JPS6331096B2 - - Google Patents

Info

Publication number
JPS6331096B2
JPS6331096B2 JP57111500A JP11150082A JPS6331096B2 JP S6331096 B2 JPS6331096 B2 JP S6331096B2 JP 57111500 A JP57111500 A JP 57111500A JP 11150082 A JP11150082 A JP 11150082A JP S6331096 B2 JPS6331096 B2 JP S6331096B2
Authority
JP
Japan
Prior art keywords
wafer
semiconductor wafer
auxiliary heating
heating source
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57111500A
Other languages
Japanese (ja)
Other versions
JPS593935A (en
Inventor
Yoshiki Mimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP11150082A priority Critical patent/JPS593935A/en
Priority to US06/445,492 priority patent/US4468259A/en
Publication of JPS593935A publication Critical patent/JPS593935A/en
Publication of JPS6331096B2 publication Critical patent/JPS6331096B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 本発明は半導体ウエハーを光照射で加熱する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of heating a semiconductor wafer by light irradiation.

最近、半導体ウエハー(以下単に「ウエハー」
という。)への不純物の導入方法として、不純物
濃度、接合の深さを精密に制御し得ることから、
不純物をイオン状態にして加速してウエハーに打
ち込むイオン注入法が使用されてきている。この
イオン注入法においては、イオンが注入された後
のウエハーの表面における結晶状態が変化して荒
れたものとなるため、この荒れを消失せしめて良
好な表面状態とするために、イオン注入後約1000
℃またはそれ以上の温度にウエハーを加熱処理す
る必要があり、この加熱処理は、注入された不純
物の深さ方向の濃度分布が熱拡散により変化しな
いように短時間で行なわなければならない。ま
た、生産性を向上させるためにもウエハーの急速
加熱、急速冷却が要請されている。
Recently, semiconductor wafers (hereinafter simply referred to as ``wafers'')
That's what it means. ), the impurity concentration and junction depth can be precisely controlled.
An ion implantation method has been used in which impurities are converted into ions, accelerated, and implanted into a wafer. In this ion implantation method, the crystalline state of the wafer surface changes after the ions are implanted and becomes rough, so in order to eliminate this roughness and create a good surface condition, approximately 1000
It is necessary to heat the wafer to a temperature of .degree. C. or higher, and this heat treatment must be performed in a short time so that the concentration distribution of the implanted impurity in the depth direction does not change due to thermal diffusion. Furthermore, rapid heating and cooling of wafers is required to improve productivity.

このような要請により、最近、ウエハーを光照
射で加熱する方法が開発され、この方法によれ
ば、わずか数秒間という短時間で1000℃〜1400℃
まで昇温が可能である。
In response to these demands, a method has recently been developed in which wafers are heated by light irradiation. According to this method, wafers can be heated to 1000°C to 1400°C in just a few seconds.
It is possible to raise the temperature to

しかしながら、ウエハー、例えば単結晶シリコ
ンをこれに単に光照射することにより、数秒間以
内の短時間において、温度1000℃前後の処理温度
に昇温せしめ更にこの処理温度に保つという加熱
処理を施す場合には、昇温時及び処理温度時にお
いてウエハーにおける外周近傍時と中央部との間
に比較的大きな温度差が生じ、この温度差が原因
となつてウエハーに後の処理工程で支障をきたす
ような大きな「反り」が発生し、更には「スリツ
プライン」と呼ばれる損傷が発生することが分つ
た。
However, when performing heat treatment on a wafer, such as single crystal silicon, by simply irradiating it with light, the temperature is raised to a processing temperature of around 1000°C within a short period of several seconds, and then maintained at this processing temperature. When heating and processing temperatures, a relatively large temperature difference occurs between the wafer's outer periphery and the center, and this temperature difference can cause problems for the wafer in subsequent processing steps. It was found that large ``warps'' and even damage called ``slip lines'' occurred.

