JPS6330789B2 - - Google Patents

Info

Publication number
JPS6330789B2
JPS6330789B2 JP56165829A JP16582981A JPS6330789B2 JP S6330789 B2 JPS6330789 B2 JP S6330789B2 JP 56165829 A JP56165829 A JP 56165829A JP 16582981 A JP16582981 A JP 16582981A JP S6330789 B2 JPS6330789 B2 JP S6330789B2
Authority
JP
Japan
Prior art keywords
layer
impurity concentration
high impurity
type high
concentration layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56165829A
Other languages
Japanese (ja)
Other versions
JPS5867073A (en
Inventor
Kazuhiko Sato
Genshiro Nakamura
Yoshinori Yukimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56165829A priority Critical patent/JPS5867073A/en
Publication of JPS5867073A publication Critical patent/JPS5867073A/en
Publication of JPS6330789B2 publication Critical patent/JPS6330789B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 この発明は太陽電池、特に多層傾斜型構造太陽
電池の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in solar cells, particularly solar cells with a multilayer gradient structure.

非晶質Si等を用いた薄膜太陽電池では、キヤリ
アの発生源となる活性層をある特定のバンドギヤ
ツプを有する単一の層で形成した場合、利用し得
る光の波長領域が限られることから、高効率化の
為に、異なるバンドギヤツプを有する2層以上の
層を積層して活性層を形成する構造が提案されて
おり、その1つに傾斜型構造のものがある。
In thin-film solar cells using amorphous Si, etc., if the active layer, which is the source of carrier generation, is formed of a single layer with a specific band gap, the wavelength range of light that can be used is limited. In order to improve efficiency, a structure has been proposed in which an active layer is formed by laminating two or more layers having different band gaps, one of which is a sloped structure.

第1図に、活性層として非晶質Si(例えばバン
ドギヤツプEg=1.8eV)と非晶質SiGe(例えばEg
=1.4eV)の2層を用いて作成した従来のpin傾
斜型太陽電池のバンドダイヤグラムを示す。1は
P型高不純物濃度層、2はノンドープ非晶質Si層
(Eg=1.8eV)、3はノンドープ非晶質SiGe層
(Eg=1.4eV)、4はn型高不純物濃度層である。
P型高不純物濃度層1側から入射した光は、活性
層2,3中で吸収されてキヤリアを発生させる。
しかし、活性層2,3において、フエルミ準位
EFが禁制帯のほぼ中央にあるとすると、層3で
発生したキヤリアのうち正孔に対しては約0.2eV
の電位障壁が存在する為、光電流が抑制される。
Figure 1 shows amorphous Si (for example, bandgap Eg = 1.8 eV) and amorphous SiGe (for example, Eg
The band diagram of a conventional pin-tilted solar cell made using two layers with a voltage of 1.4 eV) is shown. 1 is a P-type high impurity concentration layer, 2 is a non-doped amorphous Si layer (Eg = 1.8 eV), 3 is a non-doped amorphous SiGe layer (Eg = 1.4 eV), and 4 is an n-type high impurity concentration layer.
Light incident from the P-type high impurity concentration layer 1 side is absorbed in the active layers 2 and 3 to generate carriers.
However, in active layers 2 and 3, the Fermi level
Assuming that E F is approximately in the center of the forbidden band, of the carriers generated in layer 3, the difference for holes is approximately 0.2 eV.
Because of the presence of a potential barrier, photocurrent is suppressed.

第2図は、n型高不純物n型層4側から光が入
射する従来のnip傾斜型太陽電池のバンドダイヤ
グラムで、この場合には、層3で発生したキヤリ
アのうち電子に対して電位障壁が存在するため、
第1図の場合と同様に光電流が抑制される。
Figure 2 is a band diagram of a conventional nip-tilt solar cell in which light enters from the n-type highly impurity n-type layer 4 side. Because there is
The photocurrent is suppressed as in the case of FIG.

