JPS63311124A - Pyroelectric type infrared-ray array sensor - Google Patents

Pyroelectric type infrared-ray array sensor

Info

Publication number
JPS63311124A
JPS63311124A JP62148550A JP14855087A JPS63311124A JP S63311124 A JPS63311124 A JP S63311124A JP 62148550 A JP62148550 A JP 62148550A JP 14855087 A JP14855087 A JP 14855087A JP S63311124 A JPS63311124 A JP S63311124A
Authority
JP
Japan
Prior art keywords
thin film
pyroelectric
group
substrate
array sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62148550A
Other languages
Japanese (ja)
Other versions
JP2553559B2 (en
Inventor
Ryoichi Takayama
良一 高山
Yoshihiro Tomita
富田 佳宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62148550A priority Critical patent/JP2553559B2/en
Publication of JPS63311124A publication Critical patent/JPS63311124A/en
Application granted granted Critical
Publication of JP2553559B2 publication Critical patent/JP2553559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To decrease cross talk and to improve sensitivity, by forming upper electrodes as the group of a plurality of separated electrodes, covering one surface of the group of pyroelectric thin films with an organic thin film, and removing a part of a substrate corresponding to a light sensitive part. CONSTITUTION:An insulating thin film 2 is formed on a substrate 1 for array elements. A lower electrode thin film 3 and the group of pyroelectric thin films 4 are provided thereon. The group of a plurality of separated upper electrode thin films 5 is formed on the group of the pyroelectric thin films 4. At least one surface of the group of the pyroelectric thin films 4 is covered with an organic thin film 6. A part of the substrate 1 corresponding to a light sensitive part is removed. The organic thin film 6 is formed by applying light sensitive polyimide resin with a spinner and performing heat treatment at 200 deg.C by irradiation with ultraviolet rays. The organic thin film 6 such as this alleviates thermal stress between the pyroelectric film 4 and the substrate 1, decreases cross talk due to thermal diffusion and can improve the sensitivity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電薄膜を用いた焦電型赤外線アレイセンサに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a pyroelectric infrared array sensor using a pyroelectric thin film.

従来の技術 焦電型赤外線検出器は熱量の赤外線検出器で、常温動作
が可能で、感度の波長依存性が小さく、熱室検出器のな
かでは高感度である。
Conventional technology A pyroelectric infrared detector is a calorific infrared detector that can operate at room temperature, has low sensitivity dependence on wavelength, and has high sensitivity among heat chamber detectors.

焦電型検出器に使用されている材料にはTGS系・Li
TaO3系等の単結晶、P b T i O9系・pb
XZrl−xTiO2系のセラミック、PVF2系等等
の有機膜等がある。
Materials used in pyroelectric detectors include TGS and Li.
Single crystal such as TaO3 type, P b Ti O9 type/pb
Examples include organic films such as XZrl-xTiO2-based ceramics and PVF2-based ceramics.

P b T i Osは焦電材料の性能指数であるFv
(−7/6CV)及びFm(−y/CvJεd tan
δ)が高い。
P b T i Os is the figure of merit of pyroelectric material Fv
(-7/6CV) and Fm(-y/CvJεd tan
δ) is high.

ここで γは焦電係数、εは誘電率、cvは体積比熱、
dは厚さである。また、PbTiOsは焦電係数の温度
変化が小さく、キュリ一点が十分高い等の特長をもって
いる。焦電型検出器には、PbTiO3磁器が用いられ
る場合が多い。磁器は多結晶であり、結晶軸の配列に方
向性は無(、シたがって自発分極Psもランダムに配列
している。焦電材料は自発分極Psの変化を出力として
取り出すため、Psが一方向に揃っているとき、最大出
力が得られる。そこで、磁器には高電界を印加してPs
の向きを揃える分極処理が必要である。
Here, γ is the pyroelectric coefficient, ε is the dielectric constant, cv is the volumetric specific heat,
d is the thickness. Furthermore, PbTiOs has features such as a small change in pyroelectric coefficient with temperature and a sufficiently high Curie point. PbTiO3 porcelain is often used for pyroelectric detectors. Porcelain is polycrystalline, and there is no directionality in the arrangement of crystal axes (therefore, spontaneous polarization Ps is also arranged randomly. Pyroelectric materials extract changes in spontaneous polarization Ps as output, so Ps is uniform Maximum output is obtained when the directions are aligned.Therefore, a high electric field is applied to the porcelain to generate Ps
Polarization processing is required to align the directions of the two.

