから以下の点に留意した。
E. Means for Solving the Problems In order to improve the performance as an electrode and improve productivity, the present inventors developed a method for obtaining a porous sintered body to be used as an infiltration base material9. An attempt was made to pressurize the powder to form a temporary compact of the infiltration base material, and then sinter this to infiltrate with the infiltrant. In addition, since the electrodes of the vacuum interrupter are used in a vacuum, the following points were taken into consideration.

(1)真空炉及び真空インタラプタ内部を汚損する虞の
あるバインダを一切用いず、金属粉体のみを加圧して仮
成形体を形成すること。
(1) Forming a temporary molded body by pressurizing only metal powder without using any binder that may contaminate the inside of the vacuum furnace and vacuum interrupter.

(2)仮成形体は、銅或いは銅合金等の溶浸材を溶浸す
る前に焼結されて多孔質となることから、内部に溶浸材
が溶浸できる所定の空隙を有し、所定の導電率が確保で
きるようにできるだけ低い圧力にて加圧成形すること。
(2) Since the temporary formed body is sintered and becomes porous before being infiltrated with an infiltrant material such as copper or copper alloy, it has a predetermined void inside which the infiltrant material can infiltrate, Pressure molding should be performed at the lowest possible pressure to ensure the specified conductivity.

(3)  但し、成形機金型からの仮成形体の取出し及
び溶浸材を載置する作業を考慮し、少なくとも成形後の
仮成形体が手持ち作業にて取扱える強度に加圧成形され
ていること。
(3) However, in consideration of the work of taking out the temporary molded body from the mold of the molding machine and placing the infiltration material, at least the temporary formed body after molding must be pressure-formed to a strength that can be handled by hand. To be there.

(4)加圧後の仮成形体に亀裂が生じないこと。(4) No cracks should occur in the temporarily formed body after pressurization.

実験条件は、それぞれ−100メツシユ(149μm以
下)の粒径のモリブデン粉末とクロム粉末とを重量比で
Mo: Cr= 1 : 4に設定したものを機械的に
混合し、これを内径が40閣の三つの金型にそれぞれ約
30g。
The experimental conditions were to mechanically mix molybdenum powder and chromium powder each having a particle size of -100 mesh (149 μm or less) at a weight ratio of Mo:Cr=1:4, Approximately 30g each for the three molds.

36g、42g装入して約1100kg/cIIの加圧
力にて1分間加圧保持し、直径40+m厚さ約5−.6
mm、7鵬の三つの仮成形体を得るようにした。そして
、これら三つの仮成形体上にそれぞれ溶浸母材の空隙容
積に対応した量の鋼塊を載置し、真空炉中にて仮成形体
を焼結したのち、銅塊を溶浸母材に溶浸して得られた電
極材料の表面に残る余分の銅を切削し、各電極材料の導
電率を測定した所、銅塊が載置された側とその反対側と
で導電率(IAC3%)にばら付きがあり、鋼塊が載置
された側の導電率がこれと反対側よりも高い傾向となっ
ていることが判った。しかも、得られた電極材料は銅塊
が載置された側とその反対側とで溶浸状態の不均一に基
づ(熱ひずみにより反りが発生し、削り代が多(なるば
かりか製品となる電極材料の板厚寸法も薄くなってしま
い、この傾向は仮成形体が薄いほど顕著になることも判
明した。
36g and 42g were charged and kept under pressure for 1 minute at a pressure of about 1100kg/cII, and the diameter was 40+m and the thickness was about 5mm. 6
Three temporary molded bodies of 7 mm and 7 mm were obtained. Then, a steel ingot in an amount corresponding to the void volume of the infiltrated base material is placed on each of these three temporary formed bodies, and after sintering the temporary formed bodies in a vacuum furnace, the copper ingot is placed in the infiltrated base material. When the excess copper remaining on the surface of the electrode material obtained by infiltrating the material was cut off and the conductivity of each electrode material was measured, the conductivity (IAC3 %), and it was found that the conductivity on the side where the steel ingot was placed tended to be higher than on the opposite side. Moreover, the obtained electrode material is not only unevenly infiltrated between the side where the copper ingot is placed and the opposite side (warping occurs due to thermal strain, but also has a large amount of cutting allowance). It has also been found that the plate thickness of the electrode material becomes thinner, and this tendency becomes more pronounced as the temporary molded body becomes thinner.

