JP2662309B2 - Compound semiconductor solar cells - Google Patents

Compound semiconductor solar cells

Info

Publication number
JP2662309B2
JP2662309B2 JP2262160A JP26216090A JP2662309B2 JP 2662309 B2 JP2662309 B2 JP 2662309B2 JP 2262160 A JP2262160 A JP 2262160A JP 26216090 A JP26216090 A JP 26216090A JP 2662309 B2 JP2662309 B2 JP 2662309B2
Authority
JP
Japan
Prior art keywords
substrate
compound semiconductor
superlattice
layer
receiving layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2262160A
Other languages
Japanese (ja)
Other versions
JPH04137769A (en
Inventor
正博 秋山
英治 山市
孝 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2262160A priority Critical patent/JP2662309B2/en
Publication of JPH04137769A publication Critical patent/JPH04137769A/en
Application granted granted Critical
Publication of JP2662309B2 publication Critical patent/JP2662309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、受光層を化合物半導体で構成した太陽電
池に関するものである。
Description: TECHNICAL FIELD The present invention relates to a solar cell in which a light-receiving layer is made of a compound semiconductor.

(従来の技術) 化合物半導体太陽電池は、シリコン太陽電池に比べ、
エネルギー変換効率が高い、吸収スペクトルの設計
が可能、高温動作が出来るため高集光動作が可能等の
特徴を有する。しかし、エネルギー源として用いるため
にはさらなる高効率化が望まれ、このため、これに関す
る研究が従来から行われていた。
(Prior art) Compound semiconductor solar cells are more
It has features such as high energy conversion efficiency, design of absorption spectrum, and high light-condensing operation because of high-temperature operation. However, in order to use it as an energy source, further improvement in efficiency is desired, and therefore, research on this has been conventionally performed.

化合物半導体太陽電池の高効率化を目指した研究の一
例としては、例えば文献(テクニカル ダイジェスト
オブ ザ インターナショナル ピーブイエスイーシ
ー3(Technical Digest of the International PVSEC
−3,(1987),p.771)に開示されているものがあった。
An example of research aimed at increasing the efficiency of compound semiconductor solar cells is described in the literature (Technical Digest of the International PVSEC3, for example).
-3, (1987), p. 771).

この研究は、ヘテロ成長技術により、受光波長の異な
ったp−n接合を縦積みすることで、太陽光スペクトル
のより多くの波長の光を光電変換出来る太陽電池を得よ
うとするものであった。
This research aimed to obtain a solar cell capable of photoelectrically converting light of more wavelengths in the solar spectrum by vertically stacking pn junctions having different light receiving wavelengths by a hetero growth technique. .

具体的には、第3図に断面図を以って示すように、p
−GaAs基板11上に、p−GaAs層13及びn+−GaAs層15で構
成された第1の受光層17と、n+−AlGaAs層19、n++−GaA
s層21、p++−GaAs層23及びp+−AlGaAs層25で構成された
トンネル接合部27と、p−AlGaAs層29及びn+−AlGaAs層
31,33で構成された第2の受光層35とを縦積みした、い
わゆるタンデム太陽電池であった。なお、第3図中、37
はp側電極であり、39はn側電極である。
Specifically, as shown in the sectional view of FIG.
A first light receiving layer 17 composed of a p-GaAs layer 13 and an n + -GaAs layer 15, an n + -AlGaAs layer 19, and an n ++ -GaA
Tunnel junction 27 composed of s layer 21, p ++- GaAs layer 23 and p + -AlGaAs layer 25, p-AlGaAs layer 29 and n + -AlGaAs layer
This is a so-called tandem solar cell in which the second light receiving layer 35 composed of 31, 33 is vertically stacked. In FIG. 3, 37
Is a p-side electrode, and 39 is an n-side electrode.

(発明が解決しようとする課題) しかしながら、従来の化合物半導体太陽電池では、受
光層は半導体層を単に積層させた構成であるため、受光
層の、太陽光の吸収係数(以下、単に吸収係数と略称す
ることもある。)を大きくさせるにもおのずと限界があ
った。従って、受光層に必要光量を吸収させるために
は、受光層の膜厚をある程度厚く(数μm程度)する必
要があるという問題点があった。
(Problems to be Solved by the Invention) However, in the conventional compound semiconductor solar cell, since the light receiving layer has a configuration in which the semiconductor layers are simply laminated, the absorption coefficient of sunlight of the light receiving layer (hereinafter, simply referred to as absorption coefficient). There is naturally a limit to increasing the size. Therefore, in order to allow the light receiving layer to absorb the required amount of light, there is a problem that the film thickness of the light receiving layer needs to be increased to some extent (about several μm).