また、C軸配向したP b T i Os薄膜の配向軸
方向に発生する焦電気を利用した場合、C軸方向の誘電
率が低下し、焦電係数が増大するので、PbTies磁
器の約3倍のFvを示す高感度焦電材料を実現できるこ
とが、第30回応用物理学関係連合講演予稿集7P−z
−2に報告されている。
Furthermore, when using pyroelectricity generated in the direction of the orientation axis of a C-axis oriented PbTiOs thin film, the dielectric constant in the C-axis direction decreases and the pyroelectric coefficient increases, so it is approximately three times as strong as PbTies porcelain. Proceedings of the 30th Applied Physics Association Lecture 7P-z show that it is possible to realize a highly sensitive pyroelectric material with an Fv of
-2 reported.

赤外線アレイセンサは光学系との関係で空間分解能をよ
くするために微細な配列にすることが望ましい。
In order to improve spatial resolution in relation to the optical system, it is desirable that the infrared array sensor be arranged in a fine array.

発明が解決しようとする問題点 焦電材料の厚さが薄くなるほど、雑音が小さくなり、検
出能:0本は増大する。P b T i Os磁器でア
レイを構成する場合、磁器の薄膜化には限界があり、厚
さを薄くして0本を向上することは限度がある。また、
各エレメント間のクロストークが大きくなり空間分解能
が低下する。そのため各エレメントを分離するこきが必
要となる。面積を小さくすると電気容量が小さくなるた
め、外部からの静電容量、浮遊容量の点から小形化も困
難となる。
Problems to be Solved by the Invention As the thickness of the pyroelectric material becomes thinner, the noise becomes smaller and the detectability: 0 increases. When configuring an array using P b T i Os porcelain, there is a limit to how thin the porcelain film can be, and there is a limit to how thin the porcelain film can be to improve zero. Also,
Crosstalk between each element increases and spatial resolution decreases. Therefore, it is necessary to separate each element. As the area becomes smaller, the capacitance becomes smaller, so miniaturization becomes difficult in terms of external capacitance and stray capacitance.

さらに、焦電材料に分極処理を施すとき次のような問題
点が生じる。
Furthermore, the following problems arise when polarization treatment is applied to pyroelectric materials.

(1)分極処理により絶縁破壊が生じる場合がある。(1) Dielectric breakdown may occur due to polarization treatment.

(2)高密度に配列している高分解能アレイ素子では、
それらを均一に分極することが困難である。
(2) In high-resolution array elements arranged in high density,
It is difficult to polarize them uniformly.

(3)半導体デバイス上に焦電薄膜を形成した集積化デ
バイスでは、分極処理そのものが不可能な場合がある。
(3) In an integrated device in which a pyroelectric thin film is formed on a semiconductor device, polarization itself may not be possible in some cases.

一方、焦電薄膜はスパッタリングなどにより高温で作製
されるため、基板との熱膨張の違いによる熱応力が生じ
る。感度を向上するため焦電薄膜と接した基板の一部を
除去する構造では、この熱応力により焦電薄膜の割れが
生じた。またこれらの焦電薄膜は圧電体であるので、振
動や音による雑音も生じた。
On the other hand, since pyroelectric thin films are manufactured at high temperatures by sputtering or the like, thermal stress occurs due to the difference in thermal expansion with the substrate. In a structure in which a part of the substrate in contact with the pyroelectric thin film was removed to improve sensitivity, this thermal stress caused the pyroelectric thin film to crack. Furthermore, since these pyroelectric thin films are piezoelectric, they also generate noise due to vibrations and sounds.

問題点を解決するための手段 基板と、前記基板上に形成された絶縁薄膜と、前記絶縁
薄膜上に作製した下部電極薄膜と、その上に作製された
焦電薄膜群と、前記焦電薄膜群上に形成された複数の分
離した上部電極薄膜群と、前記焦電薄膜群の少なくとも
片面を被覆する有機薄膜とを有し、感光部に相当する基
板の一部を除去した構成とする。
Means for Solving the Problems A substrate, an insulating thin film formed on the substrate, a lower electrode thin film formed on the insulating thin film, a group of pyroelectric thin films formed thereon, and the pyroelectric thin film. The structure includes a plurality of separate upper electrode thin film groups formed on the group, and an organic thin film covering at least one side of the pyroelectric thin film group, and a part of the substrate corresponding to the photosensitive part is removed.