上述した導電率のばら付きの原因としては、金属粉末の
仮成形体を加圧力の付加によって形成していることから
、この仮成形体を構成する金属粉末が組織的に緻密化し
、これによって溶浸母材下部に銅が溶浸しにくいのでは
ないかと推察した。
The reason for the above-mentioned variation in conductivity is that because a temporary compact of metal powder is formed by applying pressure, the metal powder that makes up this temporary compact becomes dense in structure, and this causes the melting. We surmised that it was difficult for copper to infiltrate into the lower part of the base metal.

そこで、前記鋼塊を部分して溶浸母材を挾むようにこれ
らを上下に重ね合わせ、他の実験条件を変えずに溶浸作
業を行った。併せて上下の銅塊の分割比を変え、得られ
る電極材料の上下両端面の導電率をそれぞれ測定した。
Therefore, the above-mentioned steel ingot was cut into sections and these were stacked one on top of the other so as to sandwich the infiltration base material, and the infiltration work was performed without changing the other experimental conditions. At the same time, the division ratio of the upper and lower copper ingots was changed, and the electrical conductivity of both the upper and lower end surfaces of the resulting electrode material was measured.

この実験結果を第4図に示すが、この第4図から明らか
なように、溶浸母材が重ねられる下側の銅塊の割合が全
体の銅塊に対して約30%以上の場合に導f4率のばら
付きが余りな(、シかも溶浸状態が溶浸母材の上下で平
均化することから、反り等の不均一変形が現れないこと
が判った。
The results of this experiment are shown in Figure 4.As is clear from Figure 4, when the proportion of the lower copper ingot on which the infiltrated base material is overlapped is about 30% or more of the whole copper ingot, It was found that even if the variation in the conductivity f4 ratio was too large, the infiltration state was averaged above and below the infiltrated base material, so that non-uniform deformation such as warping did not appear.

但し、下側の銅塊が70%を越えるとこの下側の銅塊の
一部が溶浸母材に溶浸されずに客語の底面に拡がってし
まい、不都合を起こすことも判明した。なお、金属粉末
の粒径が一60メツシ、(230m)まで及び加圧力が
600 kg/li〜5000 kg/clIrノ範囲
であれば同様な結果が得られた。
However, it has been found that if the lower copper mass exceeds 70%, a part of the lower copper mass will not be infiltrated into the infiltration base material and will spread to the bottom of the base material, causing problems. Note that similar results were obtained when the particle size of the metal powder was up to 160 mm (230 m) and the pressing force was within the range of 600 kg/li to 5000 kg/clIr.

本発明は以上の結果をふまえてなされたものであり、溶
浸材より融点の高い少なくとも一種類の金属粉末を所定
形状に加圧成形して仮成形体を形成し、この仮成形体を
加熱すると共に非酸化性雰囲気にて脱ガスしつつ当該仮
成形体を焼結して前記溶浸母材を形成し、この溶浸母材
の上下に一対の溶浸材を配置すると共にこれらを非酸化
性雰囲気にて前記溶浸材の融点以上の温度で加熱保持し
、前記溶浸材を前記溶浸母材の上下から溶浸させるよう
にしたことを特徴とするものである。
The present invention has been made based on the above results, and involves pressure-molding at least one type of metal powder with a melting point higher than that of the infiltration material into a predetermined shape to form a temporary compact, and heating the temporary compact. At the same time, the temporary molded body is sintered while degassing in a non-oxidizing atmosphere to form the infiltrated base material, and a pair of infiltrant materials are placed above and below this infiltrated base material, and these are non-oxidized. The infiltrating material is heated and held in an oxidizing atmosphere at a temperature equal to or higher than the melting point of the infiltrating material, so that the infiltrating material is infiltrated from above and below the infiltrating base material.

なお、金属粉末としては、溶浸材である綱の融点よし高
い融点の金属を用いれば良く、例えばモリブデンやクロ
ムの他、タングステンや鉄、コバルト、ニオブ、ステン
レス鋼のうちの何れの組合せであっても良い。又、溶浸
作業及び脱ガス処理及び焼結操作は、真空雰囲気以外に
水素ガスやアルゴンガス或いは窒素ガス等の非酸化性雰
囲気にて行っても良い。
As the metal powder, it is sufficient to use a metal with a melting point higher than that of the steel that is the infiltration material, such as any combination of molybdenum, chromium, tungsten, iron, cobalt, niobium, and stainless steel. It's okay. Further, the infiltration operation, degassing treatment, and sintering operation may be performed in a non-oxidizing atmosphere such as hydrogen gas, argon gas, or nitrogen gas other than a vacuum atmosphere.

