JPS63124923A - Pyroelectric type infrared array element - Google Patents

Pyroelectric type infrared array element

Info

Publication number
JPS63124923A
JPS63124923A JP61272488A JP27248886A JPS63124923A JP S63124923 A JPS63124923 A JP S63124923A JP 61272488 A JP61272488 A JP 61272488A JP 27248886 A JP27248886 A JP 27248886A JP S63124923 A JPS63124923 A JP S63124923A
Authority
JP
Japan
Prior art keywords
pyroelectric
thin
film
thin film
array element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61272488A
Other languages
Japanese (ja)
Other versions
JPH0749997B2 (en
Inventor
Ryoichi Takayama
良一 高山
Yoshihiro Tomita
佳宏 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61272488A priority Critical patent/JPH0749997B2/en
Publication of JPS63124923A publication Critical patent/JPS63124923A/en
Publication of JPH0749997B2 publication Critical patent/JPH0749997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To decrease man-hour by using a thin pyroelectric film which is expressed by the chemical formula PbLaTi and in which >=75% of polarization axes are oriented in one direction and electrodes which are formed as thin films so as to have the heat transmission in the film direction smaller than the heat transmission by the thin pyroelectric film. CONSTITUTION:A thin Pt film is formed to 0.1-0.4mum by sputtering as the thin electrode film on an MgO single crystal substrate 1 which is cloven at (100) and is polished to a specular surface. Pb1-xLaxTi1-0.75xO3 (PLT) is then grown as the thin pyroelectric film 3. After the plural thin photodetecting electrode films 4 consisting of NiCr are finally deposited by evaporation on the thin film 3, the taking out electrodes 5 are prepd. Further, the MgO substrate 1 in the lower part of the thin film 3 is etched by hot concd. phosphoric acid to provide an aperture 6. Then, the pyroelectric type IR array element is so constituted as not to separate the thin pyroelectric film by each element and, therefore, the man-hours are decreased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電薄膜を用いた焦電型赤外線アレイ素子に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a pyroelectric infrared array element using a pyroelectric thin film.

従来の技術 焦電型赤外線検出器は熱室の赤外線検出器で、常温動作
が可能で、感度の波長依存性が小さく、熱型検出器のな
かでは高感度である。
Pyroelectric infrared detectors are thermal chamber infrared detectors that can operate at room temperature, have low sensitivity dependence on wavelength, and are highly sensitive among thermal detectors.

焦電型検出器に使用されている材料にはTGS系・Li
Ta0a系等の単結晶、PbTiO3系・PbxZrI
−xTiO3系のセラミック、PvFz系等の有機膜等
がある。
Materials used in pyroelectric detectors include TGS and Li.
Single crystal such as Ta0a type, PbTiO3 type/PbxZrI
-xTiO3-based ceramics, PvFz-based organic films, and the like.

P b T i O3は焦電材料の性能指数であるFν
(−7/6CV)及びF w+(−7/CvFTゴTi
了)が高い。
P b T i O3 is the figure of merit of pyroelectric material Fν
(-7/6CV) and F w+ (-7/CvFTgoTi
completion) is high.

ここで γは焦電係数、εは誘電率、Cvは体債比熱、
dは厚さである。また、PbTiO3は焦電係数の温度
変化が小さく、キュリー点が十分高い等の特長をもって
いる。焦電型検出器にはP b T i O3磁器が用
いられる場合が多い。磁器は多結晶であり、桔晶軸の配
列に方向性は無<、シたがって自発分極Psもランダム
に配列している。焦電材料は自発分極Psの変化を出力
として取り出すため、Psが一方向に揃っているとき、
最大出力が得られる。そこで、磁器には高電界を印加し
てPsの向きを揃える分極処理が必要である。
Here, γ is the pyroelectric coefficient, ε is the permittivity, Cv is the specific heat of the body,
d is the thickness. Furthermore, PbTiO3 has features such as a small temperature change in its pyroelectric coefficient and a sufficiently high Curie point. Pb Ti O3 porcelain is often used for pyroelectric detectors. Porcelain is polycrystalline, and there is no directionality in the arrangement of the crystal axes, so the spontaneous polarization Ps is also arranged randomly. Pyroelectric materials extract changes in spontaneous polarization Ps as output, so when Ps is aligned in one direction,
Maximum output is obtained. Therefore, it is necessary to polarize the ceramic by applying a high electric field to align the directions of Ps.