これは、ウエハーの厚さは普通0.5mm前後程度
と非常に薄く、厚さ方向における温度分布は、時
間的には10-3秒の桁の程度で緩和されるので実質
的には悪影響を及ぼすことはないが、ウエハーの
面に沿つた方向における温度分布は、たとえウエ
ハーの表面を均一な照射エネルギー密度で光照射
しても、ウエハー外周近傍部からの熱放散がウエ
ハーの中央部からの熱放散よりも相当大きいの
で、昇温時においてはウエハーの外周近傍部の温
度がウエハーの中央部の温度に追従できず、処理
温度時においてもウエハーの外周近傍部の温度が
ウエハーの中央部の温度にまで達することがな
く、結局ウエハーの外周近傍部の温度はウエハー
の中央部の温度より相当に低くなつてしまうから
である。
This is because the wafer thickness is usually very thin, around 0.5 mm, and the temperature distribution in the thickness direction is relaxed in the order of 10 -3 seconds, so this actually has a negative effect. However, the temperature distribution in the direction along the surface of the wafer means that even if the surface of the wafer is irradiated with light at a uniform irradiation energy density, the heat dissipated from the vicinity of the wafer's outer periphery is the same as the heat dissipated from the center of the wafer. Since the temperature is considerably larger than the dissipation, the temperature near the wafer's outer periphery cannot follow the temperature at the center of the wafer when the temperature is raised, and even at processing temperatures, the temperature near the wafer's outer periphery does not follow the temperature at the center of the wafer. This is because the temperature near the outer periphery of the wafer ends up being considerably lower than the temperature at the center of the wafer.

このようにウエハーに大きな「反り」が発生す
ると、後の処理工程例えばフオトエツチング処理
工程においてパターン像が乱れるため支障をきた
し、また「スリツプライン」が発生すると、ウエ
ハーそのものが半導体材料として使用し得ない無
価値なものとなり重大な損失を招くこととなる。
If a large ``warp'' occurs in the wafer in this way, it will cause problems in subsequent processing steps, such as photo etching, as the pattern image will be disturbed, and if a ``slip line'' occurs, the wafer itself will not be able to be used as a semiconductor material. It becomes worthless and causes serious losses.

本発明は斯かる観点からなされたものであつ
て、半導体ウエハーを光照射で加熱する方法にお
いて、後の処理工程に支障をきたすような大きな
「反り」及び「スリツプライン」のような損傷が
生じないような加熱方法を提供することを目的と
し、その特徴とするところは、半導体ウエハーの
一面に光を照射して加熱するに際し、モリブデン
やタングステン、タンタルの如き高融点金属より
成り光照射を受けて外部電源なしで昇温する補助
加熱源を半導体ウエハーの外方他面側の位置にお
いて当該半導体ウエハーの外周近傍部の他面を臨
むよう配置し、半導体ウエハーの一面側から半導
体ウエハー及び補助加熱源に光を照射することに
よつて、前記補助加熱源で半導体ウエハーの主に
外周近傍部を補助的に加熱しながら半導体ウエハ
ーを光照射で加熱する方法であつて、 前記半導体ウエハーの物性値β=1−η2/ρ2・d2
C2 に対する前記補助加熱源の物性値α=
1−η1/ρ1・d1・C1の比α/βの値を0.6〜1.4の範囲
内と なるよう規定したことにある。
The present invention has been made from this point of view, and in the method of heating semiconductor wafers with light irradiation, damage such as large "warpage" and "slip line" that may interfere with subsequent processing steps occurs. The purpose of this method is to provide a heating method that is unique to semiconductor wafers. An auxiliary heating source that raises the temperature without an external power source is placed on the other side of the semiconductor wafer on the outside of the semiconductor wafer so as to face the other side near the outer periphery of the semiconductor wafer. A method of heating a semiconductor wafer by light irradiation while the auxiliary heating source mainly heats a portion near the outer periphery of the semiconductor wafer by irradiating the semiconductor wafer with light, the method comprising: β=1−η 22・d 2
Physical property value α of the auxiliary heating source for C 2 =
The reason is that the value of the ratio α/β of 1-η 11 ·d 1 ·C 1 is specified to be within the range of 0.6 to 1.4.

(但し、η1及びη2はそれぞれ補助加熱源及び半導
体ウエハーの反射率を表わし、 ρ1及びρ2はそれぞれ補助加熱源及び半導体ウエ
ハーの比重を表わし、 d1及びd2はそれぞれ補助加熱源及び半導体ウエ
ハーの厚さを表わし、 c1及びc2はそれぞれ補助加熱源及び半導体ウエ
ハーの比熱を表わす。) 以下図面を参照しながら本発明方法の一実施例
を説明する。
(However, η 1 and η 2 represent the reflectance of the auxiliary heating source and the semiconductor wafer, respectively, ρ 1 and ρ 2 represent the specific gravity of the auxiliary heating source and the semiconductor wafer, respectively, and d 1 and d 2 represent the reflectance of the auxiliary heating source and the semiconductor wafer, respectively. and the thickness of the semiconductor wafer, and c 1 and c 2 represent the auxiliary heating source and the specific heat of the semiconductor wafer, respectively.) An embodiment of the method of the present invention will be described below with reference to the drawings.

第1図は、光照射炉内に配置されたウエハー1
を上方から見た加熱方法の説明図、第2図は、第
1図を側方から見た説明図であつて、図には示さ
れていないがウエハー1の下方には消費電力
1150Wの棒状のハロゲン電球12本を一平面上に近
接して並べて成る面光源が配置され、この面光源
によりウエハー1の表面における照射エネルギー
密度が均一となり且つウエハー1の表面温度がウ
エハー1の中央部1aで約1200℃になるようにウ
エハー1が光照射されるようになつている。ウエ
ハー1は直径4インチ、厚さd2が0.04cm、波長
10000Åの光に対する反射率η2が0.3、比重ρ2
2.33(g/cm3)、比熱c2が0.95(ジユール/g・℃)
の円板状であつてホウ素をイオン注入した単結晶
シリコンより成るものであり、このウエハー1の
物性値β=1−η2/ρ2・d2・c2(但し、単位はcm2
℃/ ジユールである。)の値は約7.9である。
Figure 1 shows a wafer 1 placed in a light irradiation furnace.
FIG. 2 is an explanatory diagram of the heating method seen from above, and FIG. 2 is an explanatory diagram of FIG.
A surface light source consisting of 12 1150W rod-shaped halogen light bulbs arranged closely on one plane is arranged, and this surface light source makes the irradiation energy density uniform on the surface of the wafer 1 and the surface temperature of the wafer 1 at the center of the wafer 1. The wafer 1 is irradiated with light so that the temperature reaches about 1200° C. in the portion 1a. Wafer 1 has a diameter of 4 inches, a thickness d 2 of 0.04 cm, and a wavelength of
The reflectance η 2 for light of 10000 Å is 0.3, and the specific gravity ρ 2 is
2.33 (g/cm 3 ), specific heat c 2 is 0.95 (joule/g・℃)
The wafer 1 has a disk shape and is made of single crystal silicon implanted with boron ions, and the physical properties of this wafer 1 are β=1−η 22・d 2・c 2 (unit: cm 2
℃/Jeur. ) is approximately 7.9.

2は、厚さd1が0.03cm、内径が11cm、外径が13
cm、波長10000Åの光に対する反射率η1が0.5、比
重ρ1が10.2(g/cm3)、比熱c1が0.28(ジユール/
g・℃)の円環状であり、その表面にSiO2のコ
ーテイングを施したモリブデン板より成る補助加
熱源であつて、この補助加熱源2はウエハー1の
外周近傍部1bの上面を主として加熱するよう、
ウエハー1の外周近傍部1bの外方斜上方の位置
において当該外周近傍部1bの上面を臨むよう配
置する。この補助加熱源2は外部電源には接続さ
れておらず、前記面光源よりの光照射を受けて昇
温すものである。この補助加熱源2には石英製の
爪2aが幾つか固定して設けられており、この爪
2aによりウエハー1が支持されている。前記補
助加熱源2の物性値α=1−η1/ρ1・d1・c1(但し、
単 位はcm2・℃/ジユールである。)の値は約5.83で
あり、前記βに対するαの比α/βの値は約0.74
である。
2 has a thickness d1 of 0.03cm, an inner diameter of 11cm, and an outer diameter of 13cm.
cm, the reflectance η 1 for light with a wavelength of 10000 Å is 0.5, the specific gravity ρ 1 is 10.2 (g/cm 3 ), and the specific heat c 1 is 0.28 (joule/cm 3 ).
The auxiliary heating source 2 is an annular molybdenum plate with a SiO 2 coating on its surface and mainly heats the upper surface of the wafer 1 near the outer periphery 1b. Yo,
It is arranged so as to face the upper surface of the outer circumference vicinity portion 1b of the wafer 1 at a position diagonally above the outer circumference vicinity portion 1b. This auxiliary heating source 2 is not connected to an external power source and is heated by receiving light from the surface light source. Several quartz claws 2a are fixedly provided on this auxiliary heating source 2, and the wafer 1 is supported by these claws 2a. The physical property value α of the auxiliary heating source 2 is α=1−η 11・d 1・c 1 (however,
The unit is cm2・℃/joule. ) is approximately 5.83, and the ratio α/β of α to β is approximately 0.74.
It is.

そしてこの状態でウエハー1の下方から前記面
光源によりウエハー1及び補助加熱源2に光照射
する。
In this state, the wafer 1 and the auxiliary heating source 2 are irradiated with light from below the wafer 1 by the surface light source.

上記方法によれば、ウエハー1の下面が下方か
ら面光源により光照射を受けて主加熱が行なわれ
るが、ウエハー1の外方斜上方位置において当該
半導体ウエハーの外周近傍部の上面を臨むよう補
助加熱源2を配置しているため、前記面光源より
の光照射を受けて補助加熱源2が外部電源なしで
昇温され、この結果、面光源の光照射を受けずし
かも熱放散の大きいウエハー1の外周近傍部1b
の上面が確実に補助的に加熱されるため、最も低
温となりやすいウエハー1の外周近傍部1bの上
面の温度を確実に保つことができ、しかも、理由
は後述するが、補助加熱源2の物性値αとウエハ
ー1の物性値βとの比α/βの値が0.6〜1.4の範
囲内にあるため、ウエハー1の昇温速度と補助加
熱源2の昇温速度とがほぼ一致するようになり、
この結果中央部1aと外周近傍部1bとの温度差
が極めて小さくなつてウエハー1の全体の温度が
均一化されるようになり、結局後の処理工程で支
障をきたすような大きな「反り」の発生を防止す
ることができると共に「スリツプライン」の発生
を防止することができる。実際ウエハー1の中央
部1aの温度は約1200℃となるのに対してウエハ
ー1の外周近傍部1bの温度は約1170℃程度とな
り、この外周近傍部1bの温度は稍低めにはなる
ものの、後の処理工程で支障をきたすような大き
な「反り」が発生せず、しかも「スリツプライ
ン」も発生せず、ウエハー1を良好に加熱処理す
ることができる。そして、更に補助加熱源2はウ
エハー1の外周近傍部1bの上方に位置され、面
光源よりの光は下方からウエハー1に照射される
ため、補助加熱源2がウエハー1に照射される光
を遮ることがなく、この点からも好ましい加熱を
達成することができる。ところで補助加熱源2に
よる補助加熱を行なわない他は上述の実施例と同
様の方法によりウエハー1の加熱処理を行なつた
ところ、ウエハー1の外周近傍部1bの温度は約
1080℃とかなり低い値となり、後の処理工程に支
障をきたすような大きな「反り」が発生し、しか
もウエハー1の周辺に「スリツプライン」の発生
が認められた。
According to the above method, main heating is performed by irradiating the bottom surface of the wafer 1 with light from below by a surface light source, but the main heating is performed by irradiating the bottom surface of the wafer 1 with light from below. Since the heating source 2 is arranged, the temperature of the auxiliary heating source 2 is raised without an external power source by receiving the light irradiation from the surface light source, and as a result, the wafer is not exposed to the light irradiation from the surface light source and has large heat dissipation. 1 near the outer periphery 1b
Since the upper surface is reliably auxiliary heated, the temperature of the upper surface near the outer periphery 1b of the wafer 1, which tends to be at the lowest temperature, can be reliably maintained. Since the ratio α/β between the value α and the physical property value β of the wafer 1 is within the range of 0.6 to 1.4, the temperature increase rate of the wafer 1 and the temperature increase rate of the auxiliary heating source 2 are almost the same. Become,
As a result, the temperature difference between the central portion 1a and the peripheral portion 1b becomes extremely small, and the temperature of the entire wafer 1 becomes uniform, thereby preventing large "warpage" that may cause problems in later processing steps. It is possible to prevent the occurrence of "slip lines" and also to prevent the occurrence of "slip lines". In fact, the temperature of the central portion 1a of the wafer 1 is approximately 1200°C, while the temperature of the peripheral portion 1b of the wafer 1 is approximately 1170°C. Although the temperature of the peripheral portion 1b is slightly lower, The wafer 1 can be successfully heat-treated without causing a large "warp" that would cause trouble in later processing steps, and without creating a "slip line." Further, the auxiliary heating source 2 is located above the outer circumferential portion 1b of the wafer 1, and the light from the surface light source is irradiated onto the wafer 1 from below. There is no obstruction, and from this point of view as well, favorable heating can be achieved. By the way, when the wafer 1 was heated in the same manner as in the above embodiment except that auxiliary heating by the auxiliary heat source 2 was not performed, the temperature of the wafer 1 near the outer periphery 1b was approximately
The temperature reached a fairly low value of 1080°C, and a large "warp" occurred that interfered with subsequent processing steps, and furthermore, a "slip line" was observed around the wafer 1.