より高効率な化合物半導体太陽電池を得るためには、
受光層の吸収係数を大きくすることにより受光層の膜厚
を薄くし、これにより電子・正孔対発生領域から電極ま
での距離を短くして電子・正孔の、走行中の再結合確率
を低減させ、電子・正孔を対応する電極に効率良く到達
させること、が必要なことを考えると、上記問題点の解
決が望まれる。
To obtain more efficient compound semiconductor solar cells,
By increasing the absorption coefficient of the light-receiving layer, the thickness of the light-receiving layer is reduced, thereby shortening the distance from the electron-hole pair generation region to the electrode to reduce the recombination probability of electrons and holes during traveling. Considering that it is necessary to reduce the number of electrons and holes to efficiently reach the corresponding electrodes, it is desired to solve the above problem.

この発明はこのような点に鑑みなされたものであり、
従ってこの発明の目的は、受光層の膜厚を薄く出来る構
造を提案することにより、従来より高効率な化合物半導
体太陽電池の実現を図ることにある。
The present invention has been made in view of such a point,
Accordingly, an object of the present invention is to realize a compound semiconductor solar cell with higher efficiency than the conventional one by proposing a structure that can reduce the thickness of the light receiving layer.

(課題を解決するための手段) この目的の達成を図るため、この発明によれば、基板
上に化合物半導体で構成した受光層を1層または複数層
具える化合物半導体太陽電池において、 受光層を、基板面に沿う第1の方向に設けた超格子で
あって前記第1の方向と直交する方向でかつ前記基板面
と垂直な方向に沿う第2の方向において導電型が反転し
ている超格子で、構成したことを特徴とする。
(Means for Solving the Problems) In order to achieve this object, according to the present invention, in a compound semiconductor solar cell having one or more light-receiving layers composed of a compound semiconductor on a substrate, A superlattice provided in a first direction along the substrate surface, wherein the conductivity type is inverted in a second direction perpendicular to the first direction and along a direction perpendicular to the substrate surface. It is characterized by comprising a lattice.

また、この発明において、前述の超格子をタイプIIの
超格子(伝導帯の底と価電子帯のトップ(上端)とが空
間的に分離した超格子)としても良い。
In the present invention, the superlattice may be a type II superlattice (a superlattice in which the bottom of the conduction band and the top (upper end) of the valence band are spatially separated).

なお、この発明でいう基板とは、化合物半導体基板そ
のものの場合は勿論のこと、化合物半導体基板以外の基
板例えばシリコン(Si)基板やゲルマニウム(Ge)基
板、さらにこれら基板に別の素子が作り込まれているよ
うな基板の場合も含む。
The substrate in the present invention is not limited to the compound semiconductor substrate itself, but may be a substrate other than the compound semiconductor substrate, such as a silicon (Si) substrate or a germanium (Ge) substrate, and further elements formed on these substrates. This includes the case of substrates that are rare.

(作用) この発明の構成によれば、超格子の導電型が反転して
いる部分にp−n接合が構成されるので、この超格子が
受光層として使用可能になる。また、化合物半導体層を
単に積層した物と比べ超格子は吸収係数(この場合は太
陽光に限らず)が大きいことが知られているので、超格
子で構成されるこの発明に係る受光層は、その膜厚を従
来の受光層のそれより薄くしても、必要光量の吸収が可
能になる。そして、受光層を薄く出来ることから、電子
・正孔対発生領域から電極までの距離は従来より短くな
りその分電子・正孔の走行距離が減るので、電子・正孔
の電極への到達確率が高まる。
(Operation) According to the configuration of the present invention, a pn junction is formed in a portion where the conductivity type of the superlattice is inverted, so that the superlattice can be used as a light receiving layer. Further, since it is known that a superlattice has a large absorption coefficient (in this case, not limited to sunlight) as compared with a structure in which compound semiconductor layers are simply laminated, the light-receiving layer according to the present invention constituted by the superlattice is Even if the film thickness is smaller than that of the conventional light receiving layer, the necessary light amount can be absorbed. Since the light-receiving layer can be made thinner, the distance from the electron-hole pair generation region to the electrode is shorter than before, and the traveling distance of electrons and holes is reduced accordingly, so that the probability of electrons and holes reaching the electrode is reduced. Increase.

また、受光層をタイプIIの超格子で構成すると、上述
の場合と同様受光層を薄くすることが出来ることに加
え、受光層で発生した電子・正孔対のうちの電子は、当
該超格子を構成する一方の化合物半導体層の伝導帯に達
し、正孔は他方の化合物半導体層の価電子帯に達する。
したがって、正孔及び電子は空間的に分離されるのでこ
れらが再結合する確率がさらに低減され、よって、電子
・正孔の電極への到達確率がさらに高まる。
When the light-receiving layer is formed of a type II superlattice, the light-receiving layer can be made thinner in the same manner as described above, and in addition, electrons of the electron-hole pairs generated in the light-receiving layer And the holes reach the valence band of the other compound semiconductor layer.
Therefore, since the holes and electrons are spatially separated, the probability of recombination thereof is further reduced, and thus the probability of electrons and holes reaching the electrode is further increased.

(実施例) 以下、図面を参照して、この発明の化合物半導体太陽
電池の実施例について説明する。なお、説明に用いる各
図はこの発明を理解出来る程度に各構成成分の寸法、形
状、配置関係を概略的に示してある。なお、以下の実施
例は、基板面に沿う第1の方向を、基板主面と平行な方
向とし、また、第1の方向と直交する方向でかつ前記基
板面と垂直な方向に沿う第2の方向を、基板主面に垂直
な方向とした例で説明する。
(Example) Hereinafter, an example of a compound semiconductor solar cell of the present invention will be described with reference to the drawings. The drawings used in the description schematically show the dimensions, shapes, and arrangements of the components so that the present invention can be understood. In the following embodiments, the first direction along the substrate surface is a direction parallel to the main surface of the substrate, and the second direction is a direction orthogonal to the first direction and a direction perpendicular to the substrate surface. Is described as an example in which the direction is perpendicular to the main surface of the substrate.

第1実施例 第1図は、第1実施例の化合物半導体太陽電池の構造
を概略的に示した断面図である。
First Embodiment FIG. 1 is a sectional view schematically showing a structure of a compound semiconductor solar cell according to a first embodiment.

この第1実施例の化合物半導体太陽電池40は、基板41
主面上に、該主面と平行な方向に形成されたタイプIの
超格子であって該主面と垂直な方向において導電型が反
転している超格子から成る受光層43を具え、この受光層
43上にコンタクト層45を具え、このコンタクト層45上に
一方の電極47を具え、また基板41の裏面に他方の電極49
を具えて成っている。
The compound semiconductor solar cell 40 of the first embodiment includes a substrate 41
A light-receiving layer 43 comprising a superlattice of type I formed in a direction parallel to the main surface and having a conductivity type inverted in a direction perpendicular to the main surface, on the main surface; Light receiving layer
A contact layer 45 is provided on 43, one electrode 47 is provided on the contact layer 45, and another electrode 49 is provided on the back surface of the substrate 41.
It is made up of

基板41は、例えば、p型GaAs基板で構成出来る。 The substrate 41 can be composed of, for example, a p-type GaAs substrate.

また、基板41をp型GaAs基板とした場合、受光層43を
構成する超格子43は、基板41の主面に平行な方向に例え
ばGaAs層43aとAlGaAs層43bとを交互に配置し構成した超
格子であって、各層43a,43bが基板41側においてp型部
分43ap,43bpとされ基板主面と垂直方向途中からn型部
分43an,43bnとされている超格子とすることが出来る。
When the substrate 41 is a p-type GaAs substrate, the superlattice 43 forming the light receiving layer 43 is configured by alternately arranging, for example, GaAs layers 43a and AlGaAs layers 43b in a direction parallel to the main surface of the substrate 41. The superlattice can be a superlattice in which the layers 43a and 43b are p-type portions 43ap and 43bp on the substrate 41 side, and are n-type portions 43an and 43bn in a direction perpendicular to the main surface of the substrate.