作用 上記のような焦電薄膜及び構成を用いた赤外線アレイセ
ンサにおいては、熱拡散によるクロストークを低減しか
つ感度の向上を図ることができるばかりでな(、熱応力
による薄膜のはがれ・割れを防止できる。また有機薄膜
を用いることによりセンサ部の機械的Qを低減でき、振
動・音による雑音を抑制することができる。
Function: In an infrared array sensor using the pyroelectric thin film and structure described above, it is possible to not only reduce crosstalk caused by thermal diffusion and improve sensitivity (but also to prevent peeling and cracking of the thin film due to thermal stress). Furthermore, by using an organic thin film, the mechanical Q of the sensor section can be reduced, and noise caused by vibrations and sounds can be suppressed.

実施例 第1図は本発明の焦電型赤外線アレイ素子の構造を示す
図である。
Embodiment FIG. 1 is a diagram showing the structure of a pyroelectric infrared array element of the present invention.

(100)でへき開し鏡面研摩したMgO単結晶基板1
上に、高周波マグネトロンスパッタ法で絶縁薄膜2とし
て5in2を30OA作製した。その上に下部電極3と
してPt薄膜を形成した。
(100) cleaved and mirror polished MgO single crystal substrate 1
On top of this, a 5 in 2 film of 30 OA was formed as an insulating thin film 2 by high frequency magnetron sputtering. A Pt thin film was formed thereon as the lower electrode 3.

ついで焦電薄膜群4として、 Pb+−x  La  Ti−o7sx  :fl  
(PLT)を高周波マグネトロンスパッタ法で4μm成
長させた。上記焦電薄膜4は各エレメントご七にメタル
マスクにより分離されている。雰囲気ガスにはArと0
2の混合ガスを用い、スパッタリングターゲットは、 ((1−Y) Pb+−x Lax Tit−o、7s
x O3+Y Pb0)の粉末である。表1にスパッタ
リング条件を示す。
Next, as the pyroelectric thin film group 4, Pb+-x La Ti-o7sx :fl
(PLT) was grown to 4 μm by high frequency magnetron sputtering. The pyroelectric thin film 4 is separated into each element by a metal mask. Atmosphere gas contains Ar and 0
The sputtering target was ((1-Y) Pb+-x Lax Tit-o, 7s
xO3+YPb0) powder. Table 1 shows the sputtering conditions.

次に、この焦電薄膜群4上に、NiCrよりなる複数の
上部電極薄膜5゛を、蒸着により作製した。
Next, on this pyroelectric thin film group 4, a plurality of upper electrode thin films 5' made of NiCr were formed by vapor deposition.

前記上部電極薄膜5は、フォトグラフィの手法によりア
レイのピッチに合わせて格子状に分離、配列されている
。次にこれらの上に有機薄膜6を設けた。上記有機薄膜
6は感光性ポリイミド系樹脂をスピンナーで塗布し、紫
外線に照射した後200℃で熱処理したものである。膜
厚は3.5μ■であった。電極薄膜5上の一部にはコン
タクトホール7を設けて取り出し電極8と接触させた。
The upper electrode thin film 5 is separated and arranged in a grid pattern according to the pitch of the array using a photography method. Next, an organic thin film 6 was provided on these. The organic thin film 6 is made by applying a photosensitive polyimide resin using a spinner, irradiating it with ultraviolet light, and then heat-treating it at 200°C. The film thickness was 3.5 μm. A contact hole 7 was provided in a part of the electrode thin film 5 to bring it into contact with an extraction electrode 8.