また、C軸配向したPbTiO3薄膜の配向軸方向に発
生する焦電気を利用した場合、C軸方向の誘電率が低下
し、焦電係数が増大するので、PbTies磁器の約3
倍のFvを示す高感度焦電材料を実現できることが、第
30回応用物理学関係連合講演予稿集7P−z−2に報
告されている。
Furthermore, when using pyroelectricity generated in the direction of the orientation axis of a C-axis oriented PbTiO3 thin film, the dielectric constant in the C-axis direction decreases and the pyroelectric coefficient increases.
It is reported in Proceedings of the 30th Applied Physics Association Lecture Proceedings 7P-z-2 that it is possible to realize a highly sensitive pyroelectric material exhibiting twice the Fv.

発明が解決しようとする問題点 焦電材料の厚さが薄(なるほど、雑音が小さくなり、検
出能:0本は増大する。P b T i O3磁器でア
レイを構成する場合、磁器の薄膜化には限界があり、厚
さを薄(して0本を向上することは限度がある。また、
各エレメント間のクロストークが太き(なり空間分解能
が低下する。そのため各エレメントを分離することが必
要となる。面積を小さくすると電気容量が小さくなるた
め、外部からの静電容量、浮遊容量の点から小形化も困
難となる。
Problems to be Solved by the Invention The thickness of the pyroelectric material is thin (I see, the noise is reduced, and the detection ability: 0 lines is increased. When configuring an array with P b T i O3 porcelain, it is necessary to make the porcelain thinner. There is a limit to the thickness, and there is a limit to improving the thickness by thinning (0).
Crosstalk between each element increases (and spatial resolution decreases. Therefore, it is necessary to separate each element. If the area is reduced, the capacitance decreases, so external capacitance and stray capacitance This also makes it difficult to downsize.

さらに、焦電材料に分極処理を施すとき次のような問題
点が生じる。
Furthermore, the following problems arise when polarization treatment is applied to pyroelectric materials.

(1)分極処理により絶縁破壊が生じる場合がある。(1) Dielectric breakdown may occur due to polarization treatment.

(2)高密度に配列している高分解能アレイ素子では、
それらを均一に分極することが困難である。
(2) In high-resolution array elements arranged in high density,
It is difficult to polarize them uniformly.

(3)半導体デバイス上に焦電薄膜を形成した集積化デ
バイスでは、分極処理そのものが不可能な場合がある。
(3) In an integrated device in which a pyroelectric thin film is formed on a semiconductor device, polarization itself may not be possible in some cases.

問題点を解決するための手段 化学式がPb+−x Lax Tit−o、7sx 0
3で組成範囲がO<X<0.15であり、分極軸の75
零以上が一方向に配向している焦電薄膜と、膜方向の熱
伝導が焦電薄膜による熱伝導より小さくなるように薄膜
化された電極を用いる。
Means to solve the problem The chemical formula is Pb+-x Lax Tit-o, 7sx 0
3, the composition range is O<X<0.15, and the polarization axis is 75
A pyroelectric thin film in which zero or more molecules are oriented in one direction, and an electrode made thin so that heat conduction in the film direction is smaller than heat conduction through the pyroelectric thin film are used.

作用 上記のような焦電薄膜を用いた赤外線ア1.・イア;子
においては、各エレメントを分離しな(でもクロストー
クが小さいため工程数を低減できる。またPsが既に揃
った自然分極を有する焦電薄膜を用いることにより、分
極処理をおこなう必要が無く、歩留まり良く、高性能の
焦電型赤外線アレイ素子が実現できる。
Function: Infrared rays using a pyroelectric thin film as described above.1.・In the case of IA, each element is not separated (but the number of steps can be reduced because the crosstalk is small. Also, by using a pyroelectric thin film with natural polarization in which Ps is already aligned, it is not necessary to perform polarization processing. It is possible to realize a high-performance pyroelectric infrared array element with high yield and high yield.