ところで、前記の通り、光照射による加熱は、
短時間昇温に特徴があり、したがつて、前記補助
加熱源が光射照を受けて昇温する場合、ウエハー
と同じか若しくはほぼ同じように短時間昇温する
ものでなければならない。これは、補助加熱源の
昇温速度がウエハーの昇温速度より相当に小さい
場合には、補助加熱効果が小さくてウエハーの外
周近傍部の温度があまり上昇せず、また上述と逆
の場合には、ウエハーの外周近傍部の温度が高く
なり過ぎ、何れの場合にも本発明の目的を達成す
ることが困難となるからである。
By the way, as mentioned above, heating by light irradiation is
The auxiliary heating source is characterized by short-time temperature rise, and therefore, when the auxiliary heating source receives light irradiation and heats up, it must be able to heat up in the same or almost the same way as the wafer. This is because if the temperature increase rate of the auxiliary heating source is considerably lower than the temperature increase rate of the wafer, the auxiliary heating effect is small and the temperature near the outer periphery of the wafer does not rise much, and vice versa. This is because the temperature near the outer periphery of the wafer becomes too high, making it difficult to achieve the object of the present invention in either case.

ウエハーにしても、補助加熱源にしても、その
昇温速度△T/△t(但し、△Tは温度の微小変化を、 △tは微小時間を表わす。)は、光照射面に垂直
な面上での光照射エネルギー密度をφ(W/cm2)、
その面積をS(cm2)、厚さをd(cm)、比重をρ
(g/cm3)、比熱をC(ジユール/g・℃)、反射率
をηとすると、 ρ・d・S・C・△T/△t=φ・(1−η)・S−χ で表わされ、χは、放射、伝導、対流等による熱
ロスで、このロスは、第1項の値に比べ小さいの
で近似的には、 ρ・d・S・C・△T/△t≒φ・(1−η)・S △T/△t≒φ・1−η/ρ・d・C と表わすことができる。従つて補助加熱源の設計
フアクターとしては1−η/ρ・d・Cで表わされる物 性値を用い、補助加熱源の物性値α=
1−η1/ρ1・d1・C1がウエハーの物性値β=1−η2
/ρ2・d2・C2 にほぼ等しくなるようにすればよいが、実際上は
αとβとの比α/βの値が0.6〜1.4の範囲内であ
れば、補助加熱効果が良好に得られることが実験
的に調べた結果判明した。この比α/βの値が
0.6未満の場合には、補助加熱効果が小さくてウ
エハーの外周近傍部の温度があまり上昇せず依然
として中央部の温度より相当に低く後の処理工程
に支障をきたすような大きな「反り」が発生する
と共に「スリツプライン」の発生が認められ、一
方比α/βの値が1.4を越える場合には、逆にウ
エハーの外周近傍部の温度が中央部の温度よりも
相当に高くなり過ぎて前者と同様に大きな「反
り」及び「スリツプライン」の発生が認められ
た。
Whether it is a wafer or an auxiliary heating source, the temperature increase rate △T/△t (where △T represents a minute change in temperature and △t represents a minute time) is the temperature increase perpendicular to the light irradiation surface. The light irradiation energy density on the surface is φ (W/cm 2 ),
Its area is S (cm 2 ), thickness is d (cm), and specific gravity is ρ.
(g/cm 3 ), specific heat is C (joule/g・℃), and reflectance is η, then ρ・d・S・C・△T/△t=φ・(1−η)・S−χ χ is the heat loss due to radiation, conduction, convection, etc. This loss is smaller than the value of the first term, so approximately, ρ・d・S・C・△T/△t It can be expressed as ≒φ・(1−η)・S △T/△t≒φ・1−η/ρ・d・C. Therefore, the physical property value expressed by 1-η/ρ・d・C is used as the design factor for the auxiliary heating source, and the physical property value α=
1-η 11・d 1・C 1 is the physical property value of the wafer β=1-η 2
2 · d 2 · C 2 should be approximately equal, but in practice, if the value of the ratio α and β of α / β is within the range of 0.6 to 1.4, the auxiliary heating effect will be good. As a result of experimental investigation, it was found that this can be obtained. The value of this ratio α/β is
If it is less than 0.6, the auxiliary heating effect is small, and the temperature near the outer periphery of the wafer does not rise much, but is still considerably lower than the temperature at the center, causing a large "warp" that interferes with subsequent processing steps. At the same time, the occurrence of a "slip line" is observed, and on the other hand, when the value of the ratio α/β exceeds 1.4, the temperature near the outer periphery of the wafer becomes considerably higher than the temperature at the center, and the former occurs. Similar to the above, the occurrence of large ``warps'' and ``slip lines'' was observed.