表  1 さらに、焦電薄膜群4の下部におけるMgO基板1を熱
濃燐酸によりエツチングし、開口部9を設けた。このと
きエツチング幅を焦電薄膜群4の幅より大きくして、焦
電薄膜群4はMgO基板1に接触しないようにしている
。上記構成において、焦電薄膜群4とMgO基板1との
熱膨張の違いによる熱応力を有機薄膜6は緩和している
。前記絶縁薄膜2はエツチング時の保護膜として効果が
大きい。
Table 1 Furthermore, the MgO substrate 1 below the pyroelectric thin film group 4 was etched with hot concentrated phosphoric acid to form an opening 9. At this time, the etching width is made larger than the width of the pyroelectric thin film group 4 so that the pyroelectric thin film group 4 does not contact the MgO substrate 1. In the above configuration, the organic thin film 6 relieves thermal stress due to the difference in thermal expansion between the pyroelectric thin film group 4 and the MgO substrate 1. The insulating thin film 2 is highly effective as a protective film during etching.

PLT焦電薄膜が分極軸の75z以上が一方向に配向し
ているとき、焦電係数:γは5xlO−8C/cfKと
なり、この値は200℃で1ookV/c+a印加して
分極処理を行ったPbTiOsセラミクス(r−1,8
xlO−8C/cJK)とくらべかなり大きい。配向率
9ozの場合焦電係数は6.8XlO−8C/ cJK
である。また、分極処理後の値と比べ殆ど変わらないば
かりでな(、配向率が小さい場合の分極後の値より大き
い。誘電率は、配向率90名の場合、セラミクスとほぼ
同等の値で約200である。
When the PLT pyroelectric thin film is oriented in one direction over 75z of the polarization axis, the pyroelectric coefficient: γ is 5xlO-8C/cfK, and this value was determined by applying 1ookV/c+a at 200°C to perform polarization treatment. PbTiOs ceramics (r-1,8
xlO-8C/cJK). When the orientation rate is 9oz, the pyroelectric coefficient is 6.8XlO-8C/cJK
It is. In addition, it is almost the same as the value after polarization treatment (it is larger than the value after polarization when the orientation rate is small. When the orientation rate is 90, the dielectric constant is about 200, which is almost the same as that of ceramics. It is.

このように本実施例に用いたPLT薄膜では、薄膜作製
時に十分にC軸に配向しておれば分極処理を行わな(で
も自発分極が揃っており、特に配向率75%以上の薄膜
でその効果が大きいことが明らかになった。また、焦電
材料としての性能指数であるFv(=γ/εCv)の値
も太き(なる。200℃で10分間100kV/cm印
加して分極処理を行ったpbT i Osセラミクスの
値と比較して、PLT薄膜は3倍強の値を示した。
In this way, the PLT thin film used in this example does not need to be polarized if it is sufficiently oriented along the C-axis during thin film fabrication (but the spontaneous polarization is uniform, especially for thin films with an orientation rate of 75% or more). It became clear that the effect was large. In addition, the value of Fv (= γ / εCv), which is the figure of merit for pyroelectric materials, was also large. Compared to the value of pbT i Os ceramics, the PLT thin film showed a value more than three times higher.

なお、絶縁薄膜の膜厚が薄いとき、PL■薄膜の配向率
はほとんど低下しなかった。
Note that when the thickness of the insulating thin film was small, the orientation rate of the PL* thin film hardly decreased.

焦電型赤外線アレイセンサとしての特性も、材料性能指
数のアップ及び各エレメント間の熱拡散を小さくした構
成により大幅に向上した。焦電薄膜が各エレメントで分
離されていなくてその両端で基板に接触しているセンサ
と比較して、感度及び0本は5倍以上増大した。また、
クロストークは第2図に示すように一桁低減された。
The characteristics as a pyroelectric infrared array sensor have also been significantly improved due to an increase in the material performance index and a configuration that reduces heat diffusion between each element. Compared to a sensor in which the pyroelectric thin film is not separated in each element and is in contact with the substrate at both ends, the sensitivity and zero lines are increased by more than five times. Also,
Crosstalk was reduced by an order of magnitude as shown in FIG.

さらに、振動・音波によるセンサの出力電圧も著しく低
下した。
Furthermore, the output voltage of the sensor due to vibrations and sound waves also decreased significantly.

以上述べたように、本発明による焦電型赤外線アレイセ
ンサは、MgO基板への熱拡散を抑制して高感度・低ク
ロストークを実現することができる。
As described above, the pyroelectric infrared array sensor according to the present invention can suppress heat diffusion to the MgO substrate and achieve high sensitivity and low crosstalk.

発明の効果 本発明による焦電型赤外線アレイセンサは、熱拡散によ
るクロストークを低減し、かつ感度の向上を図ることが
できるばかりでな(、焦電薄膜の熱応力による薄膜のは
がれ・割れを防止できる。
Effects of the Invention The pyroelectric infrared array sensor according to the present invention can not only reduce crosstalk caused by thermal diffusion and improve sensitivity (but also prevent peeling and cracking of the pyroelectric thin film due to thermal stress). It can be prevented.

また有機薄膜を用いる構成により、センサ部の棲械的Q
を低減でき、振動・音による雑音を抑制することができ
る。
In addition, the structure using an organic thin film reduces the mechanical Q of the sensor part.
It is possible to reduce noise caused by vibration and sound.

線アレイセンサの構造を示す平面図及び断面図、第2図
は本発明の一実施例に於ける焦電型赤外線アレイセンサ
のクロストーク特性を示すグラフである。
FIG. 2 is a plan view and a cross-sectional view showing the structure of a line array sensor, and a graph showing crosstalk characteristics of a pyroelectric infrared array sensor in an embodiment of the present invention.

1・・・・MgO基板   2・・・・絶縁薄膜3・・
・・下部電極薄膜  4・・・・焦電薄膜5・・・・上
部電極薄膜  6・・・・有機薄膜8・・・・取り出し
電極  9・・・・開口部代理人の氏名 弁理士 中尾
敏男 ほか1名第1図 (A)
1...MgO substrate 2...Insulating thin film 3...
... Lower electrode thin film 4 ... Pyroelectric thin film 5 ... Upper electrode thin film 6 ... Organic thin film 8 ... Extraction electrode 9 ... Name of opening agent Patent attorney Toshio Nakao 1 other person Figure 1 (A)

Claims (5)

【特許請求の範囲】[Claims] (1)基板と、前記基板上に形成された絶縁薄膜と、前
記絶縁薄膜上に作製した下部電極薄膜と、その上に作製
された焦電薄膜群と、前記焦電薄膜群上に形成された複
数の分離した上部電極薄膜群と、前記焦電薄膜群の少な
くとも片面を被覆する有機薄膜とを有し、感光部に相当
する基板の一部を除去したことを特徴とする焦電型赤外
線アレイセンサ。
(1) A substrate, an insulating thin film formed on the substrate, a lower electrode thin film fabricated on the insulating thin film, a pyroelectric thin film group fabricated thereon, and a pyroelectric thin film group formed on the pyroelectric thin film group. pyroelectric infrared rays, comprising a plurality of separate upper electrode thin film groups, and an organic thin film covering at least one side of the pyroelectric thin film group, and a part of the substrate corresponding to the photosensitive part is removed. array sensor.
(2)焦電薄膜が化学式(Pb_xLa_y)(Ti_
zZr_w)O_3で表され、 a)0.7≦x≦1、0.9≦x+y≦1、0.95≦
z≦1、w=0b)x=1、y=0、0.45≦z≦1
、z+w=1c)0.83≦x≦1、x+y=1、0.
5≦z≦1、0.96≦z+w≦1 のいずれかの組成をもち、<001>方向に高度に配向
していることを特徴とする特許請求の範囲第1項記載の
焦電型赤外線アレイセンサ。
(2) The pyroelectric thin film has the chemical formula (Pb_xLa_y)(Ti_
zZr_w) O_3, a) 0.7≦x≦1, 0.9≦x+y≦1, 0.95≦
z≦1, w=0b) x=1, y=0, 0.45≦z≦1
, z+w=1c) 0.83≦x≦1, x+y=1, 0.
The pyroelectric infrared ray according to claim 1, which has a composition of either 5≦z≦1, 0.96≦z+w≦1 and is highly oriented in the <001> direction. array sensor.
(3)焦電薄膜が化学式(Pb_xLa_y)(Ti_
zZr_w)O_3で表され、 a)x=1、y=0、0.1≦z≦0.4、z+w=1
b)0.92≦x≦1、x+y=1、0.3≦z≦0.
45、0.98≦z+w≦1 のいずれかの組成をもち、<111>方向に配向してい
ることを特徴とする特許請求の範囲第1項記載の焦電型
赤外線アレイセンサ。
(3) The pyroelectric thin film has the chemical formula (Pb_xLa_y)(Ti_
zZr_w) O_3, a) x=1, y=0, 0.1≦z≦0.4, z+w=1
b) 0.92≦x≦1, x+y=1, 0.3≦z≦0.
45, 0.98≦z+w≦1, and is oriented in the <111> direction. The pyroelectric infrared array sensor according to claim 1.
(4)焦電薄膜が基板に直接接触せず、有機薄膜と絶縁
薄膜を介して基板に支持されていることを特徴とする特
許請求の範囲第1項記載の焦電型赤外線アレイセンサ。
(4) The pyroelectric infrared array sensor according to claim 1, wherein the pyroelectric thin film does not come into direct contact with the substrate, but is supported by the substrate via an organic thin film and an insulating thin film.
(5)有機薄膜がポリイミド系樹脂であることを特徴と
する特許請求の範囲第1項記載の焦電型赤外線アレイセ
ンサ。
(5) The pyroelectric infrared array sensor according to claim 1, wherein the organic thin film is made of polyimide resin.
JP62148550A 1987-06-15 1987-06-15 Pyroelectric infrared array sensor Expired - Fee Related JP2553559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62148550A JP2553559B2 (en) 1987-06-15 1987-06-15 Pyroelectric infrared array sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62148550A JP2553559B2 (en) 1987-06-15 1987-06-15 Pyroelectric infrared array sensor

Publications (2)

Publication Number Publication Date
JPS63311124A true JPS63311124A (en) 1988-12-19
JP2553559B2 JP2553559B2 (en) 1996-11-13

Family

ID=15455267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62148550A Expired - Fee Related JP2553559B2 (en) 1987-06-15 1987-06-15 Pyroelectric infrared array sensor

Country Status (1)

Country Link
JP (1) JP2553559B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286975A (en) * 1991-05-29 1994-02-15 Matsushita Electric Industrial Co., Ltd. Pyro-electric type infrared-ray sensor
JPH06258137A (en) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd Pyroelectric infrared ray sensor
US5804823A (en) * 1995-10-10 1998-09-08 Raytheon Company Bismuth layered structure pyroelectric detectors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286975A (en) * 1991-05-29 1994-02-15 Matsushita Electric Industrial Co., Ltd. Pyro-electric type infrared-ray sensor
JPH06258137A (en) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd Pyroelectric infrared ray sensor
US5804823A (en) * 1995-10-10 1998-09-08 Raytheon Company Bismuth layered structure pyroelectric detectors

Also Published As

Publication number Publication date
JP2553559B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US5644838A (en) Method of fabricating a focal plane array for hybrid thermal imaging system
US5602043A (en) Monolithic thermal detector with pyroelectric film and method
JPS61177900A (en) Piezo-electric element and its manufacture
JPS62205266A (en) Ferroelectric thin film element and its production
JP7054926B2 (en) Transparent piezoelectric device and method for manufacturing the device
JPS63311124A (en) Pyroelectric type infrared-ray array sensor
Chen et al. Sol-gel derived ferroelectric PZT thin films on doped silicon substrates
JPS63313023A (en) Pyroelectric type infrared array sensor and its production
JPH0334580A (en) Electronic parts
JPS63129677A (en) Pyroelectric infrared-ray array device and manufacture thereof
JP2553569B2 (en) Pyroelectric infrared array sensor
JPH06281503A (en) Pyroelectric infrared sensor and its production method
JPS63124924A (en) Pyroelectric type infrared array element
JPH10200369A (en) Piezoelectric thin film resonator
JPS63124923A (en) Pyroelectric type infrared array element
JPS59114853A (en) Laminated integrated circuit element
JPH01272931A (en) Pyroelectric compound thin film element
JP3395796B2 (en) Pyroelectric substrate heating method and heating device
JPH06350050A (en) Method for forming dielectric insulating film film in charge storage part of semiconductor
JPH04350978A (en) Pyroelectric infrared array sensor
JPS62162930A (en) Pyroelectric type infrared detecting element
US6485619B2 (en) Method for forming metal oxide film
JPS6230695A (en) Dielectric thin film element and production thereof
JPS6246218A (en) Pyroelectric infrared array element
JPH0621064A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees