JPS63306594A - Cmos integrated circuit device - Google Patents

Cmos integrated circuit device

Info

Publication number
JPS63306594A
JPS63306594A JP62141835A JP14183587A JPS63306594A JP S63306594 A JPS63306594 A JP S63306594A JP 62141835 A JP62141835 A JP 62141835A JP 14183587 A JP14183587 A JP 14183587A JP S63306594 A JPS63306594 A JP S63306594A
Authority
JP
Japan
Prior art keywords
substrate
level
vbb
generation circuit
mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62141835A
Other languages
Japanese (ja)
Inventor
Kazutoshi Hirayama
平山 和俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62141835A priority Critical patent/JPS63306594A/en
Publication of JPS63306594A publication Critical patent/JPS63306594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dram (AREA)

Abstract

PURPOSE:To prevent the rise of substrate potential and the occurrence of latch-up phenomenon by supplying the substrate voltage from a second substrate voltage generation circuit at a transition time immediately after power source is supplied. CONSTITUTION:When the power source VCC is supplied to a C MOS DRAM, transient current Icj caused by junction capacitance Cj flows and the VBB of a (p) formed substrate 1 rises. When the VBB rises over the threshold voltage of a MOS transistor 25, the output of a first C MOS inverter becomes an 'L' level and the output of a second C MOS inverter becomes an 'H' level. As the result of that, a MOS transistor 28 becomes a conductive state. Therefore the VBB is short-circuited by VSS and returned to OV. Then the output of the first C MOS inverter becomes the 'H' level and tries to return the output of the second C MOS inverter to the 'L' level. But due to the discharge of capacitor 29, it takes long time that a node N1 returns to the level of the VSS. When the node N1 falls to the 'L' level and the MOS transistor 28 becomes in a non-conductive state, the VBB is set at the voltage of the first VBB generation circuit which already operates normally.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電源投入直後の基板電位を一定値以下に保
ってラッチアップ現象の発生を防止する丸めの基板電圧
発生回路を備え九〇 MO8集積回路装置に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention includes a rounded substrate voltage generation circuit that keeps the substrate potential below a certain value immediately after power is turned on to prevent the occurrence of latch-up phenomenon. The present invention relates to integrated circuit devices.

〔従来の技術〕[Conventional technology]

集積回路装置において、電源投入直後の過渡時には様々
な問題が生じることは良く知られており、と9わけ過大
な過渡電流の発生は重要である。
It is well known that various problems occur in integrated circuit devices during transient periods immediately after power is turned on, and the generation of excessive transient currents is of great importance.

特に、C! MO8集積回路装置の場合には、構造上、
内部にpnp Mlとnpn!Ef!のトランジスタが
寄生的に生じておシ、これが結合してpnpn型のサイ
リスク構造を構成するため、一度このサイリスタが点弧
状態になると電源電圧(以下VOOと称す)と接地間に
過大な電流が流れ、素子の破壊に至る場合もある、いわ
ゆるラッチアップ(Latchup )現象に発展しか
ねない°ので更に重要となる。つまシ、集積回路装置に
おいては、基板への電子の注入によるメモリの誤動作防
止、pn接合容量の低減による回路の高速化及びトラン
ジスタのしきい値電圧の基板効果の低減による動作回路
の高速化と安定化等を図るため、基板電圧発生回路(以
下v1発生回路と称す)が形成されて基板に負の電圧が
印加されているが、電源投入直後には、この回路が未だ
正常に作動していないため、Vaaと基板間の容量結合
を通じて流れる変位電流が上記寄生サイリスタのトリが
となってラッチアップ現象に発展する可能性がある訳で
ある。
Especially C! In the case of MO8 integrated circuit device, structurally,
pnp Ml and npn inside! Ef! The thyristor is generated parasitically and combines to form a pnpn type thyristor structure, so once this thyristor is turned on, an excessive current will flow between the power supply voltage (hereinafter referred to as VOO) and ground. This is even more important since it may lead to the so-called latch-up phenomenon, which may lead to leakage and destruction of the device. In integrated circuit devices, it is possible to prevent memory malfunction by injecting electrons into the substrate, increase the speed of circuits by reducing the pn junction capacitance, and increase the speed of operating circuits by reducing the substrate effect on the threshold voltage of transistors. In order to stabilize the circuit, a substrate voltage generation circuit (hereinafter referred to as the V1 generation circuit) is formed to apply a negative voltage to the substrate, but immediately after the power is turned on, this circuit is not yet operating normally. Therefore, the displacement current flowing through the capacitive coupling between Vaa and the substrate may trigger the parasitic thyristor, leading to a latch-up phenomenon.

pn接合容量はメモリの高集積化と共に増大するので、
どのような状態においても基板電圧が一定値以下に抑制
されてラッチアップ現象の発生が防止できるように、V
BB発生回路の改良が求められていた。
Since the pn junction capacitance increases with higher integration of memory,
The V
Improvements in the BB generation circuit were required.

第3図は従来のOMOSダイナミック形メモリ(以下O
MOS DRAMと称す)の主要部構成の模式図である
。なお、図においてV!IB発生回路は基板の外に回路
図として示したが、一般には同じ基板内に形成されてい
る。
Figure 3 shows the conventional OMOS dynamic memory (hereinafter referred to as OMOS).
1 is a schematic diagram of the main part configuration of a MOS DRAM (referred to as MOS DRAM). In addition, in the figure, V! Although the IB generation circuit is shown as a circuit diagram outside the substrate, it is generally formed within the same substrate.

第4図は、上記第3図の構成におけるラッチアップ現象
を!5a明するための等価回路図でるる。
Figure 4 shows the latch-up phenomenon in the configuration shown in Figure 3 above! 5a is an equivalent circuit diagram for clarity.

図においが、+11はpH1シリコン半導体基板(以下
pm基板と称す) 、 (21)1 nウェル、(3)
はp杢ンース領域、(41はp型ドレイシ領域、+5+
)まn型ドレイン領域、(61はn型ソース領域、(7
)はn型基板コンタクト領域、+81はp型基板コンタ
クト領域、+91は他のn型基板コンタクト領域(以下
いずれも領域(31乃至[91と称す)、曲はゲート電
極、αυは容量電極で、実際には各電極Q(1,(lυ
とp型基板(11との間に絶縁膜が存在するのであるが
、簡単のため省略しである。なお、領域193と容量電
極(11)間にはメモリ用の容量が形成されている。u
カはnウェル(2)内に、領域に引、(4)及びゲート
電極αaにより形成されるpチャンネルMOSトランジ
スタ、a3はp型基板+11内に、領域151 、16
1及びゲート電極ulにより形成されるnチャンネルM
OS)ランリスタ、Iはp型基板111の主平面近傍に
形成されている第1のVBB発生回路で、°りングオツ
シレータ(151、チャーシボシブ弔客量霞、レベルシ
フト回路用MOSトランジスタ1?)及び整流用MO8
)ランリスタC181よ多構成される。a9は電源端子
(以下Vaa端子と称す)、■は接地端子(以下Vss
端子と称す)、+21)は入力端子(以下IN端子と称
す)、ノは出力端子(以下OUT端子と称す)、V!I
!1はp型基板111に印加される基板電圧である。
In the figure, +11 is a pH 1 silicon semiconductor substrate (hereinafter referred to as pm substrate), (21) 1 n-well, (3)
is a p-type Draci region, (41 is a p-type Draci region, +5+
) n-type drain region, (61 is n-type source region, (7
) is an n-type substrate contact region, +81 is a p-type substrate contact region, +91 is another n-type substrate contact region (hereinafter all are referred to as regions (31 to [91)), the curve is a gate electrode, αυ is a capacitor electrode, In reality, each electrode Q(1, (lυ
Although there is an insulating film between the region 193 and the p-type substrate (11), it is omitted for simplicity. Note that a memory capacitor is formed between the region 193 and the capacitor electrode (11). u
A p-channel MOS transistor is formed by the gate electrode αa and the gate electrode αa in the n-well (2) and the regions 151 and 16 in the p-type substrate +11.
1 and the n-channel M formed by the gate electrode ul
OS) Run lister, I is the first VBB generation circuit formed near the main plane of the p-type substrate 111, and includes a ring oscillator (151, level shift circuit MOS transistor 1?) and rectification. for MO8
) The run lister C181 is composed of more than one. a9 is a power supply terminal (hereinafter referred to as Vaa terminal), ■ is a ground terminal (hereinafter referred to as Vss
), +21) is an input terminal (hereinafter referred to as IN terminal), ノ is an output terminal (hereinafter referred to as OUT terminal), and V! I
! 1 is a substrate voltage applied to the p-type substrate 111.

第3図に示すn型領域(7) 、 (91或いはp型領
域(3)のように、半導体基板中の拡散領域でVoaが
印加される個所は至る所に相当数存在するが、この場合
、 Vao端子(9とP型基板(1)との間には、必然
的にpn接合により生じる大きな接合容量Qが存在する
こととなる。
There are quite a number of diffusion regions in the semiconductor substrate where Voa is applied, such as the n-type regions (7) and (91) or the p-type region (3) shown in FIG. , A large junction capacitance Q caused by a pn junction inevitably exists between the Vao terminal (9) and the P-type substrate (1).

上記のように構成されたC MOS DRAMの通常の
動作時には、リングオツシレータQSで発振された間欠
電圧を、チャーシボシブ用容量aQとLAoSトランジ
スタリス、a秒により直流の負のVs+aに交換してp
型基板+11へ供給している。
During normal operation of the CMOS DRAM configured as described above, the intermittent voltage oscillated by the ring oscillator QS is exchanged with a DC negative Vs+a for a second by the charging capacitor aQ and the LAoS transistor
It is supplied to the mold board +11.

〔発明が解決しようとする間仙点〕[The problem that the invention attempts to solve]

上記のような従来のOMOS DRAMにおいては、電
源投入直後の過渡時にはVBB発生回路Iが未だ正常に
wAW@シておらず、p型基板(11は電気的に浮いた
状態にあり、接合容量Ojを介してVoaに結合されて
いるため、大きな過渡電流が流れる。
In the conventional OMOS DRAM as described above, during the transition immediately after power-on, the VBB generation circuit I is not yet normally activated, and the p-type substrate (11 is electrically floating, and the junction capacitance Oj Because it is coupled to Voa through , a large transient current flows.

この電流f:xOjとすると次式で表わされる。If this current f: xOj, it is expressed by the following equation.

IcJ<、 0j−−v・・・・・−曲・−・曲・曲−
・・(1式)即ち、過渡電流Icjは接合容量Ojが大
きい(メモリの集積度が高い)もの程、また、Vaoの
立上りが急峻な場合である程大きくなることが解る。
IcJ<, 0j−−v・・・・・・−song・−・song・song−
(Equation 1) That is, it can be seen that the transient current Icj becomes larger as the junction capacitance Oj becomes larger (the degree of integration of the memory is higher) and as the rise of Vao becomes steeper.

今、電源投入直後に上記(1式)に示す過渡電流がVo
o −Vaa間を流れると、p型基板+11の抵抗によ
る電圧降下を生じ、VBBは正の値に上昇することとな
る。
Immediately after the power is turned on, the transient current shown in equation 1 above is Vo.
When flowing between o and Vaa, a voltage drop occurs due to the resistance of the p-type substrate +11, and VBB increases to a positive value.

ところが、CMOS DRAMにおいては第3図に点線
で示すように、構造上、内部にpnp型のバーチカル・
トランジスタ(TRv)とnpn型のラテラル・トラン
ジスタ(TRりが寄生的に生じており、かつ、これら二
つのトランジスタ(TRv) 、  (TRL)が結合
されて第4図の等価回路図に示’f pnpn型のサイ
リスタ構造を構°成しているので、今、過渡電流Icj
がノードAを流れたとすると、先ずnウェル(2)部の
抵抗(R11)に電圧降下(1弓・Rn )を生じ、こ
れが上記ト・ラシリスタ(TRv)のベース・エミッタ
間の接触電位差をこえると、このトランジスタ(TRv
)は導通状態となり、そのコレクタ電流がP型基板(1
)の抵抗(Rp)を流れる。然して、この抵抗(Rp)
における電圧降下が大きくなると、同様にしてトランジ
スタ(TRりが導通状態となシ、そのコレクタ電流は抵
抗(九)を流れて電圧降下を生じ、トランジスタ(TR
v)は更に導通状態になる。
However, as shown by the dotted line in Figure 3, CMOS DRAM has a pnp vertical structure inside.
The transistor (TRv) and the npn-type lateral transistor (TR) are parasitic, and these two transistors (TRv) and (TRL) are combined to form the 'f' shown in the equivalent circuit diagram of Fig. 4. Since it has a pnpn type thyristor structure, now the transient current Icj
Flows through node A, first a voltage drop (1 arc·Rn) occurs in the resistor (R11) of the n-well (2) part, which exceeds the contact potential difference between the base and emitter of the transistor (TRv). And this transistor (TRv
) becomes conductive, and its collector current flows to the P-type substrate (1
) flows through the resistance (Rp). However, this resistance (Rp)
Similarly, when the voltage drop at the transistor (TR) becomes large, the collector current flows through the resistor (9), causing a voltage drop, and the transistor (TR) becomes conductive.
v) further becomes conductive.

このように、トランジスタ(TRv)と(TRL)は相
互に導通状態を維持するように動作しながら安定状態、
即ちVoo −Viaに過大な電流が流れ続けるラッチ
アップ現象に至る。
In this way, the transistors (TRv) and (TRL) operate in a stable state while maintaining mutual conduction.
In other words, a latch-up phenomenon occurs in which an excessive current continues to flow through Voo-Via.

この発明は上記のような従来の装置の問題点を解決する
ためになされたもので、電源投入時のラッチアップ現象
の発生を防止できるC MOS集積回路装置を得ること
を目的とする。
The present invention has been made to solve the problems of the conventional devices as described above, and an object of the present invention is to provide a CMOS integrated circuit device that can prevent the latch-up phenomenon from occurring when the power is turned on.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、CMOSメモリを形成した半導体基板に、
mlの基板電圧発生回路より基板電圧が印加されるもの
において、電源投入直後の過渡時に基板電圧を供給する
第2の基板電圧発生回路を設けて、この回路からも基板
電圧を印加できるように構成したものである。
This invention provides a semiconductor substrate on which a CMOS memory is formed.
In a device in which the substrate voltage is applied from a substrate voltage generation circuit of ml, a second substrate voltage generation circuit is provided to supply the substrate voltage during a transient period immediately after power is turned on, and the substrate voltage can also be applied from this circuit. This is what I did.

〔作用〕[Effect]

この発明におけるc uos集積回路装置では、電源投
入直後の一定時間、第2の基板電圧発生回路よりの基板
電圧を印加した役、$1の基板電圧発生回路よりの基板
電圧が印加されることになるので、該半導体基板が高電
位となることはなく、電源投入直後のラッチアップ現象
の発生が防止される。
In the cuos integrated circuit device according to the present invention, for a certain period of time immediately after the power is turned on, the substrate voltage from the $1 substrate voltage generation circuit is applied as well as the substrate voltage from the second substrate voltage generation circuit. Therefore, the semiconductor substrate does not have a high potential, and the latch-up phenomenon immediately after the power is turned on is prevented from occurring.

〔実施例〕〔Example〕

第1図は、この発明の一実施例におけるC MO8DR
AMの第2のvBB発生回路図、第2図はその動作時に
おける各端子及びノードNo、Nlにおける電圧の変化
を示す波形図である。
FIG. 1 shows a CMO8DR in an embodiment of the present invention.
The second vBB generation circuit diagram of AM, FIG. 2, is a waveform diagram showing changes in voltage at each terminal and nodes No and Nl during operation.

図において、[有]はp型基板(11の主平面近傍に形
成される第2のVB’B発生回路、@は第1の増幅用p
チャンネルMOSトランジスタ、■は第1の増幅用nチ
ャンネルMos トランジスタ、■は第2の増幅用Pチ
ャンネルMOSトランジスタ、同は第2の増幅用nチャ
ンネルトランジスタであり、LAOSトランジスタ(2
)と(ハ)及び(至)と面は、それぞれ第1&び第2の
CMOSインバータを構成している。(ハ)は基板接地
用nチャンネルMO8トランジスタ、(2!lIはMO
S型容量素子により形成される容量で、これによりMO
S )ランリスタ■の非導通開始時期が決定される。
In the figure, [Yes] indicates the second VB'B generation circuit formed near the main plane of the p-type substrate (11), and @ indicates the first amplifying p-type substrate (11).
channel MOS transistors, ■ is a first amplification n-channel MOS transistor, ■ is a second amplification P-channel MOS transistor, and is a second amplification n-channel transistor;
), (c), and (to) constitute first and second CMOS inverters, respectively. (c) is an n-channel MO8 transistor for substrate grounding, (2!lI is MO
A capacitor formed by an S-type capacitor, which allows MO
S) The non-conduction start time of the run lister ■ is determined.

なお、上記第2のVan発生回路のは、CMOSメモリ
が形成されたp型基板+11に前記第1のvBB発生回
路Iと共に形成されて、その第1のCMOSインバータ
の入力側及び!、qOB l−ランジスタ弼のドレイシ
側がp型基板111に接続され、端子翰にVaaが、端
子■にはVasが印加されている。
The second Van generation circuit is formed together with the first vBB generation circuit I on the p-type substrate +11 on which the CMOS memory is formed, and is formed on the input side of the first CMOS inverter and ! , qOB The transistor side of the transistor 2 is connected to the p-type substrate 111, and Vaa is applied to the terminal wire, and Vas is applied to the terminal (2).

第2図における(31)〜(39)は、動作波形図中の
各状態に対応するものである。
(31) to (39) in FIG. 2 correspond to each state in the operating waveform diagram.

以上のように構成されたO MOS DRAM K V
ooが投入されると、まずVoaが波形(31)に示す
ように立上り。すると、接合容量Ojによる過渡電流I
cjが流れてp型基板+11のvBBが波形(32)に
示すように正の方向へ上昇する。ところが、v!IBが
1Jos トランジスタ(至)のしきい値電圧を超える
と、第1のCMOSインバータの出力(ノードNo )
は波形(36)に示すように“L“レベルとなり、第2
のCMOSインバータの出力(ノードN1)は波形C3
7’)に示すように“°H゛レベルとなってMOS )
ランリスタ(28)は導通状態になる。このため、Vi
+iはViaに短絡されて波形(33)に示すようにO
Vへ引き戻される。
OMOS DRAM KV configured as above
When oo is turned on, Voa first rises as shown in waveform (31). Then, the transient current I due to the junction capacitance Oj
cj flows and vBB of the p-type substrate +11 rises in the positive direction as shown by the waveform (32). However, v! When IB exceeds the threshold voltage of the 1 Jos transistor (to), the output of the first CMOS inverter (node No.)
becomes “L” level as shown in waveform (36), and the second
The output of the CMOS inverter (node N1) is waveform C3
As shown in 7'), it becomes "°H" level and the MOS
The run lister (28) becomes conductive. For this reason, Vi
+i is shorted to Via and O as shown in waveform (33)
It is pulled back to V.

すると、9J1のCMOSインバータの出力(ノードN
o )波形(3B) K示すように°1H′ルベルとな
って第2のCMOSイ〉バークの出力(ノードNl )
をIIL11レベルへ引き戻そうとするが、容量(至)
の放電のため、ノードN1がVsaレベルへ戻るまでに
時間がかカリ、MOS ) 9 >リスタ(ハ)が非導
通となる時間が波形(39)に示すように遅延され、こ
の時間内においては、波形(34)に示すようにVBB
がOVを維持する。
Then, the output of the CMOS inverter of 9J1 (node N
o) Waveform (3B) As shown in K, the output of the second CMOS I>bark becomes °1H' level (node Nl)
I am trying to bring it back to the IIL11 level, but the capacity (total)
Due to the discharge of , VBB as shown in waveform (34)
maintains OV.

ノードN1がII L II°レベルまで下ってMOS
 トランジスタ(ハ)が非導通状讐になると、vBBは
、塾に正常な動作をしている第1のVBB発生回路Iの
電圧に波形(35)に示すように設定されることとなる
Node N1 drops to II L II ° level and MOS
When the transistor (c) becomes non-conductive, vBB is set to the voltage of the first VBB generating circuit I, which is operating normally, as shown in the waveform (35).

なお、上記実施例においては、CMOS DRAMを構
成する半導体基板に第1と第2のVB11発生回路を形
成したものを示したが、C! MOSスタチック形メモ
リ(CMOS SRAM )に形成されるものであって
も良く、また、nウェル形のo LAosの例を示した
が、pウェル形のCMOSの場合であっても良い。
In the above embodiment, the first and second VB11 generation circuits are formed on the semiconductor substrate constituting the CMOS DRAM, but C! It may be formed in a MOS static type memory (CMOS SRAM), and although an example of an n-well type o LAos has been shown, it may be formed in a p-well type CMOS.

艷に、第1と第20V@a発生回路は半導体基板の外に
形成するものであっても良く、同様の効果を奏すること
はいうまでもない。
In addition, the first and 20th V@a generation circuits may be formed outside the semiconductor substrate, and it goes without saying that similar effects can be achieved.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、電源投入直後の過渡時
に、第2の基板電圧発生回路より基板電圧を供給するこ
とにより、基板電位の上昇を防止し、ラッチアップ現象
を生じないOMO8集積回路装置が得られる効果がある
As explained above, the present invention provides an OMO8 integrated circuit device that prevents a rise in substrate potential and does not cause latch-up by supplying substrate voltage from the second substrate voltage generation circuit during a transient period immediately after power is turned on. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるO MO8集積回路
装置に形成される第2の基板電圧発生回路図、第2図は
その動作波形図、第3図は従来の第1の基板電圧発生回
路を内蔵し九〇 MOB DRAMの主要部構成の模式
図、%4図は%3図の構成におけるラッチアップ現象を
説明するための等価回路図である。 図において、(1)はp型シリコン半導体基板(p型基
板>、a’aはpチャシネルMO8)ランリスタ、0は
nチャシネルMO8)う〉リスタ、Iは第1の基板電圧
発生回路(第1のVow発生回路)、Q9はりングオッ
シレータ、μeはチャージポンプ用容量、αηはレベル
シフト回路用LAOSトラシリスタ、αaは整流用MO
Sトランジスタ、0は電源端子(Vcc端子)、@は接
地端子(Va8端子)、ノは第2の基板電圧発生回路(
第20VIIB発生回路) 、(241は第1の増幅用
pチャンネルIJiOSトラシリスタ、田は第1の増幅
用nチャンネルM08トランジスタ)■は第2の増幅用
pチャンネルMO8)ランリスタ、■は増幅用nチャン
ネルMO8)ランリスタ、(ハ)は基板設地用nチキン
ネルMoSトランジスタ、(至)は容量である。 なお、各図中同一符号は同−又は相当部分を示す・
FIG. 1 is a diagram of a second substrate voltage generation circuit formed in an OMO8 integrated circuit device according to an embodiment of the present invention, FIG. 2 is its operating waveform diagram, and FIG. 3 is a diagram of a conventional first substrate voltage generation circuit. %4 is an equivalent circuit diagram for explaining the latch-up phenomenon in the configuration of %3. In the figure, (1) is a p-type silicon semiconductor substrate (p-type substrate>, a'a is a p-channel channel MO8) run lister, 0 is an n-channel channel MO8) lister, and I is a first substrate voltage generation circuit (first (Vow generation circuit), Q9 is a ring oscillator, μe is a capacitor for charge pump, αη is a LAOS transistor for level shift circuit, αa is MO for rectification
S transistor, 0 is the power supply terminal (Vcc terminal), @ is the ground terminal (Va8 terminal), and ノ is the second substrate voltage generation circuit (
20th VIIB generation circuit), (241 is the first amplification p-channel IJiOS transistor, 2 is the first amplification n-channel M08 transistor) ■ is the second amplification p-channel MO8) run lister, ■ is the amplification n-channel MO8) Run lister, (c) is an n-channel MoS transistor for substrate installation, and (to) is the capacitance. In addition, the same symbols in each figure indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)CMOSメモリを構成する半導体基板に、第1の
基板電圧発生回路より基板電圧が印加されるCMOS集
積回路装置において、電源投入直後の過渡時に基板電圧
を印加する、第2の基板電圧発生回路を設けたことを特
徴とするCMOS集積回路装置。
(1) In a CMOS integrated circuit device in which a substrate voltage is applied from a first substrate voltage generation circuit to a semiconductor substrate constituting a CMOS memory, a second substrate voltage generation circuit applies the substrate voltage during a transient period immediately after power is turned on. A CMOS integrated circuit device characterized by being provided with a circuit.
(2)第2の基板電圧発生回路が、基板電圧をその入力
とするCMOSインバータと、該CMOSインバータの
出力をゲートの入力とし、半導体基板と接地端子間をバ
イアスするMOSトランジスタと、該MOSトランジス
タの非導通開始時期を決定する容量とを含んで成ること
を特徴とする特許請求の範囲第1項記載のCMOS集積
回路装置。
(2) The second substrate voltage generation circuit includes a CMOS inverter that receives the substrate voltage as its input, a MOS transistor that uses the output of the CMOS inverter as its gate input and biases between the semiconductor substrate and the ground terminal, and the MOS transistor. 2. The CMOS integrated circuit device according to claim 1, further comprising a capacitor for determining a non-conduction start time of the CMOS integrated circuit device.
JP62141835A 1987-06-05 1987-06-05 Cmos integrated circuit device Pending JPS63306594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62141835A JPS63306594A (en) 1987-06-05 1987-06-05 Cmos integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62141835A JPS63306594A (en) 1987-06-05 1987-06-05 Cmos integrated circuit device

Publications (1)

Publication Number Publication Date
JPS63306594A true JPS63306594A (en) 1988-12-14

Family

ID=15301244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62141835A Pending JPS63306594A (en) 1987-06-05 1987-06-05 Cmos integrated circuit device

Country Status (1)

Country Link
JP (1) JPS63306594A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4039524A1 (en) * 1990-04-06 1991-10-10 Mitsubishi Electric Corp Substrate bias generator arrangement - has dual generators for run=up of power and stable supply states
JPH08221980A (en) * 1995-02-15 1996-08-30 Nec Corp Bias voltage generation circuit
KR100439834B1 (en) * 1997-06-25 2004-10-26 삼성전자주식회사 CMOS Integrated Circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4039524A1 (en) * 1990-04-06 1991-10-10 Mitsubishi Electric Corp Substrate bias generator arrangement - has dual generators for run=up of power and stable supply states
US5304859A (en) * 1990-04-06 1994-04-19 Mitsubishi Denki Kabushiki Kaisha Substrate voltage generator and method therefor in a semiconductor device having internal stepped-down power supply voltage
US5315166A (en) * 1990-04-06 1994-05-24 Mitsubishi Denki Kabushiki Kaisha Substrate voltage generator and method therefor in a semiconductor device having selectively activated internal stepped-down power supply voltages
JPH08221980A (en) * 1995-02-15 1996-08-30 Nec Corp Bias voltage generation circuit
KR100439834B1 (en) * 1997-06-25 2004-10-26 삼성전자주식회사 CMOS Integrated Circuit

Similar Documents

Publication Publication Date Title
KR940003891B1 (en) Semiconductor memory device having an arrangement for preventing operational errors
JP3550197B2 (en) Voltage booster circuit for semiconductor memory device
JPH0462868A (en) Substrate bias generation circuit
JP2710113B2 (en) Integrated circuits using complementary circuit technology
JPH10303311A (en) Negative electric charge pump
US6621327B2 (en) Substrate voltage selection circuit
JPH08181598A (en) Semiconductor device
JPH03231455A (en) Semiconductor integrated circuit
JPS63279491A (en) Semiconductor dynamic ram
JP3970414B2 (en) Back bias generator for semiconductor devices
JPH06325569A (en) Middle voltage generating circuit for semiconductor integrated circuit
JPH03232269A (en) Input circuit of semiconductor device
JPS63306594A (en) Cmos integrated circuit device
US20200220532A1 (en) Circuit for preventing latch-up and integrated circuit
JP3499578B2 (en) Semiconductor integrated circuit
JPH044755B2 (en)
JP2613579B2 (en) Generator circuit in integrated semiconductor circuit
JP2906148B2 (en) Semiconductor integrated circuit
KR930005977B1 (en) Semiconductor device having an arrangement for preventing operational errors
US5313111A (en) Substrate slew circuit providing reduced electron injection
JP3190501B2 (en) Semiconductor integrated circuit device
JP2979716B2 (en) CMOS integrated circuit
JPH09102609A (en) Semiconductor device
JPS63306593A (en) Cmos integrated circuit device
JPS5951750B2 (en) Substrate bias generation circuit