また、コンタクト45層は、この場合例えばn+GaAs層で
構成出来、一方の電極47及び他方の電極49は、従来公知
の材料で構成することが出来る。
In this case, the contact 45 layer can be formed of, for example, an n + GaAs layer, and the one electrode 47 and the other electrode 49 can be formed of a conventionally known material.

ここで、基板主面と平行な方向に超格子を形成するこ
とは、例えば文献(アプライド フィジックス レタ
ーズ(Appl.Phys.Lett.,45,(1984)p.620)に開示さ
れているような技術、即ち、(100)面から[011]方向
にオフセットのあるGaAs基板を用い該基板表面に形成さ
れる結晶のステップから次のステップまでの距離の1/2
づつでGaAs層とAlGaAs層とを交互に成長させる技術によ
り行える。
Here, formation of a superlattice in a direction parallel to the main surface of the substrate can be achieved, for example, by a technique disclosed in the literature (Applied Physics Letters (Appl. Phys. Lett., 45 , (1984) p.620)). That is, using a GaAs substrate that is offset from the (100) plane in the [011] direction, the distance from a crystal step formed on the substrate surface to the next step is 1/2.
The GaAs layer and the AlGaAs layer can be alternately grown.

さらに、この際、GaAs層及びAlGaAs層の成長方向が基板
主面に垂直な方向であるので、これら層の成長途中で不
純物をp型用からn型用に変えることにより、導電型の
反転、即ちp型部分43ap,43bp及びn型部分43an,43bnの
形成も容易に行える。
Further, at this time, since the growth direction of the GaAs layer and the AlGaAs layer is a direction perpendicular to the main surface of the substrate, by changing the impurity from p-type to n-type during the growth of these layers, the conductivity type inversion and That is, the p-type portions 43ap and 43bp and the n-type portions 43an and 43bn can be easily formed.

この第1実施例の化合物半導体太陽電池40では、受光
層43に光が入射されると従来の太陽電池同様に受光層で
電子と正孔が発生する。そして、これら電子及び正孔
は、p−n接合によってできている電界によって、電子
は一方の電極(n側電極)45に向かい正孔は他方の電極
(p側電極)47に向かい、よって起電力が生じ太陽電池
として機能する。
In the compound semiconductor solar cell 40 of the first embodiment, when light is incident on the light receiving layer 43, electrons and holes are generated in the light receiving layer as in the conventional solar cell. The electrons and holes are generated by an electric field formed by the pn junction, and the electrons are directed to one electrode (n-side electrode) 45 and the holes are directed to the other electrode (p-side electrode) 47. Electric power is generated and functions as a solar cell.

但し、この発明では受光層43を超格子で構成してい
る。一般に、超格子は、普通に半導体層を積層したもの
より光の吸収係数が大きくなる。従って、この発明にお
いては、受光層として必要な膜厚は、超格子を用いない
場合に比べ、半分以下で良くなるので、受光層で発生し
た電子・正孔にとっての電極までの距離は従来に比べ短
くなる。このため、電子・正孔が走行中に再結合する確
率が従来より小さくなることが期待出来、これにより、
薄い膜厚で高効率な特性を有する受光層の実現が期待出
来る。
However, in the present invention, the light receiving layer 43 is formed of a super lattice. In general, a superlattice has a larger light absorption coefficient than that of a normal stack of semiconductor layers. Therefore, in the present invention, the film thickness required for the light-receiving layer is less than half that of the case where the superlattice is not used, so that the distance to the electrode for electrons and holes generated in the light-receiving layer is conventionally smaller. It will be shorter. For this reason, it can be expected that the probability of recombination of electrons and holes during traveling becomes smaller than before,
The realization of a light-receiving layer having high efficiency and a small thickness can be expected.

第2実施例 次に、第2実施例の化合物半導体太陽電池について説
明する。第2図(A)及び(B)はその説明に供する図
であり、特に第2図(A)は第2実施例の化合物半導体
太陽電池50の構造を概略的に示した断面図、第2図
(B)は、第2実施例に係る受光層53の機能説明に供す
るエネルギーバンド図である。
Second Embodiment Next, a compound semiconductor solar cell according to a second embodiment will be described. FIGS. 2 (A) and 2 (B) are views for explanation thereof. In particular, FIG. 2 (A) is a sectional view schematically showing a structure of a compound semiconductor solar cell 50 of a second embodiment. FIG. 8B is an energy band diagram for explaining the function of the light receiving layer 53 according to the second embodiment.

この第2実施例の化合物半導体太陽電池50は、基板51
主面上に、該主面と平行な方向に形成されたタイプIIの
超格子であって該主面と垂直な方向において導電型が反
転している超格子から成る受光層53を具え、この受光層
53上にコンタクト層55を具え、このコンタクト層55上に
一方の電極57を具え、また基板51の裏面に他方の電極59
を具えて成っている。
The compound semiconductor solar cell 50 of the second embodiment includes a substrate 51
A light receiving layer 53 comprising a type II superlattice formed in a direction parallel to the main surface and having a conductivity type inverted in a direction perpendicular to the main surface, on the main surface; Light receiving layer
A contact layer 55 is provided on 53, one electrode 57 is provided on the contact layer 55, and the other electrode 59 is provided on the back surface of the substrate 51.
It is made up of

基板51は、例えば、p型InP基板で構成出来る。 The substrate 51 can be composed of, for example, a p-type InP substrate.

また、基板51をp型InP基板とした場合、受光層53を
構成する超格子53は、基板51の主面に平行な方向に例え
ばInP層53aとInxAl1-xAs但し、x≦0.6)53bとを交互に
配置し構成したタイプIIの超格子であって、各層53a,53
bが基板51側においてp型部分53ap,53bpとされ基板主面
と垂直方向途中からn型部分53an,53bnとされているタ
イプIIの超格子とすることが出来る。
When the substrate 51 is a p-type InP substrate, the superlattice 53 constituting the light receiving layer 53 has, for example, an InP layer 53a and In x Al 1-x As in a direction parallel to the main surface of the substrate 51, where x ≦ 0.6) This is a type II superlattice constituted by alternately arranging 53b and 53b, and each layer 53a, 53
A type II superlattice in which b is p-type portions 53ap and 53bp on the substrate 51 side and n-type portions 53an and 53bn from the middle in the direction perpendicular to the main surface of the substrate can be provided.

また、コンタクト層45は、この場合例えばn+InP層で
構成出来、一方の電極47及び他方の電極49は、従来公知
の材料で構成することが出来る。
In this case, the contact layer 45 can be composed of, for example, an n + InP layer, and the one electrode 47 and the other electrode 49 can be composed of a conventionally known material.

なお、基板主面と平行な方向にタイプIIの超格子を形
成することは、実施例1と同様な方法により行うことが
出来る。
Forming a type II superlattice in a direction parallel to the main surface of the substrate can be performed in the same manner as in the first embodiment.

この第2実施例の化合物半導体太陽電池50において
も、第1実施例同様、受光層として必要な膜厚は、超格
子を用いない場合に比べ、半分以下で良くなるので、受
光層で発生した電子・正孔にとっての電極までの距離は
従来に比べ短くなる。このため、電子・正孔が走行中に
再結合する確率が従来より小さくなることが期待出来、
これにより、薄い膜厚で高効率な特性を有する受光層の
実現が期待出来る。
In the compound semiconductor solar cell 50 of the second embodiment, as in the first embodiment, the film thickness required for the light-receiving layer is less than half that in the case where the superlattice is not used, so that the light-emitting layer is generated in the light-receiving layer. The distance between the electron and the hole to the electrode is shorter than before. For this reason, the probability that electrons and holes recombine during traveling can be expected to be smaller than before,
This can be expected to realize a light receiving layer having a thin film thickness and high efficiency characteristics.

しかし、この第2実施例の化合物半導体太陽電池で
は、受光層をタイプIIの超格子で構成している。このた
め、受光層53(タイプIIの超格子)で発生した電子・正
孔は、第2図(B)に示すように、電子61はInP層の伝
導帯63に、正孔65はInAlAs層の価電子帯67に分離する。
即ち、電子と正孔は空間的に分離される。そして、電子
は一方の電極(n側電極)45に向かい正孔は他方の電極
(p側電極)47に向かう。従って、電子及び正孔が走行
中に再結合する確率が実施例1の場合に比べさらに低く
なることが期待出来る。
However, in the compound semiconductor solar cell of the second embodiment, the light-receiving layer is constituted by a type II superlattice. For this reason, the electrons and holes generated in the light receiving layer 53 (type II superlattice) are, as shown in FIG. 2B, electrons 61 in the conduction band 63 of the InP layer and holes 65 in the InAlAs layer. In the valence band 67.
That is, electrons and holes are spatially separated. Then, the electrons go to one electrode (n-side electrode) 45 and the holes go to the other electrode (p-side electrode) 47. Therefore, it can be expected that the probability that electrons and holes recombine during traveling is lower than in the case of the first embodiment.