この発明はこのような点に鑑みてなされたもの
で、活性層を構成する複数の層のうちの1つをノ
ンドープ層とし、このノンドープ層に対し上記P
型高不純物濃度層側あるいは上記N型高不純物濃
度層側の活性層を構成する層を、その近接する高
不純物濃度層と同一導電型の低不純物濃度層とな
し、上記ノンドープ層と、このノンドープ層とは
異なるバンドギヤツプを有し、かつ隣接して、活
性層を構成する層との間の界面に発生するキヤリ
アに対する電位障壁を軽減することにより、太陽
電池の効率を向上させることを目的とする。
This invention was made in view of the above points, and one of the plurality of layers constituting the active layer is a non-doped layer, and the above-mentioned P is applied to the non-doped layer.
The layer constituting the active layer on the type high impurity concentration layer side or the N type high impurity concentration layer side is a low impurity concentration layer of the same conductivity type as the adjacent high impurity concentration layer, and the non-doped layer and this non-doped layer are The purpose is to improve the efficiency of solar cells by reducing the potential barrier to carriers that occurs at the interface between layers that have a different band gap from the active layer and the adjacent layer that constitutes the active layer. .

この発明の一実施例のバンドダイヤグラムを第
3図に示す。この実施例は、第1図における層3
に代えてわずかにn型にドーピングした非晶質
SiGeからなる低不純物濃度層3aを用い、フエ
ルミ準位をシフトさせて価電子帯の上部を水平に
することにより、正孔に対する電位障壁をなく
し、光電流の向上を図つたものである。
A band diagram of one embodiment of this invention is shown in FIG. In this embodiment, layer 3 in FIG.
Slightly n-doped amorphous instead of
By using a low impurity concentration layer 3a made of SiGe and shifting the Fermi level to make the upper part of the valence band horizontal, the potential barrier to holes is eliminated and the photocurrent is improved.

第4図及び第5図は、本発明により第2図に示
した構造を改良したもののバンドダイヤグラムで
ある。第4図は、ノンドープ非晶質Si層2の代り
にわずかにn型にドープした非晶質Siからなる低
不純物濃度層2aを用いて電子に対する電位障壁
をなくしたもので、第5図は、ノンドープ非晶質
SiGe層3の代りにわずかにp型にドープした非
晶質SiGe層3bを用いて、同様に障壁をなくし
た例である。
4 and 5 are band diagrams of an improved structure shown in FIG. 2 according to the present invention. Figure 4 shows a case in which a low impurity concentration layer 2a made of slightly n-doped amorphous Si is used in place of the non-doped amorphous Si layer 2 to eliminate the potential barrier to electrons. , non-doped amorphous
This is an example in which a slightly p-doped amorphous SiGe layer 3b is used instead of the SiGe layer 3 to eliminate the barrier.

本発明は、太陽電池としての特性をさほど低下
させることなくドーピングが行い得る場合に特に
有効であり、活性層が2層のみならず、これより
多層構造の素子の場合にも適用できることはもち
ろんである。
The present invention is particularly effective when doping can be performed without significantly deteriorating the characteristics of the solar cell, and it goes without saying that it can be applied not only to devices with two active layers but also to devices with multilayer structures. be.

また、活性層を構成する材料としては、上記の
他に非晶質Geも用い得ることはいうまでもない。
Moreover, it goes without saying that amorphous Ge can also be used as a material constituting the active layer in addition to the above.

以上のようにこの発明によれば、活性層を構成
する複数の層間の界面に発生するキヤリアに対す
る電位障壁を軽減するようにしたので、効率の優
れた太陽電池を実現することができる。
As described above, according to the present invention, the potential barrier to carriers generated at the interface between the plurality of layers constituting the active layer is reduced, so it is possible to realize a highly efficient solar cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の傾斜型太陽電池のバ
ンド構造図、第3図〜第5図は本発明による傾斜
型構造太陽電池のバンド構造図である。 図において、1は高不純物濃度層、2はノンド
ープ非晶質Si層、3はノンドープ非晶質SiGe層、
4はn型高不純物濃度層、2aはわずかにn型に
ドープした非晶質Siからなる低不純物濃度層、3
aはわずかにn型にドープした非晶質SiGe層、
3bはわずかにp型にドープした非晶質SiGe層
である。なお、図中同一符号はそれぞれ同一また
は相当部分を示す。
1 and 2 are band structure diagrams of a conventional tilted solar cell, and FIGS. 3 to 5 are band structure diagrams of a tilted solar cell according to the present invention. In the figure, 1 is a high impurity concentration layer, 2 is a non-doped amorphous Si layer, 3 is a non-doped amorphous SiGe layer,
4 is an n-type high impurity concentration layer, 2a is a low impurity concentration layer made of slightly n-doped amorphous Si, 3
a is a slightly n-doped amorphous SiGe layer;
3b is a slightly p-doped amorphous SiGe layer. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 P型高不純物濃度層とN型高不純物濃度層と
の間に、異なるバンドギヤツプを有する複数の層
を積層して活性層を形成した太陽電池において、
上記活性層を構成する複数の層のうちの1つをノ
ンドープ層とし、このノンドープ層に対し上記P
型高不純物濃度層側あるいは上記N型高不純物濃
度層側の活性層を構成する層を、その近接する上
記P型高不純濃度層あるいは上記N型高不純物濃
度層と同一導電型の低不純物濃度層となし、上記
ノンドープ層とこのノンドープ層とは異なるバン
ドギヤツプを有し、かつ隣接して、活性層を構成
する上記低不純物濃度層との間の界面に発生する
キヤリアに対する電位障壁を軽減したことを特徴
とする太陽電池。
1. In a solar cell in which an active layer is formed by laminating a plurality of layers having different band gaps between a P-type high impurity concentration layer and an N-type high impurity concentration layer,
One of the plurality of layers constituting the active layer is a non-doped layer, and the above-mentioned P
The layer constituting the active layer on the high impurity concentration layer side or the N type high impurity concentration layer is a low impurity concentration layer of the same conductivity type as the adjacent P type high impurity concentration layer or the N type high impurity concentration layer. The non-doped layer has a different band gap from the non-doped layer and the adjacent low impurity concentration layer constituting the active layer. A solar cell featuring:
JP56165829A 1981-10-19 1981-10-19 Solar battery Granted JPS5867073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165829A JPS5867073A (en) 1981-10-19 1981-10-19 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165829A JPS5867073A (en) 1981-10-19 1981-10-19 Solar battery

Publications (2)

Publication Number Publication Date
JPS5867073A JPS5867073A (en) 1983-04-21
JPS6330789B2 true JPS6330789B2 (en) 1988-06-21

Family

ID=15819788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165829A Granted JPS5867073A (en) 1981-10-19 1981-10-19 Solar battery

Country Status (1)

Country Link
JP (1) JPS5867073A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222278A (en) * 1985-03-28 1986-10-02 Sanyo Electric Co Ltd Photovoltaic device
JPS61241985A (en) * 1985-04-19 1986-10-28 Eizo Yamaga Infrared-ray detector
JPS6249672A (en) * 1985-08-29 1987-03-04 Sumitomo Electric Ind Ltd Amorphous photovoltaic element
JP3490964B2 (en) 2000-09-05 2004-01-26 三洋電機株式会社 Photovoltaic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511329A (en) * 1978-07-08 1980-01-26 Shunpei Yamazaki Semiconductor device
JPS5513939A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device
JPS5513938A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511329A (en) * 1978-07-08 1980-01-26 Shunpei Yamazaki Semiconductor device
JPS5513939A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device
JPS5513938A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JPS5867073A (en) 1983-04-21

Similar Documents

Publication Publication Date Title
JPH10290023A (en) Semiconductor photodetector
US4144094A (en) Radiation responsive current generating cell and method of forming same
US20130104970A1 (en) Four junction solar cell
JP4945916B2 (en) Photoelectric conversion element
JPH0795603B2 (en) Photovoltaic device
US4649409A (en) Photoelectric transducer element
JPS6330789B2 (en)
JP3724272B2 (en) Solar cell
JP3368822B2 (en) Solar cell
US11728453B2 (en) Stacked monolithic multijunction solar cell
JP3368854B2 (en) Solar cell
JPS5996781A (en) Photo diode
JP2670557B2 (en) Avalanche photodiode
JP2662309B2 (en) Compound semiconductor solar cells
JP3368825B2 (en) Solar cell
JPH0582812A (en) Solar cell
KR100653236B1 (en) Si-Ge junction Solar cell
JPS62181476A (en) Semiconductor device
JPH06101578B2 (en) Planar heterojunction avalanche photodiode
JPH0612839B2 (en) Amorphous photovoltaic device
JPS6224676A (en) Photoelectric generating element
JP2001196620A (en) Tandem solar battery
RU1003702C (en) Solar photoconverter
JPS6130085A (en) Photoconductivity detecting element
JPS59202673A (en) Superposed photodetector