F  作    用 溶浸母材に対して溶浸材がその上下から同時に溶浸して
行くため、溶浸母材の下側の部分の導電率が向上すると
共に電極材料全体の均質化にもつながり、反9等の変形
も防止される。
F Effect: Because the infiltrant material infiltrates the infiltrated base material from above and below at the same time, the conductivity of the lower part of the infiltrated base material improves, and it also leads to homogenization of the entire electrode material. Deformation such as anti-9 is also prevented.

G、実施例 まず、−100メツシユのモリブデン及びり田ムの粉末
を用意し、重量比でMo:Cr=1:4として42g用
意し、これらを機械的に混合する。
G. Example First, -100 mesh molybdenum and ash powders were prepared, 42g of them were prepared with a weight ratio of Mo:Cr=1:4, and these were mechanically mixed.

そして、内径40+mの金型を用意してこの金型を加圧
成形機に装着しておき、前述した混合粉体を金型内に充
填したのち、加圧成形機を作動してこれら混合粉体を1
100kg/ciの加圧力で約1分径度圧縮加圧成形す
る。
Then, prepare a mold with an inner diameter of 40+ m, install this mold in a pressure molding machine, fill the mold with the above-mentioned mixed powder, and then operate the pressure molding machine to body 1
Compression molding is carried out by about 1 minute diameter at a pressure of 100 kg/ci.

このようにして得られた仮成形体を5X1333mPa
 (5X10 mHg)の真空中で約1160℃に60
分間加熱保持し、多孔質の溶浸母材とする。
The temporary molded body thus obtained was heated to 5×1333 mPa.
60 to approximately 1160 °C in a vacuum of (5 x 10 mHg)
Heat and hold for a minute to form a porous infiltration base material.

しかるのち、この溶浸母材を第1図に示すようにアルミ
ナセラミックス製等の容器11に一個以上相隔てて配置
すると共にこれら溶浸母材12の上に円板状等の形に成
形された銅塊13を載置し、更に容W11と同材質の−
J114を被せてこの容器11を真空炉内に装入するが
、予め容器11と溶浸母材12この間にも銅塊15を介
装しておく。これら鋼塊13.15の総量は、溶浸母材
の空隙容積に見合うだけは必要であるが、この総量が多
すぎたり或いは総量が適切でも下側の銅塊15の割合が
多すぎると、銅が容器11の底面全体に拡がってしまい
、種々の面で不都合を招く。本実施例では上側の銅塊1
3を4081下側の銅塊15を30gに設定した。
Thereafter, as shown in FIG. 1, one or more of these infiltrated base materials are placed in spaced apart containers 11 made of alumina ceramics, etc., and formed into a disk shape or the like on top of these infiltrated base materials 12. Place the copper ingot 13, and then place the - made of the same material as W11.
This container 11 is covered with J114 and placed in a vacuum furnace, but a copper ingot 15 is also interposed between the container 11 and the infiltration base material 12 in advance. It is necessary that the total amount of these steel ingots 13.15 corresponds to the void volume of the infiltrated base material, but if this total amount is too large, or even if the total amount is appropriate, the proportion of the lower copper ingots 15 is too large. Copper spreads over the entire bottom surface of the container 11, causing various problems. In this example, the upper copper lump 1
The copper ingot 15 on the lower side of 4081 was set to 30 g.

そして、これらを5 X 1.333 mPa程度の真
空中にて銅の融点以上で且つ金属粉末の融点以下の温度
(・約1100℃)を約30分径度保持し、銅塊13,
15を溶浸母材の空隙部分に上下から溶浸させる。
Then, these were kept at a temperature of about 30 minutes above the melting point of copper and below the melting point of the metal powder (approx.
15 is infiltrated into the voids of the infiltrated base material from above and below.

こうして得た材料の表面を切削して平板に加工した所、
その板厚は6.84−となった。
When the surface of the material obtained in this way was cut and processed into a flat plate,
The plate thickness was 6.84-.

