JPS63305616A - Signal level conversion circuit - Google Patents

Signal level conversion circuit

Info

Publication number
JPS63305616A
JPS63305616A JP62142447A JP14244787A JPS63305616A JP S63305616 A JPS63305616 A JP S63305616A JP 62142447 A JP62142447 A JP 62142447A JP 14244787 A JP14244787 A JP 14244787A JP S63305616 A JPS63305616 A JP S63305616A
Authority
JP
Japan
Prior art keywords
level signal
voltage
power supply
ttl
mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62142447A
Other languages
Japanese (ja)
Inventor
Masataka Wakamatsu
正孝 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62142447A priority Critical patent/JPS63305616A/en
Publication of JPS63305616A publication Critical patent/JPS63305616A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To convert a TTL level signal in an excellent way into a CMOS level signal by stepping down the voltage of the 1st stage circuit receiving the TTL level signal and operating it at a constant voltage while using a voltage drop circuit for an external power voltage. CONSTITUTION:The source of a MOS FET 10 is connected to a power terminal 4 receiving an external power voltage of, e.g., 6V, the source of the MOS FET 11 is connected to ground and a CMOS level signal output terminal 5 is led out of the connecting point between the drains of the MOSFETs 10, 11 and the CMOS level signal obtained at the CMOS level signal output terminal 5 is fed to a memory of a MOS LIS or the like. Since a power voltage of 3V or a groundlevel is obtained at the output of the 1st stage inverter circuits 6, 7 independently of the fluctuation of the power voltage normally, the CMOS level signal in response to the TTL level signal fed to the TTL level input terminal 1 is obtained at the CMOS level signal output terminal 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はTTL()ランジスタ・トランジスタロジック
)より成る制御回路等よりの制御信号、アドレス信号、
データ信号等即ちTTLレベル信号を例えばMOS L
SIにより構成されたメモリ等に供給する為にCMOS
レベル信号に変換する信号レベル変換回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides control signals, address signals,
Data signals, etc., ie TTL level signals, for example, MOS L
CMOS to supply memory etc. configured by SI
The present invention relates to a signal level conversion circuit that converts into a level signal.

〔発明の概要〕[Summary of the invention]

本発明はTTLより成る制御回路等よりの制御信号、ア
ドレス信号、−データ信号等のTTLレベル信号を例え
ばMOS LSIにより構成されたメモリ等に供給する
為にCMOSレベル信号に変換する信号レベル変換回路
に於いて、このTTLレベル信号が供給される初段回路
を外部電源電圧を電圧降圧回路にて降圧した定電圧で動
作させる様にすることにより、外部電源電圧の変動やM
OS LSIのチップ内部の接地線の電圧上昇に係りな
く、TTLレベル信号をCMOSレベル信号に良好に変
換することができる様にしたものである。
The present invention is a signal level conversion circuit that converts TTL level signals such as control signals, address signals, -data signals, etc. from a TTL control circuit into CMOS level signals in order to supply them to a memory configured by MOS LSI, etc. By operating the first stage circuit to which this TTL level signal is supplied with a constant voltage obtained by lowering the external power supply voltage using a voltage step-down circuit, fluctuations in the external power supply voltage and M
This allows a TTL level signal to be converted into a CMOS level signal without regard to the voltage rise of the ground line inside the OS LSI chip.

〔従来の技術〕[Conventional technology]

一般にMOS LSIはTTLコンパチフ゛ルであるの
で、TTLより成る制御回路等よりの制御信号、アドレ
ス信号、データ信号即ちTTLレベル信号をMOS L
SIにより構成されたメモリ等に供給するに、このTT
Lレベル信号をCMOSレベル信号にレベル変換する必
要がある。ここで°TTLレベル信号のハイレベル信号
“1”は2.4v以上であり、このローレベル信号“0
°は0.8v以下で、CMOSレベル信号のハイレベル
信号“l”は電源電圧であり、このローレベル信号“0
”は接地電位である。
Generally, MOS LSI is TTL compatible, so control signals, address signals, data signals, that is, TTL level signals from a control circuit made of TTL, etc. are transferred to MOS LSI.
This TT is used to supply memory etc. configured by SI.
It is necessary to convert the level of the L level signal into a CMOS level signal. Here, the high level signal “1” of the TTL level signal is 2.4V or more, and this low level signal “0”
° is 0.8V or less, the high level signal “l” of the CMOS level signal is the power supply voltage, and this low level signal “0
” is the ground potential.