実施例 第1図は本発明の焦電型赤外線アレイ素子の構造を示す
図である。
Embodiment FIG. 1 is a diagram showing the structure of a pyroelectric infrared array element of the present invention.

(100)でへき開し鏡面研摩したMgO単結晶基板1
上に、電極薄膜2として膜厚0.1〜0.4μmのPt
薄膜をスパッタリングにより形成した。スパッタガスは
Ar−02混合ガスである。ついで、焦電薄膜3として
Pb1−xLax Tit−o、7sx 03 (PL
T)を4μm成長させた。方法は高周波マグネトロンス
パッタ法で、Arと02の混合ガスを用い、スパッタリ
ングターゲットは 1 (1−Y) Pb+−x 1.ax Tit−o7
sx 03 +Y Pb01の粉末である。表1にスパ
ッタリング条件を示す。
(100) cleaved and mirror polished MgO single crystal substrate 1
On top, Pt with a film thickness of 0.1 to 0.4 μm is deposited as the electrode thin film 2.
A thin film was formed by sputtering. The sputtering gas is an Ar-02 mixed gas. Next, as the pyroelectric thin film 3, Pb1-xLax Tit-o, 7sx 03 (PL
T) was grown to 4 μm. The method is high-frequency magnetron sputtering, using a mixed gas of Ar and 02, and the sputtering target is 1 (1-Y) Pb+-x 1. ax Tit-o7
sx 03 +Y Pb01 powder. Table 1 shows the sputtering conditions.

次に、この焦電薄膜3上にNiCrからなる複数の受光
電極薄膜4を蒸着した後、取り出し電極5を作製した。
Next, a plurality of light-receiving electrode thin films 4 made of NiCr were deposited on this pyroelectric thin film 3, and then an extraction electrode 5 was produced.

さらに、焦電薄膜3の下部におけるMgO基板1を熱濃
燐酸によりエツチングし開口部6を設けた。
Further, the MgO substrate 1 below the pyroelectric thin film 3 was etched with hot concentrated phosphoric acid to form an opening 6.

表  1 第2図及び第3図に電極薄膜2の膜厚が変化したときの
、クロストークと感度の変化の様子を示す。クロストー
クと感度は電極薄膜2の膜厚に強(影響を受け、膜厚の
減少とともにクロストークは減少し感度は増大する。電
極薄膜2の膜厚が0.1μmのとき、電極薄膜2が各エ
レメント毎に分離している試料と比較してクロストーク
の値は2割程度大きかった。したがって上記膜厚のとき
、電極薄膜2による熱伝導が焦電薄膜3による熱伝導よ
り小さいと考えられる。
Table 1 Figures 2 and 3 show how crosstalk and sensitivity change when the thickness of the electrode thin film 2 changes. Crosstalk and sensitivity are strongly influenced by the thickness of the electrode thin film 2, and as the film thickness decreases, crosstalk decreases and sensitivity increases.When the thickness of the electrode thin film 2 is 0.1 μm, the electrode thin film 2 The crosstalk value was about 20% larger than that of the sample in which each element was separated. Therefore, at the above film thickness, it is thought that the heat conduction through the electrode thin film 2 is smaller than the heat conduction through the pyroelectric thin film 3. .

PLT焦電薄膜が分極軸の758以上が一方向に配向し
ているとき、焦電係数:γは5×10−8C/ cdK
となり、この値は200℃で100 k V / ct
a印加して分極処理を行ったPbTiO3セラミクス(
y−1,8xlO−8C/ cd K )と(らべかな
り大きい。配向率90名の場合焦電係数は6.8XlO
−’C/ c+JKである。また、分極処理後の値と比
べ殆ど変わらないばかりでなく、配向率が小さい場合の
分極後の値より大きい。誘電率は、配向率90′X、の
場合、セラミクスとほぼ同等の値で約200である。
When the PLT pyroelectric thin film has polarization axes of 758 or more oriented in one direction, the pyroelectric coefficient: γ is 5 × 10-8C/cdK
and this value is 100 kV/ct at 200℃
PbTiO3 ceramics (
y-1,8xlO-8C/cd K ) and (compared to (cd K ), which is quite large. When the orientation rate is 90, the pyroelectric coefficient is 6.8XlO
-'C/c+JK. Moreover, not only is it almost the same as the value after polarization treatment, but it is also larger than the value after polarization when the orientation rate is small. When the orientation rate is 90'X, the dielectric constant is approximately 200, which is approximately the same value as ceramics.