尚、反射率η1及びη2は波長10000Åにおける反
射率の値を採用している。
Note that the reflectance values at a wavelength of 10000 Å are used for the reflectances η 1 and η 2 .

前記実施例において、モリブデンの代りにタン
グステンやタンタルを使用しても前記比α/βの
値が、0.6〜1.4の範囲内に抑制されていると、上
記結果と同様に、昇温速度が類似し、補助加熱源
とし有効に作用する。
In the above example, even if tungsten or tantalum is used instead of molybdenum, if the value of the ratio α/β is suppressed within the range of 0.6 to 1.4, the heating rate will be similar as in the above result. It acts effectively as an auxiliary heating source.

本発明は、以上の実施例からも理解されるよう
に、外周近傍部1bからの熱放散による温度低下
を相殺するように、光照射を受けて外部電源なし
で昇温する補助加熱源を、例えば半導体ウエハー
の外方斜上方位置において当該半導体ウエハーの
外周近傍部の上面を臨むよう配置し、前記補助加
熱源で半導体ウエハーの外周近傍部1bを補助的
に加熱してやり、中央部と外周近傍部との温度差
を小さくし、ウエハー全面の温度を均一化するこ
とによつて、後の処理工程に支障をきたす大きな
「反り」及び「スリツプライン」の発生を防止し
ようとするものである。
As can be understood from the above embodiments, the present invention provides an auxiliary heating source that increases the temperature without an external power source upon receiving light irradiation so as to offset the temperature drop due to heat dissipation from the outer peripheral portion 1b. For example, the semiconductor wafer is placed at a diagonally upward position on the outside facing the upper surface of the semiconductor wafer near the outer periphery, and the auxiliary heat source auxiliary heats the outer periphery 1b of the semiconductor wafer, and the central part and the outer periphery By reducing the temperature difference between the wafer and the wafer and making the temperature uniform over the entire surface of the wafer, the aim is to prevent the occurrence of large ``warps'' and ``slip lines'' that would impede subsequent processing steps.

以上本発明方法の具体的一実施例を説明した
が、本発明はこれに限定されず種々変更を加える
ことができる。例えば補助加熱源2は、第3図に
示すよう、複数例えば4つに分割した補助加熱源
21,22,23,24をそれぞれ対称的にウエ
ハー1の外周近傍部1bの上面を臨むよう外方斜
上方位置に配置してもよい。またウエハー1の支
持と補助加熱源2の支持は全く別個の支持機構に
より支持するようにしてもよい。
Although a specific example of the method of the present invention has been described above, the present invention is not limited to this and various changes can be made. For example, as shown in FIG. 3, the auxiliary heating source 2 includes a plurality of auxiliary heating sources 21, 22, 23, and 24 divided into, for example, four, symmetrically arranged outward so as to face the upper surface of the vicinity of the outer periphery 1b of the wafer 1. It may be placed in an obliquely upward position. Further, the support of the wafer 1 and the support of the auxiliary heating source 2 may be supported by completely separate support mechanisms.

