JPS63305580A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS63305580A
JPS63305580A JP14010487A JP14010487A JPS63305580A JP S63305580 A JPS63305580 A JP S63305580A JP 14010487 A JP14010487 A JP 14010487A JP 14010487 A JP14010487 A JP 14010487A JP S63305580 A JPS63305580 A JP S63305580A
Authority
JP
Japan
Prior art keywords
semiconductor laser
active layer
optical
shape
output end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14010487A
Other languages
Japanese (ja)
Inventor
Hiroo Ukita
宏生 浮田
Yuji Uenishi
祐司 上西
Yoshihiro Isomura
磯村 嘉伯
Tomoyuki Toshima
戸島 知之
Keisuke Mise
三瀬 啓介
Renji Sawada
沢田 廉士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14010487A priority Critical patent/JPS63305580A/en
Priority to US07/097,560 priority patent/US4860276A/en
Priority to NL8702237A priority patent/NL192804C/en
Publication of JPS63305580A publication Critical patent/JPS63305580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve recording density of an optical recording and reproducing device, by forming insulation grooves on both sides of a current narrowing electrode in the vicinity of at least one side of output terminal planes so that they range from an upper surface of a semiconductor laser to a position beyond its active layer. CONSTITUTION:Insulation grooves 14 are manufactured on both sides of a current narrowing electrode 7 in the vicinity of a forward output terminal plane 10 so that they range from the forward output terminal plane 10 to a position beyond an active layer 4, that is, in so depth that they attain to a substrate 2 from an electrode 12. Further, they are provided with fine processing by a reactive ion beam sputtering method so that they attain to both sides of the semiconductor laser 1. Hence, a spot of beams running parallel to the active layer 4 can be compressed to be 1mum or so, and also recording density of an optical and reproducing device can be upgraded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ビーム収束機能を有し、光記録再生装置等
に使用される半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser having a light beam focusing function and used in optical recording/reproducing devices and the like.

(従来の技術) 従来、この種の半導体レーザは第2図に示す構造になっ
ており、図中、1は半導体レーザ、2は基板、3は下ク
ラッド層、4は活性層、5は上クラッド層、10は前方
出力端面である。第2図において、光スポットAの形状
は前方出力端重工0近傍では、活性層4に平行方向Wp
が活性層4に垂直方向Wsより大きく、軸比2.5:l
程度になっていた。このため、従来の光ヘッドでは整形
プリズムにより光スポットを円形にして使用していた。
(Prior Art) Conventionally, this type of semiconductor laser has a structure as shown in FIG. 2, in which 1 is a semiconductor laser, 2 is a substrate, 3 is a lower cladding layer, 4 is an active layer, and 5 is an upper layer. The cladding layer 10 is the front output end face. In FIG. 2, the shape of the light spot A is in the direction Wp parallel to the active layer 4 near the front output terminal 0.
is larger than the direction Ws perpendicular to the active layer 4, and the axial ratio is 2.5:l.
It had reached a certain level. For this reason, conventional optical heads use a shaping prism to form a circular light spot.

また、光デイスク装置の性能改善のために将来形光ヘッ
ドとして筆者等が特願昭61−218097号で提案し
た光ヘッドは、第3図(a)に示す様な構造をなし、光
記録媒体20上に近接保持される。光ヘッド21は光記
録媒体20の半径方向へ高速移動できるアーム22上の
負荷バネ23に取付けられたスライダ24に装着され、
光ヘッド21と光記録媒体20とのスペーシングは負荷
バネ23の荷重とスライダ24の形状、重量及び光記録
媒体20の走行速度で決まる一定値に保たれる。尚、こ
の構造では光ヘッド21と光記録媒体20の間隔は1μ
m程度なので、円形光ビームを実現するための整形プリ
ズムは使用できない。第3図(b)は、光ヘッドの第1
の構成例を示す構成図、第3図(C)は光ヘッドの第2
の構成例を示す構成図で、光ヘッド21は基板2に達す
る深さが数μmの分離溝11により、半導体レーザ1と
光検出器30に分けられており、4は活性層、6は絶縁
層、7は電流狭窄用電極、31は受光部である。第3図
(b)によれば、半導体レーザ1の前方出力端面10よ
りの光ビームBは光記録媒体20で反射され、反射光C
が半導体レーザ1に帰還し、その時の光出力(1!L合
共振信号出力)Dを受光部31で検知する。第4図(a
) 、(b)は第1の構成例で示した従来形半導体レー
ザの光ビームBの前方出力端面10近傍でのスポット径
を示している。
Furthermore, the optical head proposed by the authors in Japanese Patent Application No. 61-218097 as a future type optical head to improve the performance of optical disk devices has a structure as shown in FIG. 20 in close proximity. The optical head 21 is mounted on a slider 24 attached to a load spring 23 on an arm 22 that can move at high speed in the radial direction of the optical recording medium 20.
The spacing between the optical head 21 and the optical recording medium 20 is maintained at a constant value determined by the load of the load spring 23, the shape and weight of the slider 24, and the running speed of the optical recording medium 20. In this structure, the distance between the optical head 21 and the optical recording medium 20 is 1μ.
m, so a shaping prism for realizing a circular light beam cannot be used. Figure 3(b) shows the first part of the optical head.
FIG. 3(C) is a configuration diagram showing an example of the configuration of the optical head.
In this diagram, an optical head 21 is divided into a semiconductor laser 1 and a photodetector 30 by a separation groove 11 having a depth of several μm that reaches a substrate 2. 4 is an active layer, and 6 is an insulating layer. 7 is a current confinement electrode, and 31 is a light receiving section. According to FIG. 3(b), the light beam B from the front output end face 10 of the semiconductor laser 1 is reflected by the optical recording medium 20, and the reflected light C
returns to the semiconductor laser 1, and the light output (1!L combined resonance signal output) D at that time is detected by the light receiving section 31. Figure 4 (a
) and (b) show the spot diameter near the front output end face 10 of the light beam B of the conventional semiconductor laser shown in the first configuration example.

第4図(a)は半値全幅、第4図(b)は1/e2径で
あり、縦軸にスポット径、横軸に前方出力端面10より
の距離を示し、図中、FWHMは半値全幅、■で示した
曲線は25@の時、■で示した曲線は10″の時の理論
値を示し、Oが活性層4に垂直方向、・1本は活性層4
に平行方向での実測値を表わしている。これより、浮上
量、即ち光ヘッド21と光記録媒体20との間隔は、図
中、矢印で示す様に1μm程度で使用するので、活性層
4に垂直方向(線密度方向)に比べ活性層4に平行方向
(トラック密度方向)は光スポツト径が大きくなってい
ることがわかる。
FIG. 4(a) shows the full width at half maximum, and FIG. 4(b) shows the 1/e2 diameter, the vertical axis shows the spot diameter, and the horizontal axis shows the distance from the front output end surface 10. In the figure, FWHM is the full width at half maximum. , The curve shown by ■ shows the theoretical value at 25 @, the curve shown by ■ shows the theoretical value at 10'', O is perpendicular to the active layer 4, ・One is the theoretical value at the time of the active layer 4
The actual measured values are shown in the parallel direction. From this, since the flying height, that is, the distance between the optical head 21 and the optical recording medium 20 is about 1 μm as shown by the arrow in the figure, the active layer It can be seen that the optical spot diameter becomes larger in the direction parallel to 4 (track density direction).

第3図(C)に示した第2の構成例は、先端に導波形レ
ンズ40を配したもので、図示しない光記録媒体上での
光ビームスポットEを縮小し、記録密度を向上すること
ができる。図中、41は微細加工技術により形成された
エツチドミラー面で、導波形レンズ40を形成するバッ
ファ層42 (例えば5i02) 、導波路層43(例
えばガラス7059)に接する。44はルネブルグレン
ズで、導波路層43より高屈折率の誘電材料(例えばS
IN )よりなり、周囲が円形、表面が半円形の形状を
なしている。
The second configuration example shown in FIG. 3(C) has a waveguide lens 40 at the tip, which reduces the light beam spot E on the optical recording medium (not shown) and improves the recording density. Can be done. In the figure, 41 is an etched mirror surface formed by microfabrication technology, which is in contact with a buffer layer 42 (for example, 5i02) forming the waveguide lens 40 and a waveguide layer 43 (for example, glass 7059). 44 is a Luneburg lens made of a dielectric material with a higher refractive index than the waveguide layer 43 (for example, S
IN), and has a circular circumference and a semicircular surface.

更に、第5図は光収束機能付半導体レーザの第3の構成
例で、S、Mukai et al:Monollth
lc integratlon ora 1ens I
n5ide a diode−1aser cavit
yror−beam convergence″、Ap
pl、 Phys、 Lett、47゜(3) l、p
、188.1985に開示されたものである。50はモ
ードセレクタと呼ばれる半導体レーザ1の主要部、51
は導波路部、52はレンズ部で活性層4の上クラッド層
5の幅を狭めている。
Furthermore, FIG. 5 shows a third configuration example of a semiconductor laser with a light focusing function, as described in S. Mukai et al.: Monollth
lc integratlon ora 1ens I
n5ide a diode-1aser cavit
yror-beam convergence'', Ap
pl, Phys, Lett, 47° (3) l, p
, 188.1985. 50 is a main part of the semiconductor laser 1 called a mode selector; 51
52 is a waveguide portion, and 52 is a lens portion that narrows the width of the upper cladding layer 5 of the active layer 4.

(発明が解決しようとする問題点) しかしながら、上記従来例によれば、第1の構成例では
第4図(a) 、 (b)で明らかな様に活性層4に垂
直方向、即ち線密度方向に比べ、活性層4に平行方向、
即ちトラック密度方向は光スポツト径が大きいため、ト
ラック記録密度が低下してしまい、第2の構成例では数
μm程度の微小なルネブルグレンズ44を半導体レーザ
1の出力端面に作製することは困難で、形状設計値と加
工値のずれに起因する収差のため微小スポットの実現が
難しく、更に、第3の構成例では、構造上微小スポット
の実現が難しく、発振しきい値の増大によりし一ザ寿命
が低下するという問題点があった。このため、これら半
導体レーザを使用した光記録再生装置の記録密度の向上
を図ることができないという問題点があった。
(Problems to be Solved by the Invention) However, according to the above conventional example, in the first configuration example, as is clear from FIGS. 4(a) and 4(b), the linear density is direction, parallel to the active layer 4,
That is, since the optical spot diameter is large in the track density direction, the track recording density decreases, and in the second configuration example, it is difficult to fabricate a minute Luneburg lens 44 of about several μm on the output end face of the semiconductor laser 1. In the third configuration example, it is difficult to realize a minute spot due to the aberration caused by the deviation between the shape design value and the processing value.Furthermore, in the third configuration example, it is difficult to realize a minute spot due to the structure, and the oscillation threshold increases. However, there was a problem that the lifespan was shortened. Therefore, there has been a problem in that it is not possible to improve the recording density of optical recording/reproducing devices using these semiconductor lasers.

本発明の目的は、上記問題点に鑑み、活性層に平行方向
の光スポットを1μm程度に圧縮でき、これにより、光
記録再生装置の記録密度の向上が図れる半導体レーザを
提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a semiconductor laser in which a light spot parallel to an active layer can be compressed to about 1 μm, thereby improving the recording density of an optical recording/reproducing device.

(問題点を解決するための手段) 本発明は、上記目的を達成するために、活性層に光ビー
ム収束機能を有する半導体レーザにおいて、少なくとも
一方の出力端面近傍の電流狭窄用電極の両側に、上面か
ら活性層を越える位置まで絶縁溝を形成した。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides a semiconductor laser having an optical beam focusing function in its active layer. An insulating groove was formed from the top surface to a position beyond the active layer.

(作用) 本発明によれば、半導体レーザの少なくとも一方の出力
端面近傍の電流狭窄用電極の両側に半導体レーザの上面
から活性層を越える位置まで形成した絶縁溝により活性
層に平行方向の光ビームの広がりを押さえることができ
る。
(Function) According to the present invention, an insulating groove is formed on both sides of the current confinement electrode in the vicinity of at least one output end face of the semiconductor laser from the top surface of the semiconductor laser to a position beyond the active layer, so that a light beam is directed parallel to the active layer. It is possible to suppress the spread of

(実施例1) 第1図(a)は本発明による半導体レーザの第1の実施
例を示す斜視図、第1図(b)は同図(a)の1−1部
線矢視方向の断面図であって従来と同一構成のものは同
一符号にて表わす。図中、1は直方体形状をなした半導
体レーザ、2はn型ガリウムヒ素(n −GaAs)よ
りなる基板、3は基板2の上面にn型ガリウムアルミニ
ウムヒ素(n −GaAIAs)を積層してなる下側ク
ラッド層である。4は下側クラッド層3上にガリウムア
ルミニウムヒ素(GaAIAs)を積層してなる活性層
で、光収束機能を有している。5は活性層4上にp型ガ
リウムアルミニウムヒ素(p −GaAIAs)を積層
してなる上側クラッド層、6は二酸化ケイ素(Si02
)等の酸化物よりなる絶縁層、7は電流が注入される電
流狭窄用電極で、幅は一定に、前方出力端面10より後
方出力端面13まで半導体レーザ1の中央上面側に形成
しである。9は上側クラッド層5上にガリウムヒf: 
(GaAs)を積層してなるキャップ層である。また、
8は基板2の下面に設けられた電極、12は半導体レー
ザ1の上面となる電極である。14は活性層4に平行方
向の光ビームの広がりを押えるために設けた絶縁溝で、
前方出力端面10からこの前方出力端面10近傍の電流
狭窄用電極の両側に、上面、即ち電極12から基板2に
達する深さく数μm)を有し、更に半導体レーザ1の両
側面まで達する様に、反応性イオンビームスパッタによ
り微細加工して作製しである。また、絶縁溝14は、半
導体1の酸化、劣化を防止するために、活性層4の屈折
率より低い屈折率を有する物質15(例えばレジストの
塗布、厚さ200〜300nm程度の8102M )を
埋め込んである。
(Example 1) FIG. 1(a) is a perspective view showing a first embodiment of a semiconductor laser according to the present invention, and FIG. 1(b) is a perspective view taken in the direction of the arrow 1-1 in FIG. In the cross-sectional view, parts having the same configuration as the conventional one are denoted by the same reference numerals. In the figure, 1 is a rectangular parallelepiped-shaped semiconductor laser, 2 is a substrate made of n-type gallium arsenide (n-GaAs), and 3 is made by laminating n-type gallium aluminum arsenide (n-GaAIAs) on the top surface of the substrate 2. This is the lower cladding layer. 4 is an active layer formed by laminating gallium aluminum arsenide (GaAIAs) on the lower cladding layer 3, and has a light focusing function. 5 is an upper cladding layer formed by laminating p-type gallium aluminum arsenide (p-GaAIAs) on the active layer 4; 6 is silicon dioxide (Si02);
), 7 is a current confinement electrode into which current is injected, and is formed with a constant width on the upper center side of the semiconductor laser 1 from the front output end face 10 to the rear output end face 13. . 9 is a layer of gallium on the upper cladding layer 5:
This is a cap layer formed by laminating (GaAs). Also,
8 is an electrode provided on the lower surface of the substrate 2, and 12 is an electrode provided on the upper surface of the semiconductor laser 1. 14 is an insulating groove provided in the active layer 4 to suppress the spread of the light beam in the parallel direction;
On both sides of the current confinement electrode from the front output end face 10 in the vicinity of the front output end face 10, there is a top surface (i.e., a depth of several μm extending from the electrode 12 to the substrate 2), and further so as to reach both sides of the semiconductor laser 1. , manufactured by microfabrication using reactive ion beam sputtering. Further, in order to prevent oxidation and deterioration of the semiconductor 1, the insulating groove 14 is filled with a substance 15 having a refractive index lower than that of the active layer 4 (e.g. resist coating, 8102M with a thickness of about 200 to 300 nm). It is.

第6図(a) 、 (b) 、(c)は上記構成による
半導体レーザ1の前方出力端面10での光スポツト形状
を示すもので、第6図(a)は光出力の等高線図、第6
図(b)は活性層4に平行方向の光スポツト形状、第6
図(e)は活性層4に垂直方向の光スポツト形状を示し
ている。一方、第7図(a) 、 (b) 、 (c)
 、は、絶縁溝14を形成していない後方出力端面13
での光スポツト形状を示している。第7図(a)の光出
力の等高線図でわかる様に、光スポットは長円でかつ双
峰であることがわかる。また、第7図(b)は活性層4
に平行方向の光スポツト形状、第7図(c)は活性層4
に垂直方向の光スポツト形状である。更に、第8図(a
)、(b)は、前方出力端面10側の光軸方向の光スポ
ツト径を示しており、第8図(a>は半値全幅、第8図
(b)は1/e2径である。第4図(a) 、(b)と
同様にOは活性層4に垂直方向の実DI値、・、*は活
性層4に平行方向の実測値を示し、FWHMは半値全幅
、■は25@の時の理論値、■は10@の時の理論値を
示している。
6(a), 6(b), and 6(c) show the shape of a light spot at the front output end face 10 of the semiconductor laser 1 with the above configuration, and FIG. 6(a) is a contour map of the light output, and FIG. 6
Figure (b) shows the shape of the light spot in the direction parallel to the active layer 4.
Figure (e) shows the shape of a light spot in the direction perpendicular to the active layer 4. On the other hand, Fig. 7 (a), (b), (c)
, is the rear output end surface 13 in which the insulating groove 14 is not formed.
The figure shows the shape of the light spot. As can be seen from the contour map of the light output in FIG. 7(a), the light spot is elliptical and has two peaks. In addition, FIG. 7(b) shows the active layer 4
The shape of the light spot in the direction parallel to the active layer 4 is shown in FIG. 7(c).
The shape of the light spot is perpendicular to . Furthermore, Fig. 8 (a
) and (b) show the optical spot diameter in the optical axis direction on the front output end face 10 side, where FIG. 8 (a> is the full width at half maximum, and FIG. 8 (b) is the 1/e2 diameter. 4 (a) and (b), O is the actual DI value in the direction perpendicular to the active layer 4, ・, * is the actual measured value in the direction parallel to the active layer 4, FWHM is the full width at half maximum, ■ is 25 @ The theoretical value at the time of , ■ indicates the theoretical value at the time of 10@.

以上説明した様に、本第1の実施例によれば、絶縁溝1
4を電流狭窄用電極7の両側に設けたことで、光ビーム
の収束効果が大巾に向上され、更に、浮上量、即ち光ヘ
ッドと光記録媒体との間隔が1μmで使用する場合でも
充分に使用可能となっている。尚、後方出力端面13近
傍にも絶縁溝を設けても無論良い。
As explained above, according to the first embodiment, the insulation groove 1
4 on both sides of the current confinement electrode 7, the convergence effect of the light beam is greatly improved, and it is also sufficient even when the flying height, that is, the distance between the optical head and the optical recording medium is 1 μm. It is available for use. Of course, an insulating groove may also be provided near the rear output end face 13.

(実施例2) 第9図は、本発明による半導体レーザ1の第2の実施例
を示す上面図であり、第1の実施例の構成との相違は電
流狭窄用電極7の形状にある。即ち、電流狭窄用電極7
の幅は中央部で広く、前方出力端面10、後方出力端面
13両近傍では狭く、幅形状はステップ状に変化し、幅
の広い部分は電流狭窄用電極7全体の約2/3の長さと
なっている。
(Example 2) FIG. 9 is a top view showing a second example of the semiconductor laser 1 according to the present invention, and the difference from the configuration of the first example lies in the shape of the current confinement electrode 7. That is, the current confinement electrode 7
The width is wide at the center and narrow near both the front output end face 10 and the rear output end face 13, and the width shape changes in a step-like manner, and the wide part is approximately 2/3 of the length of the entire current confinement electrode 7. It has become.

また、絶縁溝14は、前方出力端面10側に形成しであ
る。
Further, the insulating groove 14 is formed on the front output end face 10 side.

第10図(a) 、 (b) 、 (c)は、本第2の
実施例による半導体レーザ1の前方出力端面10側にお
ける光スポツト形状を示し、第10図(a)は光出力の
等高線図であり、はぼ円形となっていることがわかる。
10(a), (b), and (c) show the shape of the optical spot on the front output end face 10 side of the semiconductor laser 1 according to the second embodiment, and FIG. 10(a) shows the contour lines of the optical output. In the figure, it can be seen that it is approximately circular.

第10図(b)は活性層4に平行方向の光スポツト形状
、第10図(e)は活性層4に垂直方向の光スポツト形
状を示している。更に、第11図(a) 、(b)は光
軸方向のスポット径を示し、第11図(a)は半値全幅
、第11図(b)は1/e2径であり、図中に示す記号
は第8図(a) 、(b)と同様である。
10(b) shows the shape of a light spot in a direction parallel to the active layer 4, and FIG. 10(e) shows a shape of a light spot in a direction perpendicular to the active layer 4. Furthermore, Fig. 11(a) and (b) show the spot diameter in the optical axis direction, Fig. 11(a) is the full width at half maximum, and Fig. 11(b) is the 1/e2 diameter, as shown in the figure. The symbols are the same as in FIGS. 8(a) and (b).

本節2の実施例によれば、第1の実施例と同様の作用、
効果を得ることができるとともに、第10図(a)より
明らかな様にほぼ円形の直径1μm程度の光スポットが
実現でき、しかも安定、低しきい値の半導体レーザとな
っている。
According to the embodiment of this section 2, the same effect as the first embodiment,
As is clear from FIG. 10(a), a substantially circular light spot with a diameter of about 1 μm can be realized, and the semiconductor laser is stable and has a low threshold value.

(実施例3) 第12図は本発明による半導体レーザの第3の実施例を
示す上面図であり、第1及び第2の実施例の構成との相
違は、電流狭窄用電極7の形状にある。即ち、電流狭窄
用電極7の幅は第2の実施例と同様中央部で広く、前方
出力端面10、後方出力端面13側で狭いが、幅形状が
テーバ状に変化する。また、絶縁溝14は、前方出力端
面10側に形成しである。
(Embodiment 3) FIG. 12 is a top view showing a third embodiment of the semiconductor laser according to the present invention. be. That is, the width of the current confinement electrode 7 is wide at the center as in the second embodiment and narrow at the front output end face 10 and rear output end face 13 sides, but the width shape changes into a tapered shape. Further, the insulating groove 14 is formed on the front output end face 10 side.

第13図(a) 、 (b) 、 (c)は、本節3の
実施例による半導体レーザ1の前方出力端面10側にお
ける光スポツト形状を示し、第13図(a)は光出力の
等高線図、第13図(b)は活性層4に平行方向の光ス
ポツト形状、第13図(C)は活性層4に垂直方向の光
スポツト形状を示している。一方、第14図(a) 、
 (b) 、 (c)は絶縁溝14を形成していない後
方出力端面13側の光スポツト形状を示し、第14図(
a)の光出力の等高線図かられかる様に、第7図(a)
と同様に光スポットは長日でかつ双峰である。第14図
(b)は活性層4に平行方向の光スポツト形状、第14
図(C)は活性層4に垂直方向の先スポット形状を示し
ている。また、第15図(a) 、(b)は前方出力端
面10側の光軸方向のスポット径を示し、第15図(a
)は半値全幅、第15図(b)は1/e2径であり、図
中に示す記号は第8図(a) 、 (b)と同様である
13(a), (b), and (c) show the shape of the optical spot on the front output end face 10 side of the semiconductor laser 1 according to the embodiment of Section 3, and FIG. 13(a) is a contour diagram of the optical output. 13(b) shows the shape of a light spot in a direction parallel to the active layer 4, and FIG. 13(C) shows the shape of a light spot in a direction perpendicular to the active layer 4. On the other hand, Fig. 14(a),
(b) and (c) show the shape of the light spot on the rear output end face 13 side where the insulating groove 14 is not formed, and Fig. 14 (
As can be seen from the contour map of optical output in a), Fig. 7(a)
Similarly, the light spot has long days and twin peaks. FIG. 14(b) shows the shape of the light spot in the direction parallel to the active layer 4.
Figure (C) shows the tip spot shape in the direction perpendicular to the active layer 4. Moreover, FIGS. 15(a) and 15(b) show the spot diameter in the optical axis direction on the front output end face 10 side, and FIG.
) is the full width at half maximum, and FIG. 15(b) is the 1/e2 diameter, and the symbols shown in the figure are the same as those in FIGS. 8(a) and (b).

本節3の実施例によれば、第1及び第2の実施例と同様
の作用、効果を得ることができ、第2の実施例に比べ活
性層に平行方向の光スポツト径が大きくなっているが、
本発明の目的は充分達成できるものであり、更に、電流
狭窄用電極7をテーバ状にすることにより、発振しきい
値をより小さく (約70mA)できる。
According to the embodiment of Section 3, the same functions and effects as the first and second embodiments can be obtained, and the diameter of the light spot in the direction parallel to the active layer is larger than that of the second embodiment. but,
The object of the present invention can be fully achieved, and furthermore, by forming the current confinement electrode 7 in a tapered shape, the oscillation threshold can be made smaller (about 70 mA).

(実施例4) 第16図は本発明による半導体レーザを用いた光ヘッド
の一実施例を示す上面図である。絶縁溝14は前方出力
端面10側に設けられ、更に絶縁溝14により中央の半
導体レーザ1と両側の光検出′rr16.17に分割し
、電流狭窄用電極7は第3の実施例と同様にテーパ状に
形成しである。また、光検出器16.17の上面となる
電極12の下面側には、絶縁層の代わりにキャップ層(
第1図中9で示す)が設けられている。
(Embodiment 4) FIG. 16 is a top view showing an embodiment of an optical head using a semiconductor laser according to the present invention. The insulating groove 14 is provided on the front output end face 10 side, and the insulating groove 14 further divides the semiconductor laser 1 in the center and the photodetectors 'rr16 and 17 on both sides, and the current confinement electrode 7 is provided as in the third embodiment. It is formed into a tapered shape. Also, on the lower surface side of the electrode 12, which is the upper surface of the photodetector 16.
(indicated by 9 in FIG. 1) is provided.

以上の構成による光ヘッドの動作を説明すると、まず、
電流狭窄用電極7により電流を注入して半導体レーザ1
を発光させることにより、前方出力端面10から出射し
た光ビームBが光記録媒体20で反射されその反射光を
光検出器16.17により検出する。
To explain the operation of the optical head with the above configuration, first,
Semiconductor laser 1 is injected with current through current confinement electrode 7.
By emitting light, the light beam B emitted from the front output end face 10 is reflected by the optical recording medium 20, and the reflected light is detected by the photodetectors 16 and 17.

本節4の実施例によれば、前方出力端面10側に活性層
に平行方向の光ビームの広がりを押えるための絶縁溝1
4を設け、更には、電流狭窄用電極7をテーパ状に形成
した半導体レーザ1を光ヘッドの光源として使用してい
るので、直径約1μm fu度の円形の微小光スポット
が実現でき、光記録再生装置の記録面密度を高くするこ
とができる。
According to the embodiment of Section 4, the insulating groove 1 is provided on the front output end face 10 side for suppressing the spread of the light beam in the direction parallel to the active layer.
4, and furthermore, the semiconductor laser 1 with the current confinement electrode 7 formed in a tapered shape is used as the light source of the optical head, so a circular minute light spot with a diameter of about 1 μm FU can be realized, and optical recording is possible. The recording surface density of the reproducing device can be increased.

(発明の効果) 以上説明したように、本発明によれば、少なくとも一方
の出力端面近傍の電流狭窄用電極の両側に半導体レーザ
の上面から活性層を越える位置まで絶縁溝を形成したの
で、出力端面近傍で活性7Wに平行方向の光ビームの広
がりを押さえ、活性層の垂直方向と同じく、直径約1μ
m程度の円形の微小光スポットを実現でき、かつ安定、
低しきい値の実用的半導体レーザを提供できる。従って
、本半導体レーザを光ヘッドの光源に使用すれば、記録
面密度の高い光記録再生装置を提供できるという利点が
ある。
(Effects of the Invention) As explained above, according to the present invention, insulating grooves are formed on both sides of the current confinement electrode near at least one output end face from the top surface of the semiconductor laser to a position beyond the active layer. The spread of the light beam in the direction parallel to the active 7W is suppressed near the end face, and the diameter is approximately 1μ in the same direction as the direction perpendicular to the active layer.
It is possible to realize a small circular light spot of about 100 m in diameter, and it is stable.
A practical semiconductor laser with a low threshold value can be provided. Therefore, if the present semiconductor laser is used as a light source of an optical head, there is an advantage that an optical recording/reproducing device with a high recording surface density can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は、本発明による半導体レーザの第1の実
施例を示す斜視図、第1図(b)は、同図(a)中、I
−1部線矢視方向の断面図、第2図は従来の半導体レー
ザの光スポットの形状を説明するための説明図、第3図
(a)は従来の光ヘッドの使用状態を示す斜視図、第3
図(b)は従来の光へラドの第1の構成例を示す構成図
、第3図(c)は従来の光ヘッドの第2の構成例を示す
構成図、第4図(a) 、 (b)は従来の半導体レー
ザの光軸方向のスポット径を示し、同図(a)は半値全
幅を示す図、同図(b)は1/e2径を示す図、第5図
は従来の半導体レーザの第3図の構成例を示す構成図、
第6図(a)、(b)、(c)は第1の実施例による半
導体レーザの前方出力端面側での光スポツト形状を示し
、同図(a)は先出力の等高線図、同図(b)は活性層
に平行方向の光スポツト形状を示す図、同図(c)は活
性層に垂直方向の光スポツト形状を示す図、第7図(a
) 、(b) 、 (c)は第1の実施例による半導体
レーザの後方出力端面側での光スポツト形状を示し、同
図(a)は光出力の等高線図、同図(b)は活性層に平
行方向の光スポツト形状を示す図、同図(c)は活性層
に垂直方向の光スポツト形状を示す図、第8図(a) 
、 (b)は第1の実施例による半導体レーザの光軸方
向のスポット径を示し、同図(a)は半値全幅を示す図
、同図(b)は1/e2径を示す図、第9図は本発明よ
る半導体レーザの第2の実施例を示す上面図、第10図
(a) 、 (b) 、(c) 、は第2の実施例によ
る半導体レーザの前方出力端面側での先スポット形状を
示し、同図(a)は光出力の等高線図、同図(b)は活
性層に平行方向の光スポツト形状を示す図、同図(C)
は活性層に垂直方向の光スポツト形状を示す図、第11
図(a) 、 (b)は第2の実施例による半導体レー
ザの光軸方向のスポット径を示し、同図(a)は半値全
幅を示す図、同図(b)は1/e2径を示す図、第12
図は本発明による半導体レーザの第3の実施例を示す上
面図、第13図(a) 、 (b) 、(c)は第3の
実施例による前方出力端面側での光スポツト形状を示し
、同図(a)は光出力の等高線図、同図(b)は活性層
に平行方向の光スポツト形状を示す図、同図(c)は活
性層に垂直方向の光スポツト形状を示す図、第14図(
a) 、 (b) 、 (c)は第3の実施例による半
導体レーザの後方出力端面側での光スポツト形状を示し
、同図(a)は光出力の等高線図、同図(b)は活性層
に平行方向の光スポツト形状を示す図、同図(C)は活
性層に垂直方向の光スポツト形状を示す図、第15図(
a) 、 (b)は第3の実施例による半導体レーザの
光軸方向のスポット径を示し、同図(a)は半値全幅を
示す図、同図(b)は1/e2径を示す図、第16図は
本発明による半導体レーザを適用した光ヘッドの一実施
例を示す上面図である。 図中、1・・・半導体レーザ、2・・・基板、3・・・
下側クラッド層、4・・・活性層、5・・・上側クラッ
ド層、6・・・絶縁層、7・・・電流狭窄用電極、8.
12・・・電極、9・・・キャップ層、10・・・前方
出力端面、13・・・後方出力端面、14・・・絶縁溝
FIG. 1(a) is a perspective view showing a first embodiment of a semiconductor laser according to the present invention, and FIG. 1(b) is an I
- A sectional view taken in the direction of the arrow at part 1, Figure 2 is an explanatory diagram for explaining the shape of a light spot of a conventional semiconductor laser, and Figure 3 (a) is a perspective view showing the state of use of a conventional optical head. , 3rd
FIG. 3(b) is a configuration diagram showing a first configuration example of a conventional optical head; FIG. 3(c) is a configuration diagram showing a second configuration example of a conventional optical head; FIG. 4(a), (b) shows the spot diameter in the optical axis direction of a conventional semiconductor laser, (a) shows the full width at half maximum, (b) shows the 1/e2 diameter, and Fig. 5 shows the spot diameter of the conventional semiconductor laser. A configuration diagram showing an example of the configuration of the semiconductor laser shown in FIG. 3,
6(a), (b), and (c) show the shape of a light spot on the front output end face side of the semiconductor laser according to the first embodiment, and FIG. 6(a) is a contour diagram of the front output, and FIG. (b) is a diagram showing the shape of a light spot in a direction parallel to the active layer, (c) is a diagram showing a shape of a light spot in a direction perpendicular to the active layer, and FIG.
), (b), and (c) show the shape of the optical spot on the rear output end face side of the semiconductor laser according to the first embodiment, where (a) is a contour diagram of the optical output, and (b) is a contour diagram of the optical output. Figure 8(c) shows the shape of a light spot in the direction parallel to the active layer; Figure 8(a) shows the shape of the light spot in the direction perpendicular to the active layer.
, (b) shows the spot diameter in the optical axis direction of the semiconductor laser according to the first embodiment, (a) shows the full width at half maximum, (b) shows the 1/e2 diameter, FIG. 9 is a top view showing the second embodiment of the semiconductor laser according to the present invention, and FIGS. 10(a), (b), and (c) are views of the front output end face side of the semiconductor laser according to the second embodiment. The shape of the tip spot is shown; (a) is a contour diagram of the optical output; (b) is a diagram showing the shape of the light spot in the direction parallel to the active layer; (C) is a diagram showing the shape of the light spot.
11 is a diagram showing the shape of a light spot in the direction perpendicular to the active layer.
Figures (a) and (b) show the spot diameter in the optical axis direction of the semiconductor laser according to the second embodiment, where (a) shows the full width at half maximum, and (b) shows the 1/e2 diameter. Figure 12
The figure is a top view showing a third embodiment of a semiconductor laser according to the present invention, and FIGS. 13(a), (b), and (c) show the shape of a light spot on the front output end face side according to the third embodiment. , Figure (a) is a contour diagram of optical output, Figure (b) is a diagram showing the shape of a light spot in a direction parallel to the active layer, and Figure (c) is a diagram showing the shape of a light spot in a direction perpendicular to the active layer. , Figure 14 (
a), (b), and (c) show the shape of the optical spot on the rear output end face side of the semiconductor laser according to the third embodiment, where (a) is a contour diagram of the optical output, and (b) is a contour diagram of the optical output. Figure 15 (C) shows the shape of a light spot parallel to the active layer; Figure 15 (C) shows the shape of a light spot perpendicular to the active layer;
a) and (b) show the spot diameter in the optical axis direction of the semiconductor laser according to the third embodiment, where (a) shows the full width at half maximum, and (b) shows the 1/e2 diameter. , FIG. 16 is a top view showing an embodiment of an optical head to which a semiconductor laser according to the present invention is applied. In the figure, 1... semiconductor laser, 2... substrate, 3...
Lower cladding layer, 4... Active layer, 5... Upper cladding layer, 6... Insulating layer, 7... Current confinement electrode, 8.
DESCRIPTION OF SYMBOLS 12... Electrode, 9... Cap layer, 10... Front output end surface, 13... Rear output end surface, 14... Insulating groove.

Claims (3)

【特許請求の範囲】[Claims] (1)活性層に光ビーム収束機能を有する半導体レーザ
において、少なくとも一方の出力端面近傍の電流狭窄用
電極の両側に、上面から活性層を越える位置まで絶縁溝
を形成したことを特徴とする半導体レーザ。
(1) A semiconductor laser having an optical beam focusing function in its active layer, characterized in that insulating grooves are formed on both sides of a current confinement electrode in the vicinity of at least one output end face from the top surface to a position beyond the active layer. laser.
(2)前記絶縁溝に活性層の屈折率より低い屈折率を有
する物質を埋め込んだことを特徴とする特許請求の範囲
第1項記載の半導体レーザ。
(2) The semiconductor laser according to claim 1, wherein a substance having a refractive index lower than the refractive index of the active layer is embedded in the insulating groove.
(3)前記電流狭窄用電極の形状を出力端面近傍で狭く
、中央部で広くしたことを特徴とする特許請求の範囲第
1項又は第2項記載の半導体レーザ。
(3) The semiconductor laser according to claim 1 or 2, wherein the shape of the current confinement electrode is narrow near the output end face and wide at the center.
JP14010487A 1986-09-18 1987-06-05 Semiconductor laser Pending JPS63305580A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14010487A JPS63305580A (en) 1987-06-05 1987-06-05 Semiconductor laser
US07/097,560 US4860276A (en) 1986-09-18 1987-09-16 Micro optical head with an optically switched laser diode
NL8702237A NL192804C (en) 1986-09-18 1987-09-18 Optical head for reading digital data on a reflective recording medium.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14010487A JPS63305580A (en) 1987-06-05 1987-06-05 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63305580A true JPS63305580A (en) 1988-12-13

Family

ID=15261032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14010487A Pending JPS63305580A (en) 1986-09-18 1987-06-05 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63305580A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948972A (en) * 1982-09-13 1984-03-21 Nec Corp Semiconductor laser
JPS59154089A (en) * 1983-02-22 1984-09-03 Sony Corp Semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948972A (en) * 1982-09-13 1984-03-21 Nec Corp Semiconductor laser
JPS59154089A (en) * 1983-02-22 1984-09-03 Sony Corp Semiconductor laser

Similar Documents

Publication Publication Date Title
US20070091955A1 (en) Semiconductor laser device and optical pickup apparatus using the same
JP2006294984A (en) Semiconductor laser element, its manufacturing method and light pickup device employing it
US20020136255A1 (en) Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element
JP4627132B2 (en) Semiconductor laser device and optical disk recording / reproducing device
JPH0551974B2 (en)
JPS63305580A (en) Semiconductor laser
JPH10163563A (en) Semiconductor laser
JP2846668B2 (en) Broad area laser
JPS61272987A (en) Semiconductor laser element
JPS6351556B2 (en)
US4764937A (en) Semiconductor laser array device
JPS61131581A (en) Semiconductor laser
JPH071818B2 (en) Integrated semiconductor laser
JPH09246662A (en) Semiconductor laser
JPH0786676A (en) Semiconductor laser
JP2001308459A (en) Nitride compound semiconductor laser device
JPH04180685A (en) Semiconductor laser
JPS61228692A (en) Semiconductor laser
JPH01194381A (en) Integrated type semiconductor laser
JP2002223038A (en) Semiconductor laser device
JPH01260642A (en) Optical head
JPS63142879A (en) Semiconductor laser
JP2763781B2 (en) Semiconductor laser device and method of manufacturing the same
JPH02137286A (en) Semiconductor laser
JPH10144996A (en) Semiconductor laser element