本実施例に用いたPLT薄膜では、薄膜作製時に十分に
C軸に配向しておれば分極処理を行わなくても自発分極
が揃っており、特に配向率75%以上の薄膜でその効果
が大きい。また、焦電材料としての性能指数であるFv
(−γ/εCν)の値も大きくなる。200℃で10分
間100に’//c+*印加して分極処理を行ったPb
TiO3セラミクスの値と比較して、PLT薄膜は3倍
強の値を示した。
In the PLT thin film used in this example, if the thin film is sufficiently oriented along the C-axis during production, the spontaneous polarization will be uniform even without polarization treatment, and this effect is particularly large for thin films with an orientation rate of 75% or more. . In addition, Fv, which is the figure of merit as a pyroelectric material,
The value of (-γ/εCν) also increases. Pb was polarized by applying 100'//c+* at 200°C for 10 minutes.
Compared to the value of TiO3 ceramics, the PLT thin film showed a value more than three times higher.

以上述べたように、本発明による焦電薄膜を用いた焦電
型赤外線アレイ素子は、焦電薄膜を各エレメント毎に分
′離することな(優れた特性を実現することができる。
As described above, the pyroelectric infrared array element using the pyroelectric thin film according to the present invention can achieve excellent characteristics without separating the pyroelectric thin film into each element.

発明の効果 本発明による焦電型赤外線アレイ素子は、焦電薄膜を各
エレメント毎に分離しない構成であるので、工程数が減
り、位置合わせの問題が解消し、高密度アレイが可能と
なる。また分極処理が不要であり高性能指数である焦電
薄膜を用いるので、特性も優れていて、歩留まりも大幅
に減少するので実用的にきわめて有効である。
Effects of the Invention The pyroelectric infrared array element according to the present invention has a structure in which the pyroelectric thin film is not separated into each element, so the number of steps is reduced, alignment problems are solved, and a high-density array is possible. Furthermore, since a pyroelectric thin film is used that does not require polarization treatment and has a high performance index, it has excellent characteristics and the yield is significantly reduced, making it extremely effective in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における焦電型赤外線アレイ
素子の構造を示す斜視図、第2図及び第3図は各々、本
発明の一実施例に於ける電極薄膜の膜厚と、クロストー
ク及び感度との関係を示Aグラフである。 1・・・・MgO基板、2・・・・電極薄膜、3・・・
・焦電薄膜、4・・・・受光電極薄膜、6・・・・開口
部。 代理人の氏名 弁理士 中尾敏男 ばか1名第1図 開口部 第2図 電&薄膜の膵し厚C声〕
FIG. 1 is a perspective view showing the structure of a pyroelectric infrared array element in an embodiment of the present invention, and FIGS. 2 and 3 respectively show the thickness of the electrode thin film in an embodiment of the present invention, and Graph A shows the relationship between crosstalk and sensitivity. 1... MgO substrate, 2... electrode thin film, 3...
- Pyroelectric thin film, 4... Light-receiving electrode thin film, 6... Opening. Name of agent Patent attorney Toshio Nakao One idiot Figure 1 Opening Figure 2 Electron & thin pancreas Thick C voice]

Claims (4)