従来このTTLレベル信号をCMOSレベル信号に変換
する信号レベル変換回路として第5図に示す如きインバ
ータ回路が使用されていた。叩ち第5図に於いて、fi
lはTTLレベル信号が供給されるTTLレベル信号入
力端子を示し、このTTLレベル信号入力端子+11を
PチャンネルMO5電界効果トランジスタ(MOS F
ET ) f2)及びNチャンネルMOS電界効果トラ
ンジスタ(MOS FEET ) (31の夫々のゲー
トに接続し、このMOS FET +21のソースを正
の直流電圧例えば6Vが供給される電源端子(4)に接
続し、MOS FET +31のソースを接地し、この
MOS FET (21及び(3)の夫々のドレインを
互いに接続し、このドレインの互いの接続点よりCMO
Sレベル信号を出力するCMOSレベル信号出力端子(
5)を導出する。斯る第5図に於いてPチャンネルMO
5FET +21のチャンネル幅を6μm、チャンネル
長を 1.4μ−とし、NチャンネルMOS FET 
(31のチャンネル幅を18μm、チャンネル長を1.
2μmとしたとき、電源端子(4)に供給される電源電
圧VCCと論理しきい値との関係は第6図に示す如く、
例えば電源電圧Vccが6■のときは論理しきい値は1
.75Vとなり電源電圧Vccが5■のときは論理しき
い値は1.55Vである。
Conventionally, an inverter circuit as shown in FIG. 5 has been used as a signal level conversion circuit for converting this TTL level signal into a CMOS level signal. In Figure 5, fi
l indicates a TTL level signal input terminal to which a TTL level signal is supplied, and this TTL level signal input terminal +11 is connected to a P-channel MO5 field effect transistor (MOSF
ET) f2) and an N-channel MOS field effect transistor (MOS FEET) (31), and the source of this MOS FET +21 is connected to a power supply terminal (4) to which a positive DC voltage, for example 6V, is supplied. , the source of MOS FET +31 is grounded, the respective drains of this MOS FET (21 and (3)) are connected to each other, and the CMO
CMOS level signal output terminal that outputs an S level signal (
5) is derived. In such FIG. 5, P channel MO
5FET +21 channel width is 6μm, channel length is 1.4μ-, N channel MOS FET
(The channel width of 31 is 18 μm, the channel length is 1.
When it is 2 μm, the relationship between the power supply voltage VCC supplied to the power supply terminal (4) and the logic threshold is as shown in FIG.
For example, when the power supply voltage Vcc is 6■, the logic threshold is 1
.. 75V, and when the power supply voltage Vcc is 5.5V, the logic threshold value is 1.55V.

従って電源電圧Vccが6■のときにTTLレベル信号
入力端子(11に供給されるTTLレベル信号が2.4
v以上のハイレベル信号“1”のときはMOS FET
(2)はオフとなりMOS FET (3)はオンとな
るのでCMOSレベル信号出力端子(5)には接地電位
のCMOSレベル信号のローレベル信号″0″が得られ
、TTLレベル信号が0.8V以下のローレベル信号“
0”のときはMOS PET (21はオンとなり、M
OS FET (31はオフとなるのでこのCMOSレ
ベル信号出力端子(5)には6Vの電源電圧Vccが得
られ、CMOSレベル信号のハイレベル信号“1”が得
られる。
Therefore, when the power supply voltage Vcc is 6cm, the TTL level signal supplied to the TTL level signal input terminal (11) is 2.4cm.
When the high level signal “1” is higher than v, the MOS FET
(2) is turned off and MOS FET (3) is turned on, so the low level signal "0" of the CMOS level signal at the ground potential is obtained at the CMOS level signal output terminal (5), and the TTL level signal is 0.8V. The following low level signal “
0”, MOS PET (21 is on, M
Since the OS FET (31) is turned off, a power supply voltage Vcc of 6V is obtained at this CMOS level signal output terminal (5), and a high level signal "1" of the CMOS level signal is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

斯る第5図に示す如き信号レベル変換回路を使用したM
OS LSIに於いてDRAMのセンスアンプ動作や多
ビツト構成のSRAM、 ROMのローレベル信号“0
”の出力時に接地線に大きな電流が流れ込みリードフレ
ームのインダクタンスにより逆起電力が生じチップ内に
接地レベルが上昇することがあり、例えば電源電圧Vc
cが6■で動作中にチップ内接地レベルがIV上昇した
ときは、このチップ内の電源電圧は5Vになるので、こ
のときのこの信号レベル変換回路の論理しきい値は第6
図に示す如< 1.55Vとなるが、このチップの外部
から見ると接地レベルがIV上昇しているので、この論
理しきい値は2.55Vとなり、TTLレベル信号のハ
イレベル信号“1”の電圧2.4v以上より高くなるこ
ととなり、正確なTTLレベル信号−CMOSレベル信
号の信号レベル変換ができな(なる不都合があった。ま
た第5図従来例に於いては電源電圧Vccの変動により
TTLレベル信号とのマージンが変動し、小さくなる方
向に変動したときにはこのマージンが5区ケする不都合
があった。
M using a signal level conversion circuit as shown in FIG.
In OS LSI, DRAM sense amplifier operation, multi-bit SRAM, ROM low level signal “0”
When outputting ", a large current flows into the ground wire and a back electromotive force is generated due to the inductance of the lead frame, which may increase the ground level within the chip. For example, when the power supply voltage Vc
When c is 6■ and the internal ground level of the chip rises by IV during operation, the power supply voltage within this chip becomes 5V, so the logic threshold of this signal level conversion circuit at this time is the 6th
As shown in the figure, < 1.55V, but as seen from the outside of this chip, the ground level has risen by IV, so this logical threshold becomes 2.55V, and the high level signal "1" of the TTL level signal The voltage becomes higher than 2.4V, making it impossible to accurately convert the signal level between the TTL level signal and the CMOS level signal.Also, in the conventional example shown in FIG. As a result, the margin with respect to the TTL level signal fluctuates, and when it fluctuates in the direction of decreasing, there is a problem that this margin becomes five sections.

本発明は斯る点に鑑み外部電源電圧の変動やMOS L
SIのチップ内部の接地線の電圧上昇に係りなく、TT
Lレベル信号をCMOSレベル信号に良好に変換するこ
とができるようにすることを目的とする。
In view of this, the present invention has been developed to reduce fluctuations in external power supply voltage and MOS L
Regardless of the voltage rise of the ground wire inside the SI chip, TT
It is an object of the present invention to enable good conversion of an L level signal to a CMOS level signal.

(問題点を解決するための手段〕 本発明信号レベル変換回路は例えば第1図に示す如< 
TTLレベル信号をCMOSレベル信号に変換する信号
レベル変換回路に於いて、このTTLレベル信号が供給
される初段回路(61(71を外部電源電圧Vccを電
圧降圧回路(8)にて降圧した定電圧で動作させる様に
したものである。
(Means for Solving the Problems) The signal level conversion circuit of the present invention is, for example, as shown in FIG.
In the signal level conversion circuit that converts a TTL level signal into a CMOS level signal, the first stage circuit (61 (71) to which this TTL level signal is supplied is a constant voltage obtained by lowering the external power supply voltage Vcc by a voltage step-down circuit (8) This is how it works.

〔作用〕[Effect]

本発明に依れば初段回路(61(7]を電圧降下回路(
8)にて降圧した定電圧例えば3vで動作させるので、
外部電源電圧Vccの変動に関係なく論理しきい値は例
えば1.5Vで一定であり、TTLレベル信号とのマー
ジンは常に一定となる。
According to the present invention, the first stage circuit (61(7)) is replaced by the voltage drop circuit (61(7)).
Since it is operated at a constant voltage, for example 3V, which is stepped down in step 8),
The logic threshold is constant at 1.5V, for example, regardless of fluctuations in the external power supply voltage Vcc, and the margin with the TTL level signal is always constant.

また本発明に於いては外部電源電圧Vccを例えば6■
とし、この電圧降圧回路(8)の降圧定電圧を例えば3
■としたときに於いてチップ内の接地レベルが例えば1
■上昇したときは、初段回路(61(7)の電源電圧は
2Vとなり、従ってチップ内部からみた論理しきい値は
第4図に示す如<IVとなり、外部から見たこの論理し
きい値は接地レベルの上昇分の1vが加算された2vと
なるがこれはTTLレベル信号のハイレベル信号“1″
の2.4v以上とローレベル信号“0゛の0.8v以下
とを正確に判別することができ、このときの初段回路の
出力信号は接地レベルか、2vとなるかこの2段目を例
えば第5図に示す如きインバータ回路で構成したときは
このときは電源電圧Vccが5vとなったことになるが
、このときのこの論理しきい値は第6図に示す如< 1
.55Vであり、良好なcnosレベル信号を得ること
ができる。
Further, in the present invention, the external power supply voltage Vcc is set to 6.
For example, the step-down constant voltage of this voltage step-down circuit (8) is 3
■When the ground level inside the chip is, for example, 1
■When the voltage rises, the power supply voltage of the first stage circuit (61 (7)) becomes 2V, so the logic threshold value seen from inside the chip becomes <IV as shown in Figure 4, and this logic threshold value seen from the outside becomes The 1v increase in the ground level is added to give 2v, which is the high level signal “1” of the TTL level signal.
It is possible to accurately distinguish between 2.4V or more of ``0'' and 0.8V or less of low level signal ``0'', and in this case, the output signal of the first stage circuit is either ground level or 2V. When configured with an inverter circuit as shown in FIG. 5, the power supply voltage Vcc becomes 5V, but the logical threshold value at this time is < 1 as shown in FIG.
.. The voltage is 55V, and a good CNOS level signal can be obtained.

〔実施例〕〔Example〕

以下第1図を参照しながら本発明信号レベル変換回路の
一実施例につき説明しよう、この第1図に於いて第5図
に対応する部分には同一符号を付しその詳細説明は省略
する。
An embodiment of the signal level conversion circuit of the present invention will be described below with reference to FIG. 1. In FIG. 1, parts corresponding to those in FIG. 5 are given the same reference numerals, and detailed explanation thereof will be omitted.

第11!1例に於いてはTTLより成る制御回路等より
の制御信号、アドレス信号、データ信号等のTTLレベ
ル信号をTTLレベル信号入力端子(1)に供給する様
にしこのTTLレベル信号入力端子(1)をインバータ
回路を構成するPチャンネルMOS FBT (6)及
びNチャンネルMOS FET (71の夫々のゲート
に接続し、このMOS FET (6)のソースを電圧
降圧回路(8)の出力側に接続する。この電圧降圧回路
(8)は電源端子(4)に供給される外部電源電圧Vc
c例えば6vを降圧して例えば3vの定電圧を出力する
如く構成したものである。この電圧降圧回路(8)の例
としては第2図に示す如きものがある。F!pち第2図
に於いて、(8a)及び(8b)は夫々PチャンネルM
OS PETを示し、このMOS PET  <88>
及び(8b)の夫々のソースを互いに接続し、この接続
点を例えば6■の外部電源電圧Vccが供給される電源
端子(4)に接続し、このMOS FET  (8a)
及び(8b)の夫々のドレインをNチャンネル?IOS
 FET  (8c)及び(8d)の夫々のドレインに
接続し、このMOS FIET  (8c)及び(8d
)の夫々のソースを互いに接続し、この接続点を接地し
、このMOS FET  (8c)及び(8d)の夫々
のゲートを互いに接続し、このゲートの接続点ヲMO5
PET  (8d)のドレインに接続し、またMOS 
FIET  (8a)のゲートに例えば3Vの基準電圧
が得られる基準電圧源(9)を接続し、MOS PET
  (8a)及び(8c)の夫々のドレインの接続点を
pチャンネルMOS FIET  (8e)のゲートに
接続し、このMOSFET  (8e)のソースを電源
端子(4)に接続し、このMOS FIET  (8b
)のゲートとMOS PET  (8e)のドレインと
の接続点より出力端子(8f)を導出する。
In the 11th!1 example, TTL level signals such as control signals, address signals, data signals, etc. from a control circuit made of TTL are supplied to the TTL level signal input terminal (1). (1) is connected to the respective gates of the P-channel MOS FBT (6) and N-channel MOS FET (71) that constitute the inverter circuit, and the source of this MOS FET (6) is connected to the output side of the voltage step-down circuit (8). This voltage step-down circuit (8) is connected to the external power supply voltage Vc supplied to the power supply terminal (4).
c It is configured to step down the voltage of, for example, 6V and output a constant voltage of, for example, 3V. An example of this voltage step-down circuit (8) is shown in FIG. F! In Fig. 2, (8a) and (8b) are respectively P channel M.
Indicates OS PET, and this MOS PET <88>
and (8b) are connected to each other, and this connection point is connected to a power supply terminal (4) to which an external power supply voltage Vcc of, for example, 6■ is supplied, and this MOS FET (8a)
And (8b) each drain is N channel? IOS
Connected to the respective drains of FETs (8c) and (8d), and connected to the drains of these MOS FIETs (8c) and (8d).
) are connected to each other, this connection point is grounded, each gate of this MOS FET (8c) and (8d) is connected to each other, and the connection point of this gate is connected to MO5.
Connected to the drain of PET (8d) and also connected to the MOS
A reference voltage source (9) from which a reference voltage of 3V can be obtained, for example, is connected to the gate of the FIET (8a), and the MOS PET
The connection point of each drain of (8a) and (8c) is connected to the gate of p channel MOS FIET (8e), the source of this MOSFET (8e) is connected to the power supply terminal (4), and the connection point of this MOS FIET (8b) is connected to the gate of p-channel MOS FIET (8e).
) and the drain of the MOS PET (8e) lead out the output terminal (8f).

断る第2図回路に於いては出力端子(8f)に得られる
出力電圧は第3図に示す如(基準電圧源(9)の基準電
圧例えば3vに依存し、接地レベルや電源電圧には左右
されない外部電源電圧Vccが降圧された例えば3vの
定電圧が得られる。
In the circuit shown in Figure 2, the output voltage obtained at the output terminal (8f) depends on the reference voltage of the reference voltage source (9), for example 3V, as shown in Figure 3, and is independent of the ground level and power supply voltage. A constant voltage of, for example, 3V is obtained by stepping down the external power supply voltage Vcc that is not used.

また本例に於いてはMOS F[!?(7)のソースを
接地し、このMOS FET 16>及び(7)の夫々
のドレインを互いに接続し、このドレインの接続点を第
5図と同様の構成のインバータ回路を構成するPチャン
ネル1、MOS PET  (10)及びNチャ7ネ7
1.MOS FIT  (11)の夫々のゲートに接続
する。この場合Pチャンネル80SPf!T (6)の
チャンネル幅を12μm、チャンネル長を1.4μ−と
し、NチャンネルMOS FBT(7)のチャンネル幅
を6μm、チャンネル長を1.2v輪としたとき、この
MOS IQ!T (6)及び(7)が構成するインバ
ータ回路の電源電圧と論理しきい値との関係は第4図に
示す如く例えば電源電圧が3vのときは論理しきい値は
1.5vであり、電源電圧が2vのときは論理しきい値
は1vである。
Also, in this example, MOS F[! ? The source of (7) is grounded, the respective drains of this MOS FET 16> and (7) are connected to each other, and the connection point of these drains is connected to the P channel 1, which constitutes an inverter circuit having the same configuration as that shown in FIG. MOS PET (10) and N channel 7
1. Connect to each gate of MOS FIT (11). In this case, P channel 80SPf! When the channel width of T (6) is 12 μm and the channel length is 1.4 μ-, and the channel width of N-channel MOS FBT (7) is 6 μm and the channel length is 1.2 V, this MOS IQ! The relationship between the power supply voltage and the logic threshold of the inverter circuit constituted by T (6) and (7) is shown in FIG. 4. For example, when the power supply voltage is 3V, the logic threshold is 1.5V. When the power supply voltage is 2V, the logic threshold is 1V.

このtfO5PET  (10)のソースを例えば6v
の外部電源電圧が供給される電源端子(4)に接続し、
こノMO5FIET  (11) (7)’/−2を接
地し、このMOS PET(10)及び(11)の夫々
のドレインの互いの接続点よりCMOSレベル信号出力
端子(5)を導出し、このCMOSレベル信号出力端子
(5)に得られるCMOSレベル信号をMOS LSI
のメモリ等に供給する如(する。
For example, set the source of this tfO5PET (10) to 6v.
Connect to the power terminal (4) to which external power supply voltage is supplied,
This MO5FIET (11) (7)'/-2 is grounded, and the CMOS level signal output terminal (5) is derived from the connection point of the respective drains of this MOS PET (10) and (11). The CMOS level signal obtained at the CMOS level signal output terminal (5) is output to the MOS LSI.
such as supplying it to the memory, etc.

このMOS FIET  (10)及び(11)より構
成されるイ  。
I is composed of these MOS FIETs (10) and (11).

ンバータ回路の電源電圧と論理しきい値との関係は第6
図に示す如くである。
The relationship between the power supply voltage of the inverter circuit and the logic threshold is shown in the sixth
As shown in the figure.

本例は上述の如く初段のインバータ回路(6)(7)を
電圧降圧回路(8)にて降圧した定電圧例えば3vで動
作させるので、外部電源電圧Vccの変動に関係なく、
論理しきい値は例えば1.5■で一定であり、TTLレ
ベル信号とのマージンは常に一定となる。
In this example, as described above, the first-stage inverter circuits (6) and (7) are operated at a constant voltage, for example, 3V, which is stepped down by the voltage step-down circuit (8), so regardless of fluctuations in the external power supply voltage Vcc,
The logic threshold value is constant, for example, 1.5■, and the margin with respect to the TTL level signal is always constant.

従って、通常時は電源電圧の変動に関係なくこの初段の
インバータ回路(61(7)の出力側は3■の電源電圧
か接地レベルかが得られるので2段目のインバータ回路
(10)  (11)の出力端子であるCMOSレベル
信号出力端子(5)にはTTLレベル入力端子(1)に
供給されるTTLレベル信号に応じたC間Sレベル信号
が得られる。
Therefore, under normal conditions, the output side of the first stage inverter circuit (61 (7)) can obtain either the power supply voltage of 3■ or the ground level, regardless of fluctuations in the power supply voltage, so the second stage inverter circuit (10) (11 ), a C-to-C S level signal corresponding to the TTL level signal supplied to the TTL level input terminal (1) is obtained at the CMOS level signal output terminal (5) which is the output terminal of the CMOS level signal output terminal (5).

また本例に於いては外部電源電圧Vccを例えば6Vと
し、この電圧降圧回路(8)の降圧定電圧を例えば3v
としたときに於いて、チップ内の接地レベルが例えば1
■上昇したときは、初段インバータ回路[6) (71
の電源電圧は2■となり、従ってチップ内部から見た論
理しきい値は第4図に示す如く1vとなり、外部即ちT
TL側から見たこの論理しきい値は第4図に示す如くこ
の接地レベルの上昇分の1■が加算された2■となるが
、これは↑TLレベル信号のハイレベル信号“1 ” 
 2.4V以上とローレベル信号“0” 0.8v以下
とを正確に判別することができる。このときこのインバ
ータ回路(61(71の出力側には接地レベルか2Vの
電源電圧が得られ、これが2段目のインバータ回路(1
0)(11)に供給され、このときは、二のインバータ
回路(10)  (11)の電源電圧Vccは5vとな
ったことになるが、このときのこの論理しきい値は第6
図に示す如< 1.55Vであり、この接地レベルの上
昇に係りなく TTLレベル信号入力端子(1)に供給
されるTTLレベル信号に対応したCMOSレベル信号
を得ることができる。
Further, in this example, the external power supply voltage Vcc is set to, for example, 6V, and the step-down constant voltage of this voltage step-down circuit (8) is set to, for example, 3V.
When the ground level inside the chip is, for example, 1
■When the rise occurs, the first stage inverter circuit [6] (71
The power supply voltage of
As shown in Figure 4, this logical threshold value seen from the TL side becomes 2■, which is the sum of 1■ the increase in the ground level, but this is equal to the high level signal "1" of the ↑TL level signal.
It is possible to accurately discriminate between 2.4V or higher and a low level signal "0" of 0.8V or lower. At this time, a ground level or 2V power supply voltage is obtained on the output side of this inverter circuit (61 (71), and this is the second stage inverter circuit (1
0) (11), and at this time, the power supply voltage Vcc of the second inverter circuit (10) (11) is 5V, but this logic threshold at this time is
As shown in the figure, the CMOS level signal corresponding to the TTL level signal supplied to the TTL level signal input terminal (1) can be obtained regardless of the rise in the ground level.

また本例に於いては電圧降圧回路(8)の出力電圧を初
段のインバータ回路(6) (71のみ供給するためこ
の電圧降圧回路(8)の電流供給能力は極く小さくてい
いので、その設計、レイアウトは困難はなく、サイズも
小さくてよくチップサイズの増大はほとんどない。
In addition, in this example, since the output voltage of the voltage step-down circuit (8) is supplied only to the first-stage inverter circuit (6) (71), the current supply capacity of this voltage step-down circuit (8) may be extremely small. Design and layout are not difficult, and the size is small, with almost no increase in chip size.

向上述実施例に於いては初段回路をインバータ回路(6
1(7) トL タが、コノ化わりニNOR回路、NA
ND回路、クロックドインバータ回路等を同様にして用
いることができることは容易に理解できよう。
In the improved embodiment, the first stage circuit is an inverter circuit (6
1 (7) NOR circuit, NA
It is easy to understand that ND circuits, clocked inverter circuits, etc. can be used in the same way.

また本発明は上述実施例に限ることなく本発明の要旨を
逸脱することなく、その他種々の構成が取り得ることは
勿論である。
Further, the present invention is not limited to the above-described embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明に依れば外部電源電圧の変動やMOS LSIの
チップ内部の接地レベルの上昇に係りなく、TTLレベ
ル信号をCMOSレベル信号に良好に変換することがで
きる利益がある。
According to the present invention, there is an advantage that a TTL level signal can be successfully converted into a CMOS level signal regardless of fluctuations in the external power supply voltage or increases in the ground level inside the MOS LSI chip.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明信号レベル変換回路の一実施例を示す構
成図、第2図は電圧降圧回路の例を示す接続図、第3図
、第4図及び第6図は本発明の説明に供する線図、第5
図は従来の信号レベル変換回路の例を示す構成図である
。 (1)はTTLレベル信号入力端子、(4)は電源端子
、(5)はC?IOSレベル信号出力端子、(6)及び
(7)はインバータ回路を構成するMOS FET 、
+81は電圧降圧回路である。 本糞明ji9LsL炎5(回鋒句1デ1第1因 電圧降圧−回kqイ列 第2図 電涯電圧Vcc 第3図 第4図 第5図 電環電JE Vcc 第8図
FIG. 1 is a block diagram showing an embodiment of the signal level conversion circuit of the present invention, FIG. 2 is a connection diagram showing an example of a voltage step-down circuit, and FIGS. 3, 4, and 6 are for explaining the present invention. Diagram provided, No. 5
The figure is a configuration diagram showing an example of a conventional signal level conversion circuit. (1) is TTL level signal input terminal, (4) is power supply terminal, (5) is C? IOS level signal output terminal, (6) and (7) are MOS FETs forming an inverter circuit,
+81 is a voltage step-down circuit. Main article ming ji9LsL flame 5 (circulation phrase 1 de 1 1st factor voltage drop - kq i column 2 figure 2 electric wire voltage Vcc figure 3 figure 4 figure 5 electric ring electric JE Vcc figure 8

Claims (1)

【特許請求の範囲】[Claims] TTLレベル信号をCMOSレベル信号に変換する信号
レベル変換回路に於いて、上記TTLレベル信号が供給
される初段回路を外部電源電圧を電圧降圧回路にて降圧
した定電圧で動作させる様にしたことを特徴とする信号
レベル変換回路。
In a signal level conversion circuit that converts a TTL level signal into a CMOS level signal, the first stage circuit to which the TTL level signal is supplied is operated with a constant voltage obtained by lowering the external power supply voltage using a voltage step-down circuit. Features a signal level conversion circuit.
JP62142447A 1987-06-08 1987-06-08 Signal level conversion circuit Pending JPS63305616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62142447A JPS63305616A (en) 1987-06-08 1987-06-08 Signal level conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62142447A JPS63305616A (en) 1987-06-08 1987-06-08 Signal level conversion circuit

Publications (1)

Publication Number Publication Date
JPS63305616A true JPS63305616A (en) 1988-12-13

Family

ID=15315522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62142447A Pending JPS63305616A (en) 1987-06-08 1987-06-08 Signal level conversion circuit

Country Status (1)

Country Link
JP (1) JPS63305616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260160A (en) * 1988-08-26 1990-02-28 Hitachi Ltd Complementary mos integrated circuit and electronic device, electronic computer, and memory device using the same
JPH04351791A (en) * 1991-05-24 1992-12-07 Samsung Electron Co Ltd Data input buffer for semiconductor memory device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116817A (en) * 1981-12-21 1983-07-12 モトロ−ラ・インコ−ポレ−テツド Ttl-c-mos input buffer
JPS62142416A (en) * 1985-09-19 1987-06-25 エキシリンク,インコ−ポレイテツド Ttl/cmos applicable input buffer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116817A (en) * 1981-12-21 1983-07-12 モトロ−ラ・インコ−ポレ−テツド Ttl-c-mos input buffer
JPS62142416A (en) * 1985-09-19 1987-06-25 エキシリンク,インコ−ポレイテツド Ttl/cmos applicable input buffer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260160A (en) * 1988-08-26 1990-02-28 Hitachi Ltd Complementary mos integrated circuit and electronic device, electronic computer, and memory device using the same
JPH04351791A (en) * 1991-05-24 1992-12-07 Samsung Electron Co Ltd Data input buffer for semiconductor memory device

Similar Documents

Publication Publication Date Title
US5521547A (en) Boost voltage generating circuit
US4612462A (en) Logic circuit having voltage booster
JP2549743B2 (en) Output circuit
JP2758259B2 (en) Buffer circuit
JP3123463B2 (en) Level conversion circuit
US6977523B2 (en) Voltage level shifting circuit
US6084459A (en) Voltage level shifting circuit
JPH0436606B2 (en)
JPH0728207B2 (en) CMOS drive circuit
JP3760104B2 (en) Boost voltage generator
JPS63305616A (en) Signal level conversion circuit
US6456122B1 (en) Input buffer circuit for transforming pseudo differential signals into full differential signals
JPH04341009A (en) Semiconductor integrated circuit device
JP2654275B2 (en) Bidirectional buffer
US20070052468A1 (en) Shift down level shifter
JP3586985B2 (en) Output circuit of semiconductor device
KR960010572B1 (en) Data output buffer using level converter circuit
JP3055505B2 (en) Level conversion circuit
JP3170923B2 (en) Semiconductor integrated circuit
JP2000209056A (en) Mos operational amplifier with differential pair protecting function
JPH06197001A (en) Level conversion circuit
JPH02273393A (en) Boosting signal generating circuit
JPH07122991A (en) Switching step
JP3711075B2 (en) Output buffer circuit and input / output buffer circuit
JP2002300024A (en) Booster circuit