JPH04180685A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH04180685A
JPH04180685A JP30958690A JP30958690A JPH04180685A JP H04180685 A JPH04180685 A JP H04180685A JP 30958690 A JP30958690 A JP 30958690A JP 30958690 A JP30958690 A JP 30958690A JP H04180685 A JPH04180685 A JP H04180685A
Authority
JP
Japan
Prior art keywords
region
layer
convex region
semiconductor laser
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30958690A
Other languages
Japanese (ja)
Inventor
Shinsuke Ueno
上野 眞資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30958690A priority Critical patent/JPH04180685A/en
Publication of JPH04180685A publication Critical patent/JPH04180685A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a threshold current low, to realize a high-efficiency oscillation and to enhance reproducibility and reliability by forming a double heterojunction structure in which an active layer has been sandwiched between clad layers composed of a material whose band gap is wider than that of the active layer. CONSTITUTION:A double heterojunction structure in which an active layer 12 has been sandwiched between a first n-type AlGaAs clad layer 11 and a second p-type AlGaAs clad layer 13 which are composed of a material whose band gap is wider than that of the layer 12 is formed. The layer 13 has a protrusion-shaped region 15; and the region 15 is composed of a protrusion-part region 16 whose shape is close to a rectangle and of a slope-shaped bottom region 17 succeeding to it. In the region 16, its width is narrower than a carrier diffusion length and the region 17 becomes slope-shaped at least over the width of the carrier diffusion length on both sides from the center of the region 16. A multilayer structure in which a light-absorbing layer 18 has been buried on both sides excluding the region 16 is formed. Thereby, a threshold current becomes low, an oscillation can be performed with high efficiency, a functional transverse-mode oscillation is maintained, a noise is low, and this laser can be manufactured with high reproducibility and at a high yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザ、特に光情報処理等に用いる半導
体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser, and particularly to a semiconductor laser used for optical information processing and the like.

〔従来の技術〕[Conventional technology]

A 42 G a A s / G a A s等の結
晶材料を用いた半導体レーザは、小型・低消費電力で高
効率の室温連続発振を行なう事ができるので、光方式の
ディジタル・オーディオ・ディスク(DAD)用光源と
して最適であり、実用化されつつある。この半導体レー
ザは光ディスク等の光書き込み用光源としての需要も高
まり、この要求をみたすため、大光出力発振に耐えうる
半導体レーザの研究開発が進められている。最近ではこ
れらの半導体レーザの重要の急速な高まりに対応するた
め、大量生産が行なわれるようになってきた。このA 
I! G aA s / G a A s半導体レーザ
の製法としては従来から行なわれた液相成長に加えて、
有機金属を用いた気相成長法(Melalorgani
c Vapour PhaseEpitaxy、以下M
OVPE法という)が広く用いられている。このうち横
モード制御したAAGaAs/GaAs半導体レーザと
しては、例えばコールマン(J、J、Coleman)
とダビカス(R,D、Dapkus)が雑誌アプライド
・フィジックス・レターズ(AppliedPhysi
cs Letters) 1980年37巻262頁か
ら263頁にrMOcVD法による単一軸モード発振G
aAuAs−GaAs SASレーザ」 “Singl
e−1ongitudinal−mode metal
−organic chemical−vapour−
−deposition self−alignedG
 a A (l A s −G a A 5doubl
e−heterostructure 1asers”
という表題で発表したSAS (self−align
ed 5tructuve)構造が一般に用いられてい
る。この構造は活性層に隣接してストライプ状領域の両
側に吸収層を設け、活性層からの光のしみ出しをこの吸
収層で吸収して撰失領域となし、吸収層のないストライ
プ状領域との間に実効的な屈折率分布を設けて横モード
を制御した構造である。
Semiconductor lasers using crystalline materials such as A42 GaAs/GaAs are compact, have low power consumption, and can perform continuous oscillation at room temperature with high efficiency. It is suitable as a light source for DAD) and is being put into practical use. The demand for this semiconductor laser as a light source for optical writing of optical discs and the like is increasing, and in order to meet this demand, research and development is underway on semiconductor lasers that can withstand high optical output oscillation. Recently, in response to the rapidly increasing importance of these semiconductor lasers, mass production has begun. This A
I! In addition to the conventional liquid phase growth method, GaAs/GaAs semiconductor laser manufacturing methods include
Vapor phase growth method using organic metals (Melaorgani)
c Vapor Phase Epitaxy, hereinafter M
OVPE method) is widely used. Among these, examples of AAGaAs/GaAs semiconductor lasers with transverse mode control include Coleman (J, J, Coleman)
and Dapkus, R,D, published in the magazine Applied Physics Letters.
cs Letters) 1980, Vol. 37, pp. 262-263, single-axis mode oscillation G by rMOcVD method.
aAuAs-GaAs SAS laser” “Singl
e-1ongitudinal-mode metal
-organic chemical-vapour-
-deposition self-alignedG
a A (l A s -G a A 5double
e-heterostructure 1asers”
SAS (self-align), which was announced under the title
ed 5 structures) are commonly used. In this structure, absorption layers are provided on both sides of a striped region adjacent to the active layer, and the absorption layer absorbs the light seeping out from the active layer to form a lost region. This structure controls the transverse mode by providing an effective refractive index distribution between the two.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のいわゆるSASレーザでは安定な基本横モード発
振を維持する許容領域がせまい。さらに実用上重要な非
点隔差は〜10μm程度と長いため、光出力を集光して
光デイスク用DRAW (directread af
ter write)レーザとして使用するには複雑な
レンズ等が必要となるばかりでな(、レンズ系内に入射
する光の割合が減少するため大光出力発振が要求され、
レーザの信頼性が著しくそこなわれる。また実効的な屈
折率分布を小さくすると横モードが不安定になるので、
低屈折率分布に伴なう低雑音化にもむつかしく、低雑音
特性が要求されるDAD用およびVD用レーザとしても
使用できない。従って光情報処理用レーザとしての用途
はかぎられており、その上許容範囲が狭いので歩留りが
きわめて悪い等の製作上の問題もある。
The so-called SAS laser described above has a narrow tolerance range for maintaining stable fundamental transverse mode oscillation. Furthermore, since the astigmatism difference, which is important in practice, is as long as ~10 μm, the optical output is condensed into DRAW (direct read af) for optical disks.
In order to use it as a laser, it not only requires a complicated lens, but also requires a large optical output oscillation because the proportion of light that enters the lens system decreases.
The reliability of the laser is seriously impaired. Also, if the effective refractive index distribution is reduced, the transverse mode becomes unstable, so
It is difficult to reduce noise due to the low refractive index distribution, and it cannot be used as a DAD or VD laser that requires low noise characteristics. Therefore, its use as a laser for optical information processing is limited, and in addition, the narrow tolerance range causes manufacturing problems such as extremely low yields.

本発明の目的は上記諸欠点を除去し、閾値電流が低く高
効率の発振をするばかりでなく、低非点隔差であり安定
な基本横モードて大光出力発振が可能であり、さらに低
雑音であり、比較的容易にかつ多量に製作でき再現性お
よび信頼性の上ですぐれた半導体レーザを提供する事に
ある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, and to achieve not only high-efficiency oscillation with a low threshold current, but also low astigmatic difference, stable fundamental transverse mode, and large optical output oscillation, as well as low noise. The object of the present invention is to provide a semiconductor laser that can be produced relatively easily and in large quantities and has excellent reproducibility and reliability.

〔課題を解決するための手段〕[Means to solve the problem]

前述の問題を解決するために本発明が提供する第1の手
段は、活性層を当該活性層よりもバンドギャップの広い
材料から成るクラッド層で挟みこんだダブルヘテロ接合
構造を備え、該クラッド層の一方が凸状の領域を有し、
該凸状領域は矩形形状に近い凸部領域とそれに続く傾斜
状の底部領域からなり、該凸部領域ではその幅がキャリ
ア拡散長よりも狭く、該底部領域では該凸部領域の中心
から両側に少くともキャリア拡散長の幅にわたって傾斜
状をした形状を備え、該凸状領域を除いた両側に電気的
には電流をブロックし、かつ活性層の光を吸収する物質
からなる光吸収層で埋め込んだ多層構造から成り、該活
性層からしみ出す光を該光吸収層が該凸状領域を除いた
領域から傾斜状をなす該底部領域にわたって吸収する構
造とし、その吸収係数が凸部領域に近づくにつれて減少
する事を特徴とする半導体レーザである。
A first means provided by the present invention to solve the above-mentioned problem includes a double heterojunction structure in which an active layer is sandwiched between cladding layers made of a material with a wider band gap than the active layer, and the cladding layer one side has a convex area,
The convex region consists of a nearly rectangular convex region and a sloped bottom region following it, the width of the convex region is narrower than the carrier diffusion length, and the bottom region has a width extending from the center of the convex region to both sides. has a sloped shape over at least the width of the carrier diffusion length, and on both sides excluding the convex region are light absorption layers made of a substance that electrically blocks current and absorbs light from the active layer. The light-absorbing layer absorbs light seeping from the active layer over the sloped bottom region from the region excluding the convex region, and the absorption coefficient is in the convex region. This is a semiconductor laser characterized by a decrease in the value as it approaches the target.

本発明の第2の手段は、上記第1の手段において、傾斜
状をなす底部領域を有する該凸状領域と底部にわたって
該凸部領域と同一幅をなす矩形状の凸状領域とが共振器
の長て方向に連なって形成されている事を特徴とする半
導体レーザである。
A second means of the present invention is that in the first means, the convex region having an inclined bottom region and the rectangular convex region having the same width as the convex region across the bottom form a resonator. This semiconductor laser is characterized by being formed in series in the longitudinal direction.

本発明の第3の手段は、上記第1の手段において、クラ
ッド層に形成した傾斜状をなす底部領域を有する該凸状
領域が、共振器の長て方向の一部において該活性層から
しみ出す光を該凸状領域の外部でも吸収しない様に該ク
ラッド層厚を厚くした事を特徴とする半導体レーザであ
る。
A third means of the present invention is that in the first means, the convex region formed in the cladding layer and having an inclined bottom region seeps from the active layer in a part of the longitudinal direction of the resonator. This semiconductor laser is characterized in that the thickness of the cladding layer is increased so that the emitted light is not absorbed even outside the convex region.

本発明の第4の手段は、上記第1の手段において、基板
上に該基板と電気極性の異なる電流ブロック層を形成し
た状態において、これに隣接するクラッド層が厚み方向
該基板に対して傾斜状をなす底部領域を有する凸状領域
をなす溝を形成し、溝の先端が基板に隣接している事を
特徴とする半導体レーザである。
A fourth means of the present invention is that in the first means, a current blocking layer having a different electrical polarity from that of the substrate is formed on the substrate, and the cladding layer adjacent to the current blocking layer is tilted with respect to the substrate in the thickness direction. The semiconductor laser is characterized in that a groove is formed in the form of a convex region having a bottom region in the shape of a shape, and the tip of the groove is adjacent to a substrate.

本発明の第5の手段は、上記第4の手段において、該溝
を両端面近傍に設けるとともに、その間の共振器中央領
域では同一幅をもつ矩形状の溝を該電流ブロック層に形
成し、該溝の先端が該基板に隣接していると共に上記溝
にクラッド層を介して隣近する活性層の層厚が両端面近
傍で薄くなっている事を特徴とする半導体レーザである
A fifth means of the present invention is that in the fourth means, the groove is provided near both end faces, and a rectangular groove having the same width is formed in the current blocking layer in the central region of the resonator between them. The semiconductor laser is characterized in that the tip of the groove is adjacent to the substrate, and the layer thickness of an active layer adjacent to the groove via a cladding layer is thinner near both end faces.

〔実施例〕〔Example〕

以下図面を用いて本発明の詳細な説明する。 The present invention will be described in detail below using the drawings.

第1図は第1の実施例の斜視図、第2/図(a)は第1
図のA−A’断面図、第2図(b)は第2図(a)に対
応する利得損失分布図、第2図(c)は第2図(a)に
対応する屈折率分布図、第3図は非点隔差と底部領域の
傾斜との関係の解析結果を示す図、第4図は第2の実施
例の斜視図、第5図は第4図のB−B’断面図、第6図
は第3の実施例の斜視図、第7図は第6図のc−c’断
面図、第8図は第4の実施例の斜視図、第9図は第8図
のD−D’断面図、第10図は第5の実施例の上面図、
第11図は第10図のE−E’断面図、第12図は第1
0図のF−F’断面図である。
Figure 1 is a perspective view of the first embodiment, and Figure 2/(a) is a perspective view of the first embodiment.
Figure 2(b) is a gain-loss distribution diagram corresponding to Figure 2(a), and Figure 2(c) is a refractive index distribution diagram corresponding to Figure 2(a). , FIG. 3 is a diagram showing the analysis results of the relationship between the astigmatism difference and the slope of the bottom region, FIG. 4 is a perspective view of the second embodiment, and FIG. 5 is a sectional view taken along line BB' in FIG. 4. , FIG. 6 is a perspective view of the third embodiment, FIG. 7 is a sectional view taken along line c-c' in FIG. 6, FIG. 8 is a perspective view of the fourth embodiment, and FIG. 9 is a perspective view of the fourth embodiment. DD' sectional view, FIG. 10 is a top view of the fifth embodiment,
Figure 11 is a sectional view taken along line E-E' in Figure 10, and Figure 12 is a cross-sectional view of the first
It is a FF' cross-sectional view of FIG.

第2図(a)に示すように、n形G a A s基板1
0上にn形A 42 a、a s G & o、s s
 A S第1クラッド層11を2.5 p m、アンド
ープA A’ oy+ s G a o、s 5A S
活性層12を0.03.um、p形A j’ 0.45
 G a a、s s A s第2クラッド層13を2
.0μm、p形GaAsキ+ツブ層14を1.0μmM
OVPE法で連続成長する。次にSiO2膜で成長表面
全体を被膜した後、フォトレジスト法により共振器の長
さ方向に幅4μmのストライプ状の領域を残して窓をあ
け、エツチングをする。このとき、エツチングはp形G
aAsキ+7ブ層14からp形A I!a4s G &
 0.55As第2クラッド層13にわたって行なう。
As shown in FIG. 2(a), an n-type GaAs substrate 1
n-type A on 0 42 a, a s G & o, s s
A S first cladding layer 11 with a thickness of 2.5 pm, undoped A A' oy+s G a o,s 5A S
The active layer 12 is 0.03. um, p type A j' 0.45
G a a, s s A s second cladding layer 13 2
.. 0 μm, p-type GaAs chip layer 14 is 1.0 μmM
Continuous growth using OVPE method. Next, after the entire growth surface is coated with a SiO2 film, a window is opened in the length direction of the resonator leaving a striped region of 4 μm in width by photoresist method, and etching is performed. At this time, the etching is p-type G
aAs +7 layer 14 to p-type AI! a4s G &
This is done over the second cladding layer 13 of 0.55As.

窓をあけた領域において、第2クラッド層厚が02μm
になる深さまでエツチングを行なう。この時リン酸系の
エツチング溶液を用いると、ストライプ状の領域の上部
は幅3μmの矩形状になり、第2クラッド層13は深さ
1.3μm程度エツチングした所からストライプ状領域
の横方向にすそを引いたい形状になる。この結果、特に
表面から第2層目の第2クラッド層13では凸状領域1
5が形成され、その凸部領域16の幅は3μmで形状は
矩形状に近く、一方、底部領域17は第2クラツド層厚
0.7μmから傾斜状に幅4μmにわたって層厚が薄く
なり、第2クラツド層厚0.2μmとなった所で平坦な
平面と一致する。以上の如く、第2クラッド層に凸部領
域16と傾斜状の底部領域17とをもつ凸状領域15が
形成される。この時キャリアの拡散長は〜3μmであり
本発明の条件をみたす。
In the area where the window is opened, the second cladding layer thickness is 0.2 μm.
Perform etching to a depth of . If a phosphoric acid-based etching solution is used at this time, the upper part of the striped region becomes a rectangular shape with a width of 3 μm, and the second cladding layer 13 is etched to a depth of about 1.3 μm in the lateral direction of the striped region. Pull the hem into the shape you want. As a result, especially in the second cladding layer 13 which is the second layer from the surface, the convex regions 1
5 is formed, and its convex region 16 has a width of 3 μm and a nearly rectangular shape, while the bottom region 17 has a thickness that gradually decreases from the second cladding layer thickness of 0.7 μm to a width of 4 μm. It coincides with a flat plane when the thickness of the two-clad layer becomes 0.2 μm. As described above, the convex region 15 having the convex region 16 and the inclined bottom region 17 is formed in the second cladding layer. At this time, the carrier diffusion length is ~3 μm, which satisfies the conditions of the present invention.

次にp形GaAsキャップ層14の表面に5in2膜を
つけたままその両端にn形G a A s光吸収層18
をMOVPE法で成長する。この時5iCh膜上には成
長せずエツチングで残ったストライプ状の凸状両端がn
形GaAs光吸収層14が形成される。5iOz除去後
、p形G a A sキャップ層14上にp形オ〜ミッ
クコンタクト19.基板10側にn形オーミックコンタ
クト20をつけると本発明の第1の実施例が得られる(
第1図、第2図(a))。
Next, with a 5in2 film attached to the surface of the p-type GaAs cap layer 14, n-type GaAs light absorption layers 18 are placed on both ends of the 5in2 film.
is grown using the MOVPE method. At this time, the striped convex ends that did not grow on the 5iCh film and remained after etching were n
A GaAs light absorbing layer 14 is formed. After removing 5iOz, a p-type ohmic contact 19. is formed on the p-type GaAs cap layer 14. A first embodiment of the present invention can be obtained by attaching an n-type ohmic contact 20 to the substrate 10 side (
Figures 1 and 2 (a)).

本発明の第2の実施例の場合にはエツチングする際に、
上記凸状領域を形成するストライプ状の領域の両端横方
向だけ窓をあける。この領域としては共振器長て方向に
例えば100μmずつ両者を50μmはなして窓をあけ
、前記の如くエツチングする。次に、エツチングした領
域をフォトレジストで被膜し、上記残した領域のストラ
イプ状領域の両側に窓をあけドライエツチングにより第
2クラッド層厚が0.2μmになるように行なう。
In the case of the second embodiment of the present invention, during etching,
Windows are opened only in the lateral direction at both ends of the striped region forming the convex region. For this region, a window is opened, for example, by 100 .mu.m in the longitudinal direction of the resonator, with a distance of 50 .mu.m, and etched as described above. Next, the etched area is coated with a photoresist, and windows are opened on both sides of the striped area in the remaining area and dry etching is performed so that the second cladding layer has a thickness of 0.2 .mu.m.

このときドライエツチングの領域は共振器長て方向にお
いて凸状領域に隣接しなくてもよい(共振器長て方向ス
トライプ状領域両側にエツチングされない領域があって
もよい)。これに前記第1の実施例と同様光吸収層で埋
め込み電極をつけると第2の実施例が得られる(第4図
、第5図)。
At this time, the dry etched region does not need to be adjacent to the convex region in the cavity length direction (there may be unetched regions on both sides of the striped region in the cavity length direction). A second embodiment is obtained by adding a buried electrode with a light absorption layer as in the first embodiment (FIGS. 4 and 5).

本発明の第3の実施例の場合には、第1の実施例におい
てエツチングする前にまず共振器中央部分を共振器長て
方向に垂直に、横方向全体を長さ80μm程度被覆し、
両端面近傍110pmずつ深さ0.8μmエツチングす
る。この後、被覆を除去し、第1の実施例と同様に両端
面近傍で凸状領域外部の第2クラッド層厚が0.2μm
になるまでエツチングすると共振器中央部分の凸状領域
外部では第2クラッド層厚が1.0μmとなり、活性層
の光は共振器中央部分では吸収されず、この領域はゲイ
ンガイデイングになる。これを前記第1の実施例と同様
光吸収層で埋め込み、電極をつけると第3の実施例が得
られる(第6図、第7図)。
In the case of the third embodiment of the present invention, before etching in the first embodiment, first the central portion of the resonator is covered perpendicularly to the length direction of the resonator, and the entire lateral direction is covered with a length of about 80 μm.
Etching is performed to a depth of 0.8 μm at 110 pm near both end faces. After that, the coating is removed, and the thickness of the second cladding layer outside the convex region near both end faces is 0.2 μm as in the first embodiment.
When etched until it becomes 1.0 μm outside the convex region at the center of the resonator, the thickness of the second cladding layer becomes 1.0 μm, and the light in the active layer is not absorbed at the center of the resonator, and this region becomes gain guiding. By filling this with a light absorption layer and attaching electrodes as in the first embodiment, the third embodiment is obtained (FIGS. 6 and 7).

第8図、第9図に示した本発明の第4の実施例では、p
形G a A s基板21上にn形GaAs層22を1
.0μm成長する。この後5in2で全体を被膜した後
、フォトレジスト法により共振器の長さ方向に幅8μm
のストライプ状の窓をあけ、エツチングをする。この時
硫酸系のエツチングを用いると、n形GaAs層はなだ
らかなメサ状にエツチングされる。エツチングを慄さ0
.5μmいた後、再びフォトレジスト法により上記メサ
の中央に幅3μmの窓をあけ、フォトレジスト膜を保護
膜として深さ0.8μmドライエツチングをする。
In the fourth embodiment of the present invention shown in FIGS. 8 and 9, p
An n-type GaAs layer 22 is formed on a GaAs-type substrate 21.
.. Grows 0 μm. After that, the entire surface was coated with 5in2 film, and then the width was 8μm in the length direction of the resonator using the photoresist method.
A striped window is opened and etched. If sulfuric acid-based etching is used at this time, the n-type GaAs layer is etched into a gentle mesa shape. I'm scared of etching 0
.. After 5 μm, a window with a width of 3 μm is opened in the center of the mesa using the photoresist method again, and dry etching is performed to a depth of 0.8 μm using the photoresist film as a protective film.

この結果先端がp形GaAs基板21まで達する矩形状
の溝と、そのもとの部分はなだらかな傾斜状をして溝の
深さを0.5μmに達する凹状領域23が形成される。
As a result, a rectangular groove whose tip reaches as far as the p-type GaAs substrate 21 and a concave region 23 whose original part has a gently sloped shape and reaches a groove depth of 0.5 μm are formed.

この凹状領域23は本発明の第1の実施例における凸状
領域15に対応し、またn形GaAs層22は電流ブロ
ック効果と活性層からの光吸収効果をもつn形GaAs
光吸収層14に対応している。この後被膜を除去し、p
形A 470.4S G a a、ss A s第1ク
ラッド層24を凹状領域23を埋め凹状領域外部のn形
GaAs層22での成長厚が0.2μmになるように成
長し、続けて7ンドーブA II c、s G a o
、ss A s活性層25を0.04μm、n形A I
I 111.45 G a rhss A S第2クラ
ッド層26を2.0.um、n形GaAsキャップ層2
7を連続成長する。このとき液相成長を用いれば成長面
が平坦な第1クラッド層24を上記条件にあうように容
易に成長させる事ができる。この成長表面にn形オーミ
ックコンタク)28.p形GaAs基板21にp形オー
ミックコンタクト29を形成すると本発明の第4の実施
例が得られる・(第8図、第9図)。
This concave region 23 corresponds to the convex region 15 in the first embodiment of the present invention, and the n-type GaAs layer 22 is made of n-type GaAs which has a current blocking effect and a light absorption effect from the active layer.
It corresponds to the light absorption layer 14. After this, the coating was removed and p
Type A 470.4S Ga a, ss A s The first cladding layer 24 is grown to fill the concave region 23 so that the growth thickness of the n-type GaAs layer 22 outside the concave region is 0.2 μm, and then 7 Ndobu A II c, s Ga o
, ss A s active layer 25 of 0.04 μm, n-type AI
I 111.45 G a rhss A S second cladding layer 26 of 2.0. um, n-type GaAs cap layer 2
Continuously grow 7. At this time, if liquid phase growth is used, the first cladding layer 24 having a flat growth surface can be easily grown to meet the above conditions. n-type ohmic contact on this growth surface)28. A fourth embodiment of the present invention is obtained by forming a p-type ohmic contact 29 on a p-type GaAs substrate 21 (FIGS. 8 and 9).

本発明の第5の実施例は、上記第4の実施例で示した凹
状領域を形成する際、両端面近傍100μmにのみメサ
状のエツチングをする。これに対し共振器中央部分は幅
3μmの窓をあけ、矩形状に深さ0.6μmエツチング
する。このあと全共振器にわたり上記各々の溝の中心を
通るように溝3μmの溝を深さ0.8μmドライエツチ
ングによりあける。つぎに被膜を除去し、第4の実施例
と同じ各層を液相成長するが、このときp形Al1o、
<sG a o、s s A s第1クラッド層24は
両端面近傍の凹状領域23ではその部分を埋め、その両
端のn形GaAs層22での成長厚が0.2μmになる
ように成長すると、両端面近傍は平坦な成長層表面にな
るのに対し、共振器中央部分の溝では0.1μm程度く
ぼんでいる。次に成長するアンドープ活性層25はその
成長層表面が平坦になるようにし、両端面近傍で厚さ0
.03μmにすれば、共振器中央では0.13μmの層
厚の活性層が成長する事になる。この他は第4の実施例
と同様に形成すると本発明の第5の実施例が得られる(
第1O図、第11図、第12図)。
In the fifth embodiment of the present invention, when forming the concave region shown in the fourth embodiment, mesa-shaped etching is performed only in the vicinity of both end faces by 100 μm. On the other hand, in the central part of the resonator, a window with a width of 3 μm is opened and a rectangular shape is etched to a depth of 0.6 μm. Thereafter, a groove of 3 .mu.m in depth is formed by dry etching to a depth of 0.8 .mu.m over the entire resonator so as to pass through the center of each of the grooves. Next, the film is removed and the same layers as in the fourth example are grown in a liquid phase, but at this time p-type Al1o,
<sG a o, s s A sThe first cladding layer 24 fills the concave regions 23 near both end faces, and grows so that the growth thickness of the n-type GaAs layers 22 at both ends is 0.2 μm. , the grown layer surface is flat near both end faces, whereas the groove at the center of the resonator is depressed by about 0.1 μm. The undoped active layer 25 to be grown next has a flat surface and a thickness of 0 near both end faces.
.. If the thickness is 0.03 μm, an active layer with a thickness of 0.13 μm will grow at the center of the resonator. Otherwise, the fifth embodiment of the present invention can be obtained in the same manner as the fourth embodiment (
Figure 1O, Figure 11, Figure 12).

〔作用〕[Effect]

本発明の構造において、注入された電流はキャップ層1
4.第2クラッド層13の凸状領域15を通って活性層
12に注入される。活性層に注入されたキャリアは活性
層水平横方向に拡散していき、利得分布を形成し、レー
ザ発振を開始する。このとき凸状領域15の凸部領域1
6の幅はキャリア拡散長より狭いためキャリアは凸部領
域16内に集中して流れ、活性層内に注入するため、こ
れを反映して利得分布は主に凸部領域部分を頂点とする
形状になる。
In the structure of the present invention, the injected current flows through the cap layer 1
4. It is implanted into the active layer 12 through the convex region 15 of the second cladding layer 13 . The carriers injected into the active layer diffuse in the horizontal and lateral directions of the active layer, form a gain distribution, and start laser oscillation. At this time, the convex region 1 of the convex region 15
Since the width of 6 is narrower than the carrier diffusion length, carriers flow concentrated in the convex region 16 and are injected into the active layer.Reflecting this, the gain distribution has a shape with the apex mainly at the convex region. become.

一方、光は活性層からしみ出し、垂直方向に大きく広が
る。従って、光は、凸状領域15の両側では光吸収層1
8内まで犬きく′シみ出し、そこで大きな光吸収損失を
うける。更に凸状領域15においても傾斜状をなす底部
領域17では、活性層からしみ出した光は、光吸収層1
8内までしみ出し、そこで損失をうける。この状態は凸
部領域16に近づくほど小さくなり、損失量は減少して
いく。
On the other hand, light seeps out of the active layer and spreads widely in the vertical direction. Therefore, light is transmitted to the light absorbing layer 1 on both sides of the convex region 15.
The light leaks out to within 8, where it suffers a large light absorption loss. Furthermore, in the bottom region 17 which is inclined in the convex region 15, the light seeping out from the active layer is absorbed by the light absorption layer 1.
It seeps into the 8 and suffers losses there. This state becomes smaller as the convex region 16 is approached, and the amount of loss decreases.

この光のうける光吸収損失とキャリア注入によって形成
される利得分布との相乗効果により、大きな利得損失の
分布が形成される(第2図(b))。さらに、この光吸
収損失の変化に対応して凸部領域16を頂点とする正の
屈折率分布が形成される(第2図(C))。
A large gain loss distribution is formed by the synergistic effect of the optical absorption loss caused by this light and the gain distribution formed by carrier injection (FIG. 2(b)). Furthermore, in response to this change in light absorption loss, a positive refractive index distribution is formed with the convex region 16 as the apex (FIG. 2(C)).

以上の結果、本発明の構造においては、光は正の屈折率
ガイデイング機構で制御されつつ凸部領域16のみなら
ず、その両側の底部領域のうち比較的光吸収損失が小さ
い部分まで広がる。光はこの広がった両端では大きな光
吸収損失をうけるので利得損失分布でも制御される。こ
れと正の屈折率ガイデイング機構との相乗効果より安定
な基本横モード発振を大光出力発振時においても維持す
る事ができる。また、上記の如く光は凸部領域から横方
向に広がっているのでスポットサイズは大きくなる。こ
の結果放出される光出力は増大し、外部微分量子効率は
大きくなる。よって比較的低い電流値で高出力発振を達
成する事ができる。
As a result of the above, in the structure of the present invention, light is controlled by the positive refractive index guiding mechanism and spreads not only to the convex region 16 but also to the portions of the bottom regions on both sides of the convex region 16 where light absorption loss is relatively small. Since light undergoes a large optical absorption loss at both ends of this spread, it is also controlled by the gain-loss distribution. Due to the synergistic effect of this and the positive refractive index guiding mechanism, stable fundamental transverse mode oscillation can be maintained even during large optical output oscillation. Furthermore, as described above, since the light spreads laterally from the convex region, the spot size becomes large. As a result, the emitted light power increases