【特許請求の範囲】[Claims] (1)基板と、前記基板上に形成された第1の電極薄膜
と、前記第1の電極薄膜上に作られた化学式がPb_1
_−_xLa_xTi_1_−_0_._7_5_xO
_3で組成範囲が0<X<0.15であり<001>方
向に配向している焦電薄膜と、前記焦電薄膜上に形成さ
れた複数の分離した受光電極薄膜とを有することを特徴
とする焦電型赤外線アレイ素子。
(1) A substrate, a first electrode thin film formed on the substrate, and a chemical formula formed on the first electrode thin film is Pb_1
____xLa_xTi_1_-_0_. _7_5_xO
It is characterized by having a pyroelectric thin film that is _3, has a composition range of 0<X<0.15, and is oriented in the <001> direction, and a plurality of separate light-receiving electrode thin films formed on the pyroelectric thin film. A pyroelectric infrared array element.
(2)第1の電極薄膜の膜方向の熱伝導が焦電薄膜によ
る熱伝導より小さくなるように前記第1の電極薄膜の膜
厚を薄くしたことを特徴とする特許請求の範囲第1項記
載の焦電型赤外線アレイ素子。
(2) The thickness of the first electrode thin film is made thin so that the heat conduction in the film direction of the first electrode thin film is smaller than the heat conduction through the pyroelectric thin film. The pyroelectric infrared array element described above.
(3)第1の電極薄膜と接触する基板の一部を取り除い
たことを特徴とする特許請求の範囲第1項記載の焦電型
赤外線アレイ素子。
(3) The pyroelectric infrared array element according to claim 1, wherein a part of the substrate that contacts the first electrode thin film is removed.
(4)第1の電極薄膜に(100)配向した白金を用い
たことを特徴とする特許請求の範囲第2項記載の焦電型
赤外線アレイ素子。
(4) The pyroelectric infrared array element according to claim 2, wherein (100)-oriented platinum is used for the first electrode thin film.
JP61272488A 1986-11-14 1986-11-14 Pyroelectric infrared array element Expired - Fee Related JPH0749997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61272488A JPH0749997B2 (en) 1986-11-14 1986-11-14 Pyroelectric infrared array element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61272488A JPH0749997B2 (en) 1986-11-14 1986-11-14 Pyroelectric infrared array element

Publications (2)

Publication Number Publication Date
JPS63124923A true JPS63124923A (en) 1988-05-28
JPH0749997B2 JPH0749997B2 (en) 1995-05-31

Family

ID=17514619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61272488A Expired - Fee Related JPH0749997B2 (en) 1986-11-14 1986-11-14 Pyroelectric infrared array element

Country Status (1)

Country Link
JP (1) JPH0749997B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446284A (en) * 1994-01-25 1995-08-29 Loral Infrared & Imaging Systems, Inc. Monolithic detector array apparatus
US5448068A (en) * 1993-06-22 1995-09-05 Goldstar Co., Ltd. Pyroelectric thin film infrared sensor and method for fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448068A (en) * 1993-06-22 1995-09-05 Goldstar Co., Ltd. Pyroelectric thin film infrared sensor and method for fabricating the same
US5446284A (en) * 1994-01-25 1995-08-29 Loral Infrared & Imaging Systems, Inc. Monolithic detector array apparatus

Also Published As

Publication number Publication date
JPH0749997B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
US5070026A (en) Process of making a ferroelectric electronic component and product
US5644838A (en) Method of fabricating a focal plane array for hybrid thermal imaging system
Beerman Improvement in the pyroelectric infrared radiation detector
JPH09500234A (en) Pyro detector with oriented and grown pyroelectric layer and method of making
JPS62205266A (en) Ferroelectric thin film element and its production
US5804823A (en) Bismuth layered structure pyroelectric detectors
JPS63124923A (en) Pyroelectric type infrared array element
JP2564526B2 (en) Pyroelectric infrared array element and manufacturing method thereof
JPS63124924A (en) Pyroelectric type infrared array element
JPH08186182A (en) Ferroelectric thin-film element
JP2553559B2 (en) Pyroelectric infrared array sensor
JPH0334580A (en) Electronic parts
JPH0762235B2 (en) Method of manufacturing ferroelectric thin film
JP2553569B2 (en) Pyroelectric infrared array sensor
JPS6369272A (en) Pyroelectric thin film
JPS63313023A (en) Pyroelectric type infrared array sensor and its production
JPH0624222B2 (en) Method of manufacturing thin film capacitor
JP2568505B2 (en) Ferroelectric thin film element
JPH07286897A (en) Pyroelectric type infrared ray element and its manufacturing method
Chang et al. The characterization and fabrication of pyroelectric infrared sensor
JPS62252005A (en) Ferrodielectric thin film device
JPS62162930A (en) Pyroelectric type infrared detecting element
JP2502693B2 (en) Pyroelectric infrared imaging device and method of manufacturing the same
JPH0766669A (en) Surface acoustic wave convolver
JPH01272931A (en) Pyroelectric compound thin film element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees