JPS63308350A - Formation of insulating layer - Google Patents

Formation of insulating layer

Info

Publication number
JPS63308350A
JPS63308350A JP14427387A JP14427387A JPS63308350A JP S63308350 A JPS63308350 A JP S63308350A JP 14427387 A JP14427387 A JP 14427387A JP 14427387 A JP14427387 A JP 14427387A JP S63308350 A JPS63308350 A JP S63308350A
Authority
JP
Japan
Prior art keywords
insulating layer
pressure
voids
semiconductor substrate
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14427387A
Other languages
Japanese (ja)
Other versions
JPH0797601B2 (en
Inventor
Yuji Furumura
雄二 古村
Yasuo Uoochi
魚落 泰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14427387A priority Critical patent/JPH0797601B2/en
Publication of JPS63308350A publication Critical patent/JPS63308350A/en
Publication of JPH0797601B2 publication Critical patent/JPH0797601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of voids due to air bubbles trapped in an insulating layer in the fine gaps between wirings by performing a heat treatment (reflow process) for planarizing the surface of the interlayer insulating layer in a high-pressure helium atmosphere. CONSTITUTION:To a high-pressure vessel 1 made of stainless steel, a gas introducing pipe 2 and a gas exhaust pipe 3 are connected respectively through a cut-off valve 4 and a pressure regulator valve 5, and a semiconductor substrate 6 received in a holder 7 is placed in the center of the high-pressure vessel 1. On the surface of the semiconductor substrate 6, a film to be subjected to a planarization heat treatment is formed which is made of phosphosilicate glass or the like, and around the holder 7, a heater 8 is provided for heating the semiconductor substrate 6. And the glass layer of the phosohosilicate or borophosphosilicate system produced on the semiconductor chip surface having a plurality of wirings arranged at fine intervals is heated in a high-pressure atmosphere so as to reflow. With this, the occurrence of voids in the insulating layer consisting of the phosphosilicate or borophosphosilicate system glass layer in the gaps between the wirings is prevented.

Description

【発明の詳細な説明】 〔概要〕 微小な間隔で配列された複数の配線が形成された半導体
装置チップ表面に眉間絶縁層を形成する場合、前記層間
絶縁層の表面を平坦化するための熱処理(リフロー処理
)を高圧のヘリウム雰囲気中で行うことによって、配線
間の微小間隙における絶縁層に閉じ込められた気泡によ
るボイドの発生を防止する。
[Detailed Description of the Invention] [Summary] When forming a glabellar insulating layer on the surface of a semiconductor device chip on which a plurality of wiring lines arranged at minute intervals are formed, heat treatment is performed to flatten the surface of the interlayer insulating layer. (Reflow treatment) is performed in a high-pressure helium atmosphere to prevent the generation of voids due to air bubbles trapped in the insulating layer in minute gaps between interconnects.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置における眉間絶縁層に係り。 The present invention relates to a glabella insulating layer in a semiconductor device.

とくに層間絶縁層の表面を平坦化するための熱処理方法
に関する。
In particular, it relates to a heat treatment method for planarizing the surface of an interlayer insulating layer.

〔従来の技術〕[Conventional technology]

多くの半導体装置においては多層配線が用いられている
。この多層配線構造における眉間絶縁層として、珪燐酸
ガラス(PSG )あるいはPSGより低い温度で溶融
する硼珪燐酸ガラス(BPSG)の膜が主として里いら
れている。
Multilayer wiring is used in many semiconductor devices. As the glabellar insulating layer in this multilayer wiring structure, a film of silicate phosphoric acid glass (PSG) or borosilicate phosphoric acid glass (BPSG), which melts at a lower temperature than PSG, is mainly used.

これらPSGおよびBPSGの膜は1通常、化学気相成
長法(CVD ’)により、400℃程度の比較的低温
で、半導体装置基板の上に形成される。CVDにより形
成されたままのPSG膜等の表面は、下地の配線等によ
る凹凸を反映して平坦でなく、この上に上層の配線層を
形成すると1段差部分での断線もしくは導通不良等の不
都合が生じやすい。このために、これらのPSG等の膜
を形成したのち、半導体装置基板を、 PSG等の膜が
流動性を示すような温度で熱処理し、これらPSG等の
眉間絶縁層の表面を平坦化することが行われている。こ
の熱処理は、従来、窒素ガス中で行われていた。
These PSG and BPSG films are usually formed on a semiconductor device substrate at a relatively low temperature of about 400° C. by chemical vapor deposition (CVD'). The surface of a PSG film, etc., formed by CVD is not flat due to unevenness caused by the underlying wiring, etc., and if an upper wiring layer is formed on top of this, problems such as disconnection or poor conduction may occur at one level difference. is likely to occur. For this purpose, after forming these films such as PSG, the semiconductor device substrate is heat-treated at a temperature such that the films such as PSG exhibit fluidity, and the surface of the insulating layer between the eyebrows such as PSG is flattened. is being carried out. This heat treatment has conventionally been performed in nitrogen gas.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、半導体装置の微細化にともなって、眉間
絶縁層にボイドが生じやすくなってきた。
However, with the miniaturization of semiconductor devices, voids are becoming more likely to occur in the glabella insulating layer.

第2図に、上記のようなボイド20が発生している眉間
絶縁層21とその下の半導体基板22および配線23の
断面を示す。配線23はポリシリコンのような耐熱性の
材料から形成されている。図示のように2配線230幅
および高さは1μm程度であり、配線23の間の間隙は
0.8〜1μ繭である。このように。
FIG. 2 shows a cross section of the glabella insulating layer 21, the semiconductor substrate 22 and the wiring 23 thereunder, in which the voids 20 as described above have occurred. The wiring 23 is made of a heat-resistant material such as polysilicon. As shown in the figure, the width and height of the two wires 230 are about 1 μm, and the gap between the wires 23 is 0.8 to 1 μm. in this way.

ボイド20は配線23の間の間隙を満たしているPSG
等から成る絶縁層に発生し、配線間の距離が微小になる
ほど発生しやすく、配線間距離がある程度大きくなると
発生しない。
The void 20 is a PSG that fills the gap between the interconnects 23
It occurs in an insulating layer made up of such materials, and the smaller the distance between wires, the more likely it is to occur, and it does not occur when the distance between wires becomes large to a certain extent.

上記のように、距離が小さくなると配線間にボイドが発
生しやすくなる理由は1次のように考えられる。すなわ
ち、 CVDにより半導体基板上に形成された直後の眉
間絶縁層は第3図の模式図に示すような断面図形状を有
している。図示のように。
As mentioned above, the reason why voids are more likely to occur between wiring lines as the distance becomes smaller is considered to be as follows. That is, the glabellar insulating layer immediately after being formed on the semiconductor substrate by CVD has a cross-sectional shape as shown in the schematic diagram of FIG. As shown.

成膜したままの状態のPSGあるいはBPSGの膜24
は。
PSG or BPSG film 24 in the as-deposited state
teeth.

配線23の頭部近傍では横方向に厚く、これに比して配
線23の間では比較的薄く、その結果、配線23の間の
深い所に広い空間が存在する。このようなPSG等の膜
24を熱処理して溶融すると、隣接する配線23の頭部
に生成しているPSG等の膜24同志が先に融着し、そ
の下方に存在する前記広い空間内の気体(従来は窒素)
を閉じ込めてしまう。このようにして水塩化熱処理時の
雰囲気ガスが眉間絶縁層内にボイドとして残ってしまう
のである。
The wires 23 are thick in the lateral direction near their heads, but are relatively thin between the wires 23, and as a result, a wide space exists deep between the wires 23. When such a film 24 such as PSG is heat-treated and melted, the films 24 such as PSG formed on the heads of adjacent wirings 23 are first fused together, and the large space below them is melted. Gas (previously nitrogen)
will be trapped. In this way, the atmospheric gas during the hydrochlorination heat treatment remains in the glabellar insulating layer as voids.

上記のボイドは、眉間絶縁層にコンタクト穴を形成する
ためのエツチング工程等において、その上方のPSG等
の膜が除去され、外気と通じた状態となることがある。
The above-mentioned voids may be exposed to the outside air when a film such as PSG above them is removed during an etching process or the like to form a contact hole in the glabella insulating layer.

すなわち、眉間絶縁層内に閉じ込められた空間ではなく
、N間絶縁層に生じた穴となる。このような穴は、その
上に上層配線が形成された場合に段差となり、断線や導
通不良の原因となり、また、前記エツチングにおいて用
いられた処理剤等が残留し、眉間絶縁層の上に形成され
た配線を腐食して断線を生じる等の不都合があった。
In other words, it is not a space confined within the glabellar insulating layer, but a hole formed in the N-glabellar insulating layer. Such a hole becomes a step when upper layer wiring is formed on top of it, causing disconnection or poor conduction.Also, the processing agent used in the etching remains, and the hole is formed on the insulating layer between the eyebrows. There were inconveniences such as corroding the wires and causing disconnections.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来の眉間絶縁層形成における問題点は。 What are the problems with the above-mentioned conventional glabella insulating layer formation?

微小な間隔で配列された複数の配線を有する半導体装置
チップの表面に生成され珪燐酸系または硼珪燐酸系ガラ
ス層を高圧のヘリウム雰囲気中で加熱してリフローさせ
ることにより、該配線間間隙における該珪燐酸系または
硼珪燐酸系ガラス層から成る絶縁層にボイドの発生を防
止することを特徴とする本発明に係る絶縁層の形成方法
によって解決される。
By heating and reflowing a silicate-based or borosilicate-based glass layer produced on the surface of a semiconductor device chip having a plurality of interconnections arranged at minute intervals in a high-pressure helium atmosphere, The problem is solved by the method for forming an insulating layer according to the present invention, which is characterized in that voids are prevented from forming in the insulating layer made of the silicate-phosphate or borosilicate-phosphate glass layer.

〔作用〕[Effect]

PSGあるいはBPSGから成る眉間絶縁層の平坦化熱
処理を高圧のヘリウム雰囲気中で行うことにより、平坦
化された眉間絶縁層にはボイドが生じない。
By performing the flattening heat treatment of the glabellar insulating layer made of PSG or BPSG in a high-pressure helium atmosphere, no voids are generated in the flattened glabellar insulating layer.

〔実施例〕〔Example〕

以下に本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明において用いた熱処理装置の構成を示す
模式図である。例えばステンレス°スチールから成る高
圧容器1には、ガス導入管2およびガス排出管3が、そ
れぞれ、締切バルブ4および圧力調節パルプ5を介して
接続されている。高圧容器1の中程には、ホルダー7に
収容された半導体基板6が設置されている。半導体基板
6の表面には、 PSG等から成る平坦化熱処理を受け
る膜(図示省略)が形成されている。ホルダー7の周囲
には、半導体基板6を900〜1000℃程度に加熱す
るためのヒータ8が設けられている。
FIG. 1 is a schematic diagram showing the configuration of a heat treatment apparatus used in the present invention. A gas inlet pipe 2 and a gas discharge pipe 3 are connected to a high pressure vessel 1 made of stainless steel, for example, via a shutoff valve 4 and a pressure regulating pulp 5, respectively. A semiconductor substrate 6 housed in a holder 7 is placed in the middle of the high-pressure container 1 . On the surface of the semiconductor substrate 6, a film (not shown) made of PSG or the like and subjected to planarization heat treatment is formed. A heater 8 is provided around the holder 7 to heat the semiconductor substrate 6 to about 900 to 1000°C.

ガス導入管2にはヘリウムボンベ(図示省略)が接続さ
れており、締切バルブ4を通じて高圧容器1の内部にヘ
リウムガスが導入される。高圧容器1の内部が十分ヘリ
ウムガスで置換されたのち。
A helium cylinder (not shown) is connected to the gas introduction pipe 2 , and helium gas is introduced into the high-pressure vessel 1 through the shutoff valve 4 . After the inside of the high pressure vessel 1 has been sufficiently replaced with helium gas.

締切バルブ4を閉じる。ヒータ8に電°流を流して半導
体基板6を加熱する。高圧容器1の内部は圧力調節バル
ブ5によって所定の圧力に調節される。
Close the shutoff valve 4. A current is passed through the heater 8 to heat the semiconductor substrate 6. The pressure inside the high-pressure container 1 is regulated to a predetermined pressure by a pressure regulating valve 5.

この場合、締切バルブ4を完全に閉じずに小量のヘリウ
ムを流しておいてもよい。
In this case, a small amount of helium may be allowed to flow without completely closing the shutoff valve 4.

以上のようにして9層間絶縁層がPSGから成る場合に
は950℃〜1050℃で約30分間、 BPSGから
成る場合には約900℃で約30分間、ヘリウム雰囲気
中で加熱する。また、ヘリウム雰囲気の圧力は1気圧以
上であればよく、望ましくは10気圧とする。
As described above, when the nine interlayer insulating layers are made of PSG, they are heated at 950 DEG C. to 1050 DEG C. for about 30 minutes, and when they are made of BPSG, they are heated at about 900 DEG C. for about 30 minutes in a helium atmosphere. Further, the pressure of the helium atmosphere may be 1 atm or more, preferably 10 atm.

第4図は上記のようにしてヘリウム雰囲気中で熱処理さ
れた半導体基板6の断面を示す模式図である。シリコン
ウェハ等の半導体基板6には、第2図で説明したと同じ
寸法と構造を有する配線11が形成されており、配線1
1の間および上面にPSGあるいはBPSGから成る眉
間絶縁層12が形成されている。平坦化のためにヘリウ
ム雰囲気中で熱処理された眉間絶縁層12には、従来隣
接した配線間に発生していたボイドが存在していない。
FIG. 4 is a schematic diagram showing a cross section of the semiconductor substrate 6 heat-treated in a helium atmosphere as described above. A wiring 11 having the same dimensions and structure as explained in FIG. 2 is formed on a semiconductor substrate 6 such as a silicon wafer.
A glabellar insulating layer 12 made of PSG or BPSG is formed between the eyebrows 1 and on the upper surface. The glabellar insulating layer 12, which has been heat-treated in a helium atmosphere for planarization, does not have voids that conventionally occur between adjacent wiring lines.

上記において、ヘリウムガスの代わりに従来と同様に窒
素ガスを、ただし圧力を10気圧と高(して導入して熱
処理を行ったが、この場合には、ボイドの発生を防止す
ることはできなかった。
In the above, heat treatment was performed by introducing nitrogen gas instead of helium gas as in the past, but at a high pressure of 10 atmospheres, but in this case, it was not possible to prevent the generation of voids. Ta.

なお1本発明は半導体装置における眉間絶縁層の平坦化
熱処理に留まらず、少な(とも溶融状態−においてヘリ
ウム透過性を有するその他の材料中の気泡、ボイドの除
去に適用可能である。
Note that the present invention is not limited to flattening heat treatment of a glabellar insulating layer in a semiconductor device, but can also be applied to the removal of air bubbles and voids in other materials that have a small amount of helium permeability (both in a molten state).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体装置に設けられたPSGあるい
はBPSGから成る眉間絶縁層におけるボイドの発生が
防伝され、ボイドが原因となって生じる配線の断線ある
いは導通不良が低減され、これにより半導体装置の製造
歩留りおよび信頼性を向上できる効果がある。
According to the present invention, the generation of voids in the glabellar insulating layer made of PSG or BPSG provided in a semiconductor device is prevented, and disconnections or conduction defects in wiring caused by voids are reduced, and thereby the semiconductor device This has the effect of improving manufacturing yield and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において用いた熱処理装置の構成を示す
模式図。 第2図は眉間絶縁層に発生しているボイドを示す断面図
。 第3図はCVDにより形成された直後の眉間絶縁層の断
面形状を示す模式図。 第4図は本発明に係る方法で熱処理された眉間絶縁層の
断面を示す模式図 である。 図において。 1は高圧容器、    2はガス導入管。 3はガス排出管、   4は締切バルブ。 5は圧力調節バルブ、6と22は半導体基板。 7はホルダー、    8はヒータ。 11と23は配線、12と21は眉間絶縁層。 20はボイド。 24はPSGあるいはBPSGの膜 である。 ε 円N槍さn月(二mいth治柊角βl偵蚤づ引) 1 
喝 2拍ルー4す劣ソ咎りボ゛イド 茶 2 図
FIG. 1 is a schematic diagram showing the configuration of a heat treatment apparatus used in the present invention. FIG. 2 is a cross-sectional view showing voids occurring in the glabellar insulating layer. FIG. 3 is a schematic diagram showing the cross-sectional shape of the glabellar insulating layer immediately after being formed by CVD. FIG. 4 is a schematic diagram showing a cross section of the glabellar insulating layer heat-treated by the method according to the present invention. In fig. 1 is a high pressure vessel, 2 is a gas introduction pipe. 3 is the gas exhaust pipe, 4 is the shutoff valve. 5 is a pressure control valve, and 6 and 22 are semiconductor substrates. 7 is a holder, 8 is a heater. 11 and 23 are wiring, and 12 and 21 are insulating layers between the eyebrows. 20 is void. 24 is a PSG or BPSG film. ε circle N spear n month (2 m th Jihyaku angle βl reconnaissance) 1
Cheer 2 Beat Lou 4 Subordinate Blame Void Tea 2 Figure

Claims (1)

【特許請求の範囲】[Claims] 微小な間隔で配列された複数の配線を有する半導体装置
チップの表面に生成され珪燐酸系または硼珪燐酸系ガラ
ス層を高圧のヘリウム雰囲気中で加熱してリフローさせ
ることにより、該配線間間隙における該珪燐酸系または
硼珪燐酸系ガラス層から成る絶縁層にボイドの発生を防
止を形成することを特徴とする絶縁層の形成方法。
By heating and reflowing a silicate-based or borosilicate-based glass layer produced on the surface of a semiconductor device chip having a plurality of interconnections arranged at minute intervals in a high-pressure helium atmosphere, A method for forming an insulating layer, which comprises forming an insulating layer made of the silicate-based or borosilicate-based glass layer to prevent the generation of voids.
JP14427387A 1987-06-10 1987-06-10 Method of forming insulating layer Expired - Lifetime JPH0797601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14427387A JPH0797601B2 (en) 1987-06-10 1987-06-10 Method of forming insulating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14427387A JPH0797601B2 (en) 1987-06-10 1987-06-10 Method of forming insulating layer

Publications (2)

Publication Number Publication Date
JPS63308350A true JPS63308350A (en) 1988-12-15
JPH0797601B2 JPH0797601B2 (en) 1995-10-18

Family

ID=15358256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14427387A Expired - Lifetime JPH0797601B2 (en) 1987-06-10 1987-06-10 Method of forming insulating layer

Country Status (1)

Country Link
JP (1) JPH0797601B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206120A (en) * 1989-02-06 1990-08-15 Nec Corp Aluminum-based wiring part
EP0526889A2 (en) * 1991-08-06 1993-02-10 Nec Corporation Method of depositing a metal or passivation fabric with high adhesion on an insulated semiconductor substrate
US5314848A (en) * 1990-09-25 1994-05-24 Matsushita Electric Industrial Co., Ltd. Method for manufacturing a semiconductor device using a heat treatment according to a temperature profile that prevents grain or particle precipitation during reflow
US5527561A (en) * 1991-05-28 1996-06-18 Electrotech Limited Method for filing substrate recesses using elevated temperature and pressure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206120A (en) * 1989-02-06 1990-08-15 Nec Corp Aluminum-based wiring part
US5314848A (en) * 1990-09-25 1994-05-24 Matsushita Electric Industrial Co., Ltd. Method for manufacturing a semiconductor device using a heat treatment according to a temperature profile that prevents grain or particle precipitation during reflow
US5527561A (en) * 1991-05-28 1996-06-18 Electrotech Limited Method for filing substrate recesses using elevated temperature and pressure
EP0526889A2 (en) * 1991-08-06 1993-02-10 Nec Corporation Method of depositing a metal or passivation fabric with high adhesion on an insulated semiconductor substrate

Also Published As

Publication number Publication date
JPH0797601B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US5399529A (en) Process for producing semiconductor devices
JPH04329640A (en) Method of dry etching for wiring layer
JPS63308350A (en) Formation of insulating layer
US5539247A (en) Selective metal via plug growth technology for deep sub-micrometer ULSI
JPS62219923A (en) Manufacture of semiconductor device
JPS63142A (en) Manufacture of semiconductor device
JPH02229430A (en) Manufacture of semiconductor device
JPH0329298B2 (en)
JPS58162051A (en) Semiconductor device and manufacture thereof
JPS62281433A (en) Manufacture of semiconductor device
JPS62154643A (en) Manufacture of semiconductor device
JPS63173344A (en) Manufacture of semiconductor device
JPH0479330A (en) Method of forming laminated wiring
JPS63192239A (en) Manufacture of semiconductor device
JPS5968952A (en) Formation of wiring
JPH05275424A (en) Manufacture of semiconductor device
JPH09330924A (en) Manufacture of semiconductor device
JPH01272138A (en) Manufacture of wiring
JPH05160276A (en) Manufacture of semiconductor device
JPS6392022A (en) Manufacture of semiconductor device
JPH03169017A (en) Manufacture of semiconductor device
JPH11260916A (en) Semiconductor device and manufacture of the same
JPS61144849A (en) Manufacture of semiconductor device
JPS59126637A (en) Manufacture of semiconductor device
JPH02222163A (en) Manufacture of semiconductor device