上述においては、この発明の化合物半導体太陽電池の
各実施例について説明したが、この発明は上述の実施例
のみに限られるものではなく、以下に説明するような種
々の変更を加えることが出来る。
In the above, each embodiment of the compound semiconductor solar cell of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications as described below can be added.

例えば、第1実施例においては、基板をGaAs基板で構
成し、超格子をGaAs/AlGaAsで構成していたが、基板構
成材料及び超格子構成材料は他の好適なものでも良い。
特に基板は、化合物半導体基板に限られず、ゲルマニウ
ム基板やシリコン基板上に化合物半導体層を成長させた
もの、さらにはシリコン基板やゲルマニウム基板そのも
のとしても良い。第2実施例においても、基板及び超格
子の構成材料は他の好適なものでも良い。
For example, in the first embodiment, the substrate is formed of a GaAs substrate, and the superlattice is formed of GaAs / AlGaAs. However, the substrate forming material and the superlattice forming material may be other suitable materials.
In particular, the substrate is not limited to a compound semiconductor substrate, and may be a germanium substrate or a silicon substrate on which a compound semiconductor layer is grown, or a silicon substrate or a germanium substrate itself. Also in the second embodiment, the constituent materials of the substrate and the superlattice may be other suitable materials.

また、第1及び第2実施例において、超格子は実施例
のような格子整合系である必要はなく歪み超格子として
も良い。また、基板及び超格子の導電型を、実施例とは
反対の導電型としても良い。
In the first and second embodiments, the superlattice does not need to be a lattice matching system as in the embodiment, but may be a strained superlattice. Further, the conductivity types of the substrate and the superlattice may be opposite to those of the embodiment.

また、第1及び第2実施例においては、第1の方向を
基板主面と平行な方向としていたが、第1の方向はこれ
に限られず基板主面と鋭角を構成する方向としても良
い。
In the first and second embodiments, the first direction is a direction parallel to the main surface of the substrate. However, the first direction is not limited to this and may be a direction forming an acute angle with the main surface of the substrate.

また、第1及び第2実施例においては、受光層を1層
としていたが、基板上に受光層を2層以上順次に或いは
中間層(例えば従来技術で説明したトンネル接合部)を
介して積層しても良い。このような構成の場合は各受光
層が異なる波長に吸収ピークを持つように、各受光層を
構成する超格子の材料を選択するのが好適である。これ
によれば、太陽光スペクトルをより広い範囲で光電変換
出来るからである。
In the first and second embodiments, the light receiving layer is one layer. However, two or more light receiving layers are sequentially stacked on the substrate or via an intermediate layer (for example, a tunnel junction described in the related art). You may. In such a configuration, it is preferable to select the material of the superlattice forming each light receiving layer so that each light receiving layer has an absorption peak at a different wavelength. According to this, the sunlight spectrum can be photoelectrically converted in a wider range.

(発明の効果) 上述した説明からも明らかなように、この発明の化合
物半導体太陽電池は、基板面に沿う第1の方向に設けた
超格子であって前記第1の方向と直交する方向でかつ前
記基板面と垂直な方向に沿う第2の方向において導電型
が反転している超格子から成る受光層を具える。この受
光層は、従来より吸収係数が大きくなるので、その分受
光層の膜厚を従来より薄く出来る。従って、受光層で発
生した電子・正孔にとっての電極までの距離は従来に比
べ短くなるため、電子・正孔が走行中に再結合する確率
が従来より小さくなることが期待出来、これにより、高
効率な特性を有する化合物半導体太陽電池の実現が期待
出来る。
(Effects of the Invention) As is clear from the above description, the compound semiconductor solar cell of the present invention is a superlattice provided in a first direction along a substrate surface, and is provided in a direction orthogonal to the first direction. And a light-receiving layer comprising a superlattice whose conductivity type is inverted in a second direction along a direction perpendicular to the substrate surface. Since the absorption coefficient of this light-receiving layer is larger than that of the conventional light-receiving layer, the thickness of the light-receiving layer can be reduced accordingly. Therefore, since the distance to the electrode for electrons and holes generated in the light receiving layer is shorter than before, it can be expected that the probability of recombination of electrons and holes during traveling is smaller than before. The realization of compound semiconductor solar cells having high efficiency characteristics can be expected.

また、受光層を、基板面に沿う第1の方向に設けたタ
イプIIの超格子であって前記第1の方向と直交する方向
でかつ前記基板面と垂直な方向に沿う第2の方向におい
て導電型が反転しているタイプIIの超格子で構成した場
合は、光電変換で発生した電子及び正孔を空間的に分離
出来る。このため、電子・正孔が走行中に再結合する確
率をさらに低減出来るので、より高効率な化合物半導体
太陽電池の実現が期待出来る。
Further, the light receiving layer is a type II superlattice provided in a first direction along the substrate surface, in a second direction along a direction perpendicular to the first direction and along a direction perpendicular to the substrate surface. In the case of a type II superlattice of which conductivity type is inverted, electrons and holes generated by photoelectric conversion can be spatially separated. For this reason, the probability of recombination of electrons and holes during traveling can be further reduced, and a more efficient compound semiconductor solar cell can be expected.

また、シリコン基板上に化合物半導体単結晶を成長さ
せる技術を利用してこの発明の化合物半導体太陽電池を
形成することを考えた場合、この技術は化合物半導体層
の成長膜厚が厚くなるとシリコン−化合物半導体間の熱
膨張係数差により成長層にクラックが生じるという問題
があるが、この発明の受光層は薄い膜厚で良いので、こ
の問題の影響が少いという効果が得られる。
Further, when considering the formation of the compound semiconductor solar cell of the present invention using the technique of growing a compound semiconductor single crystal on a silicon substrate, this technique is considered to be a silicon-compound when the growth thickness of the compound semiconductor layer increases. There is a problem that cracks occur in the growth layer due to a difference in thermal expansion coefficient between semiconductors. However, since the light-receiving layer of the present invention may have a small thickness, the effect of this problem is small.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、第1実施例の説明に供する図、 第2図(A)及び(B)は、第2実施例の説明に供する
図、 第3図は、従来技術の説明に供する図である。 40……第1実施例の化合物半導体太陽電池 41……基板(例えばp型GaAs基板) 43……タイプIの超格子を用いた第1実施例の受光層 43a……例えばGaAs層 43b……例えばAlGaAs層 43ap,43bp……p型部分 43an,43bn……n型部分 45……コンタクト層(例えばn+GaAs層) 47……一方の電極、49……他方の電極 50……第2実施例の化合物半導体太陽電池 51……基板(例えばp型InP基板) 53……タイプIIの超格子を用いた第2実施例の受光層 53a……例えばInP層 53b……例えばInxAl1-xAs層 53ap,53bp……p型部分 53an,53bn……n型部分 55……コンタクト層(例えばn+InP層) 57……一方の電極、59……他方の電極 61……電子、63……InPの伝導帯 65……正孔 67……InAlAsの価電子帯。
FIG. 1 is a diagram for explaining the first embodiment, FIGS. 2A and 2B are diagrams for explaining the second embodiment, and FIG. 3 is a diagram for explaining the prior art. is there. 40 Compound semiconductor solar cell of the first embodiment 41 Substrate (for example, p-type GaAs substrate) 43 Light receiving layer 43a of the first embodiment using a type I superlattice, for example, GaAs layer 43b For example, AlGaAs layer 43ap, 43bp... P-type portion 43an, 43bn... N-type portion 45... Contact layer (for example, n + GaAs layer) 47... One electrode, 49. Example compound semiconductor solar cell 51: substrate (for example, p-type InP substrate) 53: light receiving layer 53a of the second embodiment using a type II superlattice, for example, InP layer 53b, for example, In x Al 1- x As layer 53ap, 53bp... p-type portion 53an, 53bn... n-type portion 55... contact layer (for example, n + InP layer) 57... …… InP conduction band 65… Hole 67 …… InAlAs valence band.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に化合物半導体で構成した受光層を
1層または複数層具える化合物半導体太陽電池におい
て、 受光層を、基板面に沿う第1の方向に設けた超格子であ
って前記第1の方向と直交する方向でかつ前記基板面と
垂直な方向に沿う第2の方向において導電型が反転して
いる超格子で、構成したこと を特徴とする化合物半導体太陽電池。
1. A compound semiconductor solar cell comprising one or more light-receiving layers formed of a compound semiconductor on a substrate, wherein the light-receiving layer is a superlattice provided in a first direction along a substrate surface. A compound semiconductor solar cell, comprising a superlattice whose conductivity type is inverted in a second direction perpendicular to the first direction and perpendicular to the substrate surface.
【請求項2】請求項1に記載の化合物半導体太陽電池に
おいて、 前記超格子をタイプIIの超格子としたことを特徴とする
化合物半導体太陽電池。
2. The compound semiconductor solar cell according to claim 1, wherein said superlattice is a type II superlattice.
JP2262160A 1990-09-28 1990-09-28 Compound semiconductor solar cells Expired - Fee Related JP2662309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2262160A JP2662309B2 (en) 1990-09-28 1990-09-28 Compound semiconductor solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2262160A JP2662309B2 (en) 1990-09-28 1990-09-28 Compound semiconductor solar cells

Publications (2)

Publication Number Publication Date
JPH04137769A JPH04137769A (en) 1992-05-12
JP2662309B2 true JP2662309B2 (en) 1997-10-08

Family

ID=17371899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2262160A Expired - Fee Related JP2662309B2 (en) 1990-09-28 1990-09-28 Compound semiconductor solar cells

Country Status (1)

Country Link
JP (1) JP2662309B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101739A1 (en) * 2008-02-12 2009-08-20 Nec Corporation Surface-emitting laser and method for manufacturing the same
WO2009101740A1 (en) * 2008-02-12 2009-08-20 Nec Corporation Semiconductor light receiving element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792390B2 (en) * 1998-02-24 2006-07-05 富士通株式会社 Semiconductor device and manufacturing method thereof
CN103022057A (en) * 2011-09-21 2013-04-03 索尼公司 Multi-junction solar cell, photovoltaic conversion component and compound semiconductor layer-by-layer structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101739A1 (en) * 2008-02-12 2009-08-20 Nec Corporation Surface-emitting laser and method for manufacturing the same
WO2009101740A1 (en) * 2008-02-12 2009-08-20 Nec Corporation Semiconductor light receiving element

Also Published As

Publication number Publication date
JPH04137769A (en) 1992-05-12

Similar Documents

Publication Publication Date Title
JP6650916B2 (en) Semiconductor device with improved current generation
US5479043A (en) Multispectral photovoltaic component
US4688068A (en) Quantum well multijunction photovoltaic cell
KR101547711B1 (en) Nanowire-based solar cell structure
US9712105B2 (en) Lateral photovoltaic device for near field use
US20100006136A1 (en) Multijunction high efficiency photovoltaic device and methods of making the same
JP2010118666A (en) Alternative substrate of inversion altered multi-junction solar battery
JP2010118667A (en) Four junction inverted metamorphic multijunction solar cell with two metamorphic layers
US10811551B2 (en) Tandem solar cell including metal disk array
JP2009026887A (en) Solar cell
JP2019533906A (en) Photovoltaic device
RU2657073C2 (en) Photovoltaic cell with variable band gap
RU2308122C1 (en) Cascade solar cell
JP2662309B2 (en) Compound semiconductor solar cells
JP2011077295A (en) Junction type solar cell
US20120073658A1 (en) Solar Cell and Method for Fabricating the Same
JP5548908B2 (en) Manufacturing method of multi-junction solar cell
JP3877348B2 (en) Solar cell
JPH0955522A (en) Tunnel diode
JP2703167B2 (en) Light receiving element and method of manufacturing the same
JP2725993B2 (en) Light receiving element and solar cell
JPH07297425A (en) Solar battery
KR101520804B1 (en) High-efficient Solar Cell using wide-band absorption and energy transfer
JPH05175527A (en) Photoelectric conversion device and tandem solar cell containing same
RU2701873C1 (en) Semiconductor structure of multi-junction photoconverter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees