JPS6331095B2 - - Google Patents

Info

Publication number
JPS6331095B2
JPS6331095B2 JP57111499A JP11149982A JPS6331095B2 JP S6331095 B2 JPS6331095 B2 JP S6331095B2 JP 57111499 A JP57111499 A JP 57111499A JP 11149982 A JP11149982 A JP 11149982A JP S6331095 B2 JPS6331095 B2 JP S6331095B2
Authority
JP
Japan
Prior art keywords
wafer
semiconductor wafer
temperature
outer periphery
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57111499A
Other languages
Japanese (ja)
Other versions
JPS593934A (en
Inventor
Yoshiki Mimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP11149982A priority Critical patent/JPS593934A/en
Priority to US06/445,493 priority patent/US4469529A/en
Publication of JPS593934A publication Critical patent/JPS593934A/en
Publication of JPS6331095B2 publication Critical patent/JPS6331095B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 本発明は半導体ウエハーを光照射で加熱する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of heating a semiconductor wafer by light irradiation.

最近、半導体ウエハー(以下単に「ウエハー」
という。)への不純物の導入方法として、不純物
濃度、接合の深さを精密に制御し得ることから、
不純物をイオン状態にして加速してウエハーに打
ち込むイオン注入法が使用されてきている。この
イオン注入法においては、イオンが注入された後
のウエハーの表面における結晶状態が変化して荒
れたものとなるため、この荒れを消失せしめて良
好な表面状態とするために、イオン注入後約1000
℃またはそれ以上の温度にウエハーを加熱処理す
る必要があり、この加熱処理は、注入された不純
物の深さ方向の濃度分布が熱拡散により変化しな
いように短時間で行なわなければならない。ま
た、生産性を向上させるためにもウエハーの急速
加熱、急速冷却が要請されている。
Recently, semiconductor wafers (hereinafter simply referred to as ``wafers'')
That's what it means. ), the impurity concentration and junction depth can be precisely controlled.
An ion implantation method has been used in which impurities are converted into ions, accelerated, and implanted into a wafer. In this ion implantation method, the crystalline state of the wafer surface changes after the ions are implanted and becomes rough, so in order to eliminate this roughness and create a good surface condition, approximately 1000
It is necessary to heat the wafer to a temperature of .degree. C. or higher, and this heat treatment must be performed in a short time so that the concentration distribution of the implanted impurity in the depth direction does not change due to thermal diffusion. Furthermore, rapid heating and cooling of wafers is required to improve productivity.

このような要請により、最近、ウエハーを光照
射で加熱する方法が開発され、この方法によれ
ば、わずか数秒間という短時間で1000℃〜1400℃
まで昇温が可能である。
In response to these demands, a method has recently been developed in which wafers are heated by light irradiation. According to this method, wafers can be heated to 1000°C to 1400°C in just a few seconds.
It is possible to raise the temperature to

しかしながら、ウエハー、例えば単結晶シリコ
ンをこれに単に光照射することにより、数秒間以
内の短時間において、温度1000℃前後の処理温度
に昇温せしめ更にこの処理温度に保つという加熱
処理を施す場合には、昇温時及び処理温度時にお
いてウエハーにおける外周近傍部と中央部との間
に比較的大きな温度差が生じ、この温度差が原因
となつてウエハーに後の処理工程で支障をきたす
ような大きな「反り」が発生し、更には「スリツ
プライン」と呼ばれる損傷が発生することが分つ
た。
However, when performing heat treatment on a wafer, such as single crystal silicon, by simply irradiating it with light, the temperature is raised to a processing temperature of around 1000°C within a short period of several seconds, and then maintained at this processing temperature. When the temperature is raised and the processing temperature is increased, a relatively large temperature difference occurs between the area near the outer periphery and the center of the wafer, and this temperature difference causes problems in the wafer in subsequent processing steps. It was found that large ``warps'' and even damage called ``slip lines'' occurred.

これは、ウエハーの厚さは普通0.5mm前後程度
と非常に薄く、厚さ方向における温度分布は、時
間的には10-3秒の桁の程度で緩和されるので実質
的には悪影響を及ぼすことはないが、ウエハーの
面に沿つた方向における温度分布は、たとえウエ
ハーの表面を均一な照射エネルギー密度で光照射
しても、ウエハーの外周近傍部からの熱放散がウ
エハーの中央部からの熱放散よりも相当大きいの
で、昇温時においてはウエハーの外周近傍部の温
度がウエハーの中央部の温度に追従できず、処理
温度時においてもウエハーの外周近傍部の温度が
ウエハーの中央部の温度にまで達することがな
く、結局ウエハーの外周近傍部の温度はウエハー
の中央部の温度より相当に低くなつてしまうから
である。
This is because the wafer thickness is usually very thin, around 0.5 mm, and the temperature distribution in the thickness direction is relaxed in the order of 10 -3 seconds, so this actually has a negative effect. However, the temperature distribution in the direction along the surface of the wafer means that even if the surface of the wafer is irradiated with light at a uniform irradiation energy density, the heat dissipated from the vicinity of the wafer's outer periphery is proportional to the heat dissipated from the center of the wafer. Because this is considerably larger than the heat dissipation, the temperature near the outer periphery of the wafer cannot follow the temperature at the center of the wafer when the temperature is raised, and even at processing temperatures, the temperature near the outer periphery of the wafer does not follow the temperature at the center of the wafer. This is because the temperature near the outer periphery of the wafer ends up being considerably lower than the temperature at the center of the wafer.

このようにウエハーに大きな「反り」が発生す
ると、後の処理工程例えばフオトエツチング処理
工程においてパターン像が乱れるため支障をきた
し、また「スリツプライン」が発生すると、ウエ
ハーそのものが半導体材料として使用し得ない無
価値なものとなり重大な損失を招くこととなる。
If a large ``warp'' occurs in the wafer in this way, it will cause problems in subsequent processing steps, such as photo etching, as the pattern image will be disturbed, and if a ``slip line'' occurs, the wafer itself will not be able to be used as a semiconductor material. It becomes worthless and causes serious losses.

本発明は斯かる観点からなされたものであつ
て、半導体ウエハーを光照射で加熱する方法にお
いて、後の処理工程に支障をきたすような大きな
「反り」及び「スリツプライン」のような損傷が
生じないような加熱方法を提供することを目的と
し、その特徴とするところは、半導体ウエハーを
光照射で加熱する方法において、半導体ウエハー
の一面に光を照射して加熱するに際し、ハロゲン
電球やモリブデンヒーターの如き、外部電源で発
熱する補助加熱源を半導体ウエハーの他面側の位
置において当該半導体ウエハーの外周近傍部の他
面を臨むむう配置し、前記補助加熱源で半導体ウ
エハーの主に外周近傍部を補助的に加熱しながら
若しくは加熱しておいて、半導体ウエハーの一面
に光を照射することにある。
The present invention has been made from this point of view, and in the method of heating semiconductor wafers with light irradiation, damage such as large "warpage" and "slip line" that may interfere with subsequent processing steps occurs. The purpose of this method is to provide a method of heating semiconductor wafers using light irradiation. An auxiliary heating source that generates heat from an external power source is placed on the other side of the semiconductor wafer facing the other surface near the outer periphery of the semiconductor wafer, and the auxiliary heating source is used to mainly heat the area near the outer periphery of the semiconductor wafer. The method is to irradiate one surface of a semiconductor wafer with light while supplementally heating the semiconductor wafer or after heating the semiconductor wafer.

以下図面を参照しながら本発明方法の一実施例
を説明する。
An embodiment of the method of the present invention will be described below with reference to the drawings.

第1図は、光照射炉内に配置されたウエハー1
を上方から見た加熱方法の説明図、第2図は、第
1図を側方から見た説明図であつて、図には示さ
れていないがウエハー1の下方には、消費電力
1.5KWの棒状のハロゲン電球12本を一平面上に
近接して並べて成る面光源が配置され、この面光
源によりウエハー1の表面における照射エネルギ
ー密度が均一となり且つウエハー1の表面温度が
ウエハー1の中央部1aで約1250℃になるように
ウエハー1が光照射されるようになつている。ウ
エハー1は直径4インチの円板状であつてホウ素
をイオン注入した単結晶シリコンより成るもので
ある。
Figure 1 shows a wafer 1 placed in a light irradiation furnace.
FIG. 2 is an explanatory diagram of the heating method seen from above, and FIG. 2 is an explanatory diagram of FIG.
A surface light source consisting of 12 1.5KW rod-shaped halogen bulbs arranged closely on one plane is arranged, and this surface light source makes the irradiation energy density uniform on the surface of the wafer 1 and the surface temperature of the wafer 1. The wafer 1 is irradiated with light so that the temperature at the central portion 1a is about 1250°C. The wafer 1 has a disk shape of 4 inches in diameter and is made of single crystal silicon into which boron ions have been implanted.

2は環状の石英ガラス製の封体を具えた、ハロ
ゲン電球若しくは赤外線電球などより成る補助加
熱源であつて、その封体内部にフイラメント2b
を具えており、この補助加熱源2は、ウエハー1
の外周近傍部1bを主として加熱するよう、ウエ
ハー1の外周近傍部1bの外方斜上方の位置に、
当該外周近傍部1bの上面を臨むよう配置する。
この補助加熱源2には石英製の爪2aが幾つか固
定して設けられており、この爪2aによりウエハ
ー1が支持されている。
Reference numeral 2 denotes an auxiliary heating source comprising a halogen bulb or an infrared bulb, which is equipped with an annular quartz glass enclosure, and a filament 2b is placed inside the enclosure.
This auxiliary heating source 2 is equipped with a wafer 1.
At a position diagonally above the outer circumferential portion 1b of the wafer 1, so as to mainly heat the outer circumferential portion 1b of the wafer 1,
It is arranged so as to face the upper surface of the peripheral portion 1b.
Several quartz claws 2a are fixedly provided on this auxiliary heating source 2, and the wafer 1 is supported by these claws 2a.

そして前記面光源によりウエハー1に光照射し
て加熱する際に、或いはこの光照射に先だつて、
補助加熱源2に加える電力を例えば約920Wとし
て点灯することにより、ウエハー1の外周近傍部
1bの上面を補助的に加熱する。
Then, when the wafer 1 is irradiated with light and heated by the surface light source, or prior to this irradiation,
By turning on the auxiliary heating source 2 with a power of about 920 W, for example, the upper surface of the wafer 1 near the outer periphery 1b is auxiliary heated.

上記方法によれば、ウエハー1の下面が下方か
ら面光源により光照射を受けて主加熱が行なわれ
るが、ウエハー1の外周部1c若しくは外周近傍
部1bを、その上面を臨むようその外方斜上方の
位置に配置した補助加熱源2により加熱するた
め、この補助加熱源2によりウエハー1の外周近
傍部1bの上面、すなわち面光源の光照射を受け
ずしかも熱放散の外周近傍部1bの上面が確実に
補助的に加熱され、この結果中央部1aと外周近
傍部1bとの温度差が極めて小さくなつてウエハ
ー1の全体の温度が均一化されるようになり、結
局後の処理工程で支障をきたすような大きな「反
り」の発生を防止することができると共に「スリ
ツプライン」の発生を防止することができる。実
際ウエハー1の中央文1aの温度は約1250℃とな
るのに対してウエハー1の外周近傍部1bの温度
は約1240℃程度となり、この外周近傍部1bの温
度は稍低めにはなるものの、後の処理工程で支障
をきたすような大きな「反り」が発生せず、しか
も「スリツプライン」も発生せず、ウエハー1を
良好に加熱処理することができる。そして、補助
加熱源2は、ウエハー1の面光源による光照射を
受ける面とは反対側の位置において当該半導体ウ
エハーの外周近傍部の当該反対側の面を補助的に
加熱するので、ウエハー1に照射される光を遮る
ことがなく、この点からも好ましい加熱を達成す
ることができる。ところで補助加熱源2による補
助加熱を行なわない他は上述の実施例と同様の方
法によりウエハー1の加熱処理を行なつたとこ
ろ、ウエハー1の外周近傍部1bの温度は約1120
℃とからなり低い値となり、後の処理工程に支障
をきすような大きな「反り」が発生し、しかもウ
エハ1の周辺に「スリツプライン」の発生が認め
られた。
According to the above method, main heating is performed by irradiating the lower surface of the wafer 1 with light from below by a surface light source. Since the auxiliary heat source 2 disposed at the upper position heats the wafer 1, the auxiliary heat source 2 is used to heat the upper surface of the wafer 1 near the outer periphery 1b, that is, the upper surface of the wafer 1 near the outer periphery 1b which is not exposed to light irradiation from the surface light source and which dissipates heat. As a result, the temperature difference between the central portion 1a and the peripheral portion 1b becomes extremely small, and the temperature of the entire wafer 1 becomes uniform, which ultimately prevents problems in later processing steps. It is possible to prevent the occurrence of a large "warp" that would cause a "slip line" as well as the occurrence of a "slip line". In fact, the temperature of the central portion 1a of the wafer 1 is about 1250°C, while the temperature of the area 1b near the outer periphery of the wafer 1 is about 1240°C. Although the temperature of the area 1b near the outer periphery is slightly lower, The wafer 1 can be successfully heat-treated without causing a large "warp" that would cause trouble in later processing steps, and without creating a "slip line." The auxiliary heat source 2 auxiliary heats the opposite surface of the semiconductor wafer near the outer periphery at a position opposite to the surface of the wafer 1 that receives light irradiation from the surface light source. The irradiated light is not blocked, and from this point of view as well, preferable heating can be achieved. By the way, when the wafer 1 was heated in the same manner as in the above embodiment except that auxiliary heating by the auxiliary heat source 2 was not performed, the temperature of the wafer 1 near the outer periphery 1b was approximately 1120°C.
℃, and a large "warp" that would interfere with subsequent processing steps occurred, and furthermore, a "slip line" was observed around the wafer 1.

本発明は、以上の実施例からも理解されるよう
に、外周近傍部1bからの熱放散による温度低下
を相殺するように、外部電源で発熱する補助加熱
源を半導体ウエハーにおいて温度が最も低くなる
部分である、外周近傍部の光照射を受ける面とは
反対側の面を臨むよう配置し、当該外周近傍部1
bの当該反対側の面を補助的に加熱してやり、中
央部と外周近傍部との温度差を小さくし、ウエハ
ー全面の温度を均一化することによつて、後の処
理工程に支障をきたす大きな「反り」及び「スリ
ツプライン」の発生を防止しようとするものであ
る。
As can be understood from the above embodiments, the present invention provides an auxiliary heating source that generates heat from an external power source so that the temperature of the semiconductor wafer is the lowest, so as to offset the temperature drop due to heat dissipation from the peripheral portion 1b. The area near the outer periphery 1 is arranged so as to face the surface opposite to the surface receiving light irradiation near the outer periphery.
By heating the opposite side of the wafer auxiliary to reduce the temperature difference between the center and the vicinity of the outer periphery, and to equalize the temperature over the entire surface of the wafer, it is possible to heat the surface on the opposite side of the wafer. This is intended to prevent the occurrence of "warpage" and "slip lines."

以上本発明方法の具体的一実施例を説明した
が、本発明はこれに限定されず種々変更を加える
ことができる。例えば補助加熱源2は、第3図に
示すように、複数例えば4つに分割した補助加熱
源21,22,23,24をそれぞれ対称的にウ
エハー1の外周近傍部1bの光照射を受ける面と
は反対側の面を臨むよう配置してもよい。この場
合、補助加熱源21,22,23,24の各々は
互に電気的に独立したものであつてもよいし、或
いは互に電気的に接続されたものであつてもよ
い。またウエハー1の支持と補助加熱源2の支持
は全く別個の支持機構により支持するようにして
もよい。そして光照射によるウエハー加熱は、一
般的にはアルゴンのような不活性ガス雰囲気また
は真空内で行なわれるので、補助加熱源は電球類
に限ることなく、SiO2のコーテイングを施した
モリブデンヒーターのような金属類の抵抗発熱体
を利用してもよく、補助加熱源の出力は、その消
費電力に応じて自己発熱するものであれば良い。
Although a specific example of the method of the present invention has been described above, the present invention is not limited to this and various changes can be made. For example, as shown in FIG. 3, the auxiliary heat source 2 is divided into a plurality of, for example, four, auxiliary heat sources 21, 22, 23, and 24, respectively, symmetrically on the surface of the wafer 1 near the outer periphery 1b that is irradiated with light. It may be placed so that it faces the opposite side. In this case, each of the auxiliary heating sources 21, 22, 23, and 24 may be electrically independent from each other, or may be electrically connected to each other. Further, the support of the wafer 1 and the support of the auxiliary heating source 2 may be supported by completely separate support mechanisms. Wafer heating by light irradiation is generally carried out in an inert gas atmosphere such as argon or in a vacuum, so auxiliary heating sources are not limited to light bulbs, but can also include molybdenum heaters coated with SiO2 . A metal resistance heating element may be used, and the output of the auxiliary heating source may be one that self-heats according to its power consumption.

以上のように本発明方法は、半導体ウエハーの
一面に光を照射して加熱するに際し、ハロゲン電
球やモリブデンヒーターの如き、外部電源で発熱
する補助加熱源を半導体ウエハーの他面側の位置
において当該半導体ウエハーの外周近傍部の他面
を臨むよう配置し、前記補助加熱源で半導体ウエ
ハーの主に外周近傍部を補助的に加熱しながら若
しくは加熱しておいて、半導体ウエハーの一面に
光を照射することにより、半導体ウエハーを光照
射で加熱する方法であるから、ウエハー面上の温
度分布の均一性を改善し、後の処理工程に支障を
きたす大きな「反り」及び「スリツプライン」に
ような損傷を抑制することができ、実用上の価値
は極めて大きい。
As described above, in the method of the present invention, when one side of a semiconductor wafer is irradiated with light and heated, an auxiliary heating source that generates heat from an external power source, such as a halogen bulb or a molybdenum heater, is placed on the other side of the semiconductor wafer. The semiconductor wafer is arranged so as to face the other surface near the outer periphery, and the auxiliary heating source is used to auxiliarily heat mainly the outer periphery of the wafer, or the semiconductor wafer is previously heated, and light is irradiated onto one surface of the semiconductor wafer. Since this method heats the semiconductor wafer by light irradiation, it improves the uniformity of the temperature distribution on the wafer surface and eliminates large "warpage" and "slip lines" that can interfere with subsequent processing steps. Damage can be suppressed and the practical value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明方法の一実
施例を示す説明用平面図及び説明用縦断正面図、
第3図は本発明方法の他の実施例を示す説明用平
面図である。 1……半導体ウエハー、2……補助加熱源、1
a……中央部、1b……外周近傍部、1c……外
周部、2a……爪、21,22,23,24……
補助加熱源。
FIG. 1 and FIG. 2 are an explanatory plan view and an explanatory longitudinal sectional front view showing an embodiment of the method of the present invention, respectively;
FIG. 3 is an explanatory plan view showing another embodiment of the method of the present invention. 1...Semiconductor wafer, 2...Auxiliary heating source, 1
a... Central portion, 1b... Near outer periphery, 1c... Outer periphery, 2a... Claw, 21, 22, 23, 24...
Auxiliary heating source.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体ウエハーの一面に光を照射して加熱す
るに際し、ハロゲン電球やモリブデンヒーターの
如き、外部電源で発熱する補助加熱源を半導体ウ
エハーの他面側の位置において当該半導体ウエハ
ーの外周近傍部の他面を臨むよう配置し、前記補
助加熱源で半導体ウエハーの主に外周近傍部を補
助的に加熱しながら若しくは加熱しておいて、半
導体ウエハーの一面に光を照射することを特徴と
する半導体ウエハーを光照射で加熱する方法。
1. When heating one side of a semiconductor wafer by irradiating light with light, an auxiliary heating source that generates heat from an external power source, such as a halogen bulb or a molybdenum heater, is placed on the other side of the semiconductor wafer and placed near the outer periphery of the semiconductor wafer. A semiconductor wafer, which is arranged so as to face one side of the semiconductor wafer, and irradiates light onto one side of the semiconductor wafer while supplementally heating mainly the vicinity of the outer periphery of the semiconductor wafer with the auxiliary heating source. A method of heating with light irradiation.
JP11149982A 1981-12-04 1982-06-30 Heating of semiconductor wafer with light irradiation Granted JPS593934A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11149982A JPS593934A (en) 1982-06-30 1982-06-30 Heating of semiconductor wafer with light irradiation
US06/445,493 US4469529A (en) 1981-12-04 1982-11-30 Method for heating semiconductor wafer by means of application of radiated light with supplemental circumferential heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11149982A JPS593934A (en) 1982-06-30 1982-06-30 Heating of semiconductor wafer with light irradiation

Publications (2)

Publication Number Publication Date
JPS593934A JPS593934A (en) 1984-01-10
JPS6331095B2 true JPS6331095B2 (en) 1988-06-22

Family

ID=14562838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11149982A Granted JPS593934A (en) 1981-12-04 1982-06-30 Heating of semiconductor wafer with light irradiation

Country Status (1)

Country Link
JP (1) JPS593934A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111614B2 (en) * 2012-11-22 2017-04-12 信越半導体株式会社 Heat treatment method for silicon wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764937A (en) * 1980-10-09 1982-04-20 Ushio Inc Annealing device
JPS58194332A (en) * 1981-12-04 1983-11-12 Ushio Inc Heating method of semiconductor with irradiation of light

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764937A (en) * 1980-10-09 1982-04-20 Ushio Inc Annealing device
JPS58194332A (en) * 1981-12-04 1983-11-12 Ushio Inc Heating method of semiconductor with irradiation of light

Also Published As

Publication number Publication date
JPS593934A (en) 1984-01-10

Similar Documents

Publication Publication Date Title
US4535228A (en) Heater assembly and a heat-treatment method of semiconductor wafer using the same
US4581520A (en) Heat treatment machine for semiconductors
JPS58223320A (en) Diffusing method for impurity
JPS5959876A (en) Operating method of light irradiation furnace
US4469529A (en) Method for heating semiconductor wafer by means of application of radiated light with supplemental circumferential heating
US4535227A (en) Method for heating semiconductor wafer by means of application of radiated light
US4468259A (en) Uniform wafer heating by controlling light source and circumferential heating of wafer
US4504730A (en) Method for heating semiconductor wafer by means of application of radiated light
JPS6244848B2 (en)
JPH0377657B2 (en)
JPS6331095B2 (en)
JPS6331096B2 (en)
JPS6331094B2 (en)
JPH025295B2 (en)
JPS6244847B2 (en)
JPS6331093B2 (en)
JPS60137027A (en) Optical irradiation heating method
JPS59121832A (en) Method for heating semiconductor wafer by photo irradiation
JPH057860B2 (en)
JPH0240480Y2 (en)
JPS59121821A (en) Set-up means for heater
JPS6088432A (en) Method of wafer annealing
JPH0572096B2 (en)
JPS63207125A (en) Manufacture of semiconductor element
JPS6088431A (en) Heating method by photo irradiation