そして、これを板厚方向に切削してその板厚方向(第1
図中、上下方向)の導電率分布を調べtコ所、第2図に
示すような結果を得られた。又、他の条件を変えずに上
側の鋼塊13を30g1下側の鋼塊15を40gに設定
した結果を第3図に示すが、伺れの場合も板厚方向に沿
った導電率のばら付きが極くわずかであり、均一な電極
材料が得られた。。
This is then cut in the thickness direction (the first
The conductivity distribution in the vertical direction (in the figure) was investigated and the results shown in FIG. 2 were obtained. Figure 3 shows the results when the upper steel ingot 13 is set to 30 g and the lower steel ingot 15 is set to 40 g without changing other conditions. A uniform electrode material with very little variation was obtained. .

Il、  発明の効果 本発明の電極材料の製造方法によると、溶浸母材の上下
に溶浸材を重ね合せ、溶浸母材に対してその上下から溶
浸材を溶浸させるようにしたので、得られる電極材料の
上下方向に沿った導電率の分布を均一に改善できると共
に反し等の変形をも防止することができる。
According to the method for manufacturing an electrode material of the present invention, the infiltrant material is stacked on top and bottom of the infiltration base material, and the infiltration material is infiltrated into the infiltration base material from above and below. Therefore, the conductivity distribution along the vertical direction of the obtained electrode material can be uniformly improved, and deformation such as warping can be prevented.

しかも、溶浸母材を得るに当って予め金属粉末を加圧成
形しているので、強度が向上すると共に耐電圧特性の改
善が図れ、例えばコンデンサ開閉用真空インクラブタの
24極材料として用いた場合、電流投入時の投入電流に
よる接触面の荒れが少なく、再点弧確率を著しく少なく
することができる。これにより、電極間距離を狭めて電
極の開閉速度を小さくし、真空インタラプタ及びその操
作機晋自体の小形化を企図し得る。
Moreover, since the metal powder is press-molded in advance to obtain the infiltrated base material, the strength is improved and the withstand voltage characteristics are improved. , the contact surface is less roughened by the applied current when the current is applied, and the re-ignition probability can be significantly reduced. This makes it possible to reduce the distance between the electrodes and reduce the opening/closing speed of the electrodes, thereby making it possible to downsize the vacuum interrupter and its operating device itself.

又、金属粉末の固形化によるハンドリングが可能となり
、しかもこの金属粉末を任意の形状に成形できるので、
溶浸後のf4極形状への機械加工代を最小限に抑えるこ
とができ、従来と比較して生産性を1.5〜2倍に向上
させることが可能である。
In addition, it is possible to handle the metal powder by solidifying it, and this metal powder can be formed into any shape.
It is possible to minimize the machining allowance for the f4 pole shape after infiltration, and it is possible to improve productivity by 1.5 to 2 times compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による製造方法のうちの溶浸作業の一実
施例を表す作業概念図、第2図は及び第3図はその導電
率分布をそれぞれ表すグラフ、第4図は上下の銅塊の割
合を変えた場合の電極材料上下両端面の導電率を表すグ
ラフ、第5図は従来の製造方法の一例を表す作業概念図
である。 又、図中の符号で11は容器、12は溶浸母材、13,
15は銅塊、14は蓋である。 第1図 本発明による製造方法の一芙施例の慨志図第5図 従来の製造方法の一例を表す概念図 第3図 第4図 電極材料の上下両端面の導電率を表すグラフ↑
Fig. 1 is a work conceptual diagram showing an example of the infiltration work in the manufacturing method according to the present invention, Figs. FIG. 5 is a graph showing the conductivity of both the upper and lower end surfaces of the electrode material when the proportion of lumps is changed, and is a conceptual diagram of the work showing an example of a conventional manufacturing method. Also, in the figures, 11 is a container, 12 is an infiltration base material, 13,
15 is a copper ingot, and 14 is a lid. Figure 1: Schematic diagram of one example of the manufacturing method according to the present invention Figure 5: Conceptual diagram representing an example of the conventional manufacturing method Figure 3: Figure 4: Graph representing the conductivity of both upper and lower end surfaces of the electrode material↑

Claims (1)

【特許請求の範囲】[Claims] 溶浸材より融点の高い少なくとも一種類の金属粉末を所
定形状に加圧成形して仮成形体を形成し、この仮成形体
を加熱すると共に非酸化性雰囲気にて脱ガスしつつ当該
仮成形体を焼結して溶浸母材を形成したのち、この溶浸
母材の上下にそれぞれ前記溶浸材を配置すると共にこれ
らを非酸化性雰囲気にて前記溶浸材の融点以上の温度で
加熱保持し、前記溶浸材を前記溶浸母材の上下から溶浸
させるようにしたことを特徴とする電極材料の製造方法
At least one type of metal powder with a melting point higher than that of the infiltration material is press-molded into a predetermined shape to form a temporary compact, and the temporary compact is heated and degassed in a non-oxidizing atmosphere while the temporary compact is formed. After sintering the body to form an infiltration base material, the infiltration material is placed above and below the infiltration base material, respectively, and these are heated in a non-oxidizing atmosphere at a temperature higher than the melting point of the infiltration material. A method for manufacturing an electrode material, characterized in that the infiltration material is infiltrated from above and below the infiltration base material by heating and holding.
JP14802587A 1987-06-16 1987-06-16 Manufacture of electrode material Pending JPS63313442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14802587A JPS63313442A (en) 1987-06-16 1987-06-16 Manufacture of electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14802587A JPS63313442A (en) 1987-06-16 1987-06-16 Manufacture of electrode material

Publications (1)

Publication Number Publication Date
JPS63313442A true JPS63313442A (en) 1988-12-21

Family

ID=15443424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14802587A Pending JPS63313442A (en) 1987-06-16 1987-06-16 Manufacture of electrode material

Country Status (1)

Country Link
JP (1) JPS63313442A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533295A (en) * 2005-02-11 2008-08-21 エルエルシー・2・ホールディングス・リミテッド・エルエルシー Use to infiltrate copper alloys and their powder metal parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021670A (en) * 1973-06-25 1975-03-07
JPS5192069A (en) * 1975-02-07 1976-08-12 Shinkushadankino denkyokuseisakuhoho
JPS5222769A (en) * 1975-08-13 1977-02-21 Siemens Ag Method of manufacturing multilayered contacts for vacuum interrupter
JPS63150822A (en) * 1986-12-16 1988-06-23 株式会社東芝 Manufacture of contact alloy for vacuum valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021670A (en) * 1973-06-25 1975-03-07
JPS5192069A (en) * 1975-02-07 1976-08-12 Shinkushadankino denkyokuseisakuhoho
JPS5222769A (en) * 1975-08-13 1977-02-21 Siemens Ag Method of manufacturing multilayered contacts for vacuum interrupter
JPS63150822A (en) * 1986-12-16 1988-06-23 株式会社東芝 Manufacture of contact alloy for vacuum valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533295A (en) * 2005-02-11 2008-08-21 エルエルシー・2・ホールディングス・リミテッド・エルエルシー Use to infiltrate copper alloys and their powder metal parts

Similar Documents

Publication Publication Date Title
US4954170A (en) Methods of making high performance compacts and products
US4909841A (en) Method of making dimensionally reproducible compacts
KR920003464B1 (en) Method for making vacuum circuit breaker electrodes
CN105018815A (en) High-Cr-content high-pressure-resistance copper-chromium contact material and manufacturing method thereof
US3144328A (en) Method of producing porous sintered tantalum anodes
US4503010A (en) Process of producing a compound material of chromium and copper
JPH04334832A (en) Manufacture of electrode material
KR102062674B1 (en) Manufacturing method of ternary contact material
CN106583690A (en) Method for preparing CuW alloy by adding Ti element
JPS63313442A (en) Manufacture of electrode material
US2510546A (en) Manufacture of precision articles from powdered material
JPH0715127B2 (en) Method for manufacturing electrode material
CN114892064A (en) FeCrCuVCo high-entropy alloy and preparation method thereof
JPH05117720A (en) Production of electrode material
JPS6353252B2 (en)
JPH05217473A (en) Manufacture of electrode material
US5701993A (en) Porosity-free electrical contact material, pressure cast method and apparatus
JPS63314730A (en) Manufacture of electrode material
JPH05114328A (en) Manufacture of electrode material
JPH0344145B2 (en)
JPS63183105A (en) Production of electrode material
JP3298129B2 (en) Manufacturing method of electrode material
JP2002373537A (en) Electrode for vacuum circuit breaker and its manufacturing method, vacuum valve, and vacuum circuit breaker
JPH04154018A (en) Manufacture of copper/chrome electrode material
JPS5938301A (en) Manufacture of sintered ag-w contact