以上のように本発明方法は、半導体ウエハーの
一面に光を照射して加熱するに際し、モリブデン
やタングステン、タンタルの如き高融点金属より
成り光照射を受けて外部電源なしで昇温する補助
加熱源を半導体ウエハーの外方他面側の位置にお
いて当該半導体ウエハーの外周近傍部の他面を臨
むよう配置し、半導体ウエハーの一面側から半導
体ウエハー及び補助加熱源に光を照射することに
よつて、前記補助加熱源で半導体ウエハーの主に
外周近傍部を補助的に加熱しながら半導体ウエハ
ーを光照射で加熱する方法であつて、 前記半導体ウエハーの物性値β=1−η2/ρ2・d2
C2 に対する前記補助加熱源の物性質α=
1−η1/ρ1・d1・C1の比α/βの値を0.6〜1.4の範囲
内と なるよう規定することによつて、ウエハー面上の
温度分布の均一性を改善し、後の処理工程に支障
をきたす大きな「反り」及び「スリツプライン」
のような損傷を抑制することができ、実用上の価
値は極めて大きい。
As described above, in the method of the present invention, when one side of a semiconductor wafer is irradiated with light to heat it, an auxiliary heating source made of a high-melting point metal such as molybdenum, tungsten, or tantalum is heated without an external power source upon irradiation with light. by arranging the semiconductor wafer at a position on the other side of the semiconductor wafer so as to face the other side near the outer periphery of the semiconductor wafer, and irradiating the semiconductor wafer and the auxiliary heating source with light from one side of the semiconductor wafer, A method of heating a semiconductor wafer by light irradiation while supplementally heating mainly the vicinity of the outer periphery of the semiconductor wafer with the auxiliary heating source, the physical property value of the semiconductor wafer β=1−η 22 d 2
Physical properties of the auxiliary heating source for C 2 α=
By specifying the value of the ratio α/β of 1-η 11・d 1・C 1 to be within the range of 0.6 to 1.4, the uniformity of temperature distribution on the wafer surface is improved, Large “warps” and “slip lines” that interfere with subsequent processing steps
It is possible to suppress damage such as this, and has extremely great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明方法の一実
施例を示す説明用平面図及び説明用縦断正面図、
第3図は本発明方法の他の実施例を示す説明用平
面図である。 1……半導体ウエハー、2……補助加熱源、1
a……中央部、1b……外周近傍部、1c……外
周部、2a……爪、21,22,23,24……
補助加熱源。
FIG. 1 and FIG. 2 are an explanatory plan view and an explanatory longitudinal sectional front view showing an embodiment of the method of the present invention, respectively;
FIG. 3 is an explanatory plan view showing another embodiment of the method of the present invention. 1...Semiconductor wafer, 2...Auxiliary heating source, 1
a... Central portion, 1b... Near outer periphery, 1c... Outer periphery, 2a... Claw, 21, 22, 23, 24...
Auxiliary heating source.

Claims (1)

【特許請求の範囲】 1 半導体ウエハの一面に光を照射して加熱する
に際し、モリブデンやタングステン、タンタルの
如き高融点金属より成り光照射を受けて外部電源
なしで昇温する補助加熱源を半導体ウエハーの外
方他面側の位置において当該半導体ウエハーの外
周近傍部の他面を臨むよう配置し、半導体ウエハ
ーの一面側から半導体ウエハー及び補助加熱源に
光を照射することによつて、前記補助加熱源で半
導体ウエハーの主に外周近傍部を補助的に加熱し
ながら半導体ウエハーを光照射で加熱する方法で
あつて、 前記半導体ウエハーの物性値 β=1−η2/ρ2・d2・c2 に対する前記補助加熱源の物性値 α=1−η1/ρ1・d1・c1 の比α/βの値を0.6〜1.4の範囲内となるよう規
定したことを特徴とする半導体ウエハーを光照射
で加熱する方法。 (但し、η1及びη2はそれぞれ補助加熱源及び半導
体ウエハーの反射率を表わし、 ρ1及びρ2はそれぞれ補助加熱源及び半導体ウエ
ハーの比重を表わし、 d1及びd2はそれぞれ補助加熱源及び半導体ウエ
ハーの厚さを表わし、 c1及びc2はそれぞれ補助加熱源及び半導体ウエ
ハーの比熱を表わす。)
[Scope of Claims] 1. When heating one side of a semiconductor wafer by irradiating light, an auxiliary heating source made of a high-melting point metal such as molybdenum, tungsten, or tantalum and raising the temperature without an external power source upon irradiation with light is used to heat the semiconductor wafer. By irradiating the semiconductor wafer and the auxiliary heating source with light from one surface side of the semiconductor wafer, the auxiliary heating source is A method of heating a semiconductor wafer by light irradiation while supplementarily heating mainly the vicinity of the outer periphery of the semiconductor wafer using a heating source, the physical property value of the semiconductor wafer being β=1−η 22 d 2 . A semiconductor characterized in that the value of the ratio α/β of the physical property value α=1−η 11・d 1・c 1 of the auxiliary heating source with respect to c 2 is defined to be within the range of 0.6 to 1.4. A method of heating wafers using light irradiation. (However, η 1 and η 2 represent the reflectance of the auxiliary heating source and the semiconductor wafer, respectively, ρ 1 and ρ 2 represent the specific gravity of the auxiliary heating source and the semiconductor wafer, respectively, and d 1 and d 2 represent the reflectance of the auxiliary heating source and the semiconductor wafer, respectively. and represents the thickness of the semiconductor wafer, and c 1 and c 2 represent the specific heat of the auxiliary heating source and the semiconductor wafer, respectively.)
JP11150082A 1981-12-04 1982-06-30 Heating of semiconductor wafer by irradiation of ray Granted JPS593935A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11150082A JPS593935A (en) 1982-06-30 1982-06-30 Heating of semiconductor wafer by irradiation of ray
US06/445,492 US4468259A (en) 1981-12-04 1982-11-30 Uniform wafer heating by controlling light source and circumferential heating of wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11150082A JPS593935A (en) 1982-06-30 1982-06-30 Heating of semiconductor wafer by irradiation of ray

Publications (2)

Publication Number Publication Date
JPS593935A JPS593935A (en) 1984-01-10
JPS6331096B2 true JPS6331096B2 (en) 1988-06-22

Family

ID=14562866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11150082A Granted JPS593935A (en) 1981-12-04 1982-06-30 Heating of semiconductor wafer by irradiation of ray

Country Status (1)

Country Link
JP (1) JPS593935A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167335U (en) * 1984-04-14 1985-11-06 大日本スクリ−ン製造株式会社 heat treatment equipment
JPH02291118A (en) * 1988-12-30 1990-11-30 Ag Processing Technol Inc Method and apparatus for heating wafer uniformly by utilizing radiant heat source for heating surface and circumference of wafer
US5310339A (en) * 1990-09-26 1994-05-10 Tokyo Electron Limited Heat treatment apparatus having a wafer boat
CN114378751B (en) 2020-10-20 2022-11-01 长鑫存储技术有限公司 Mounting clamp of bearing ring for wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175826A (en) * 1981-12-04 1983-10-15 Ushio Inc Heating method for semiconductor through light irradiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175826A (en) * 1981-12-04 1983-10-15 Ushio Inc Heating method for semiconductor through light irradiation

Also Published As

Publication number Publication date
JPS593935A (en) 1984-01-10

Similar Documents

Publication Publication Date Title
US4535228A (en) Heater assembly and a heat-treatment method of semiconductor wafer using the same
JPS58223320A (en) Diffusing method for impurity
US4468259A (en) Uniform wafer heating by controlling light source and circumferential heating of wafer
US4469529A (en) Method for heating semiconductor wafer by means of application of radiated light with supplemental circumferential heating
US4535227A (en) Method for heating semiconductor wafer by means of application of radiated light
US4504730A (en) Method for heating semiconductor wafer by means of application of radiated light
JPS6244848B2 (en)
JPS6331096B2 (en)
JPS5917253A (en) Heat treatment method for semiconductor wafer
JPS6331094B2 (en)
JPH0377657B2 (en)
JPS6331095B2 (en)
JPH025295B2 (en)
JPS59121832A (en) Method for heating semiconductor wafer by photo irradiation
JPS6244847B2 (en)
JP2758770B2 (en) Jig for heat treatment of semiconductor substrate
JPS6331093B2 (en)
JPH0240480Y2 (en)
JPS6088432A (en) Method of wafer annealing
JPH057860B2 (en)
JPH02185037A (en) Short-time thermal treatment equipment
JPS6335093B2 (en)
JPS63207125A (en) Manufacture of semiconductor element
JPS6088431A (en) Heating method by photo irradiation
JPH0572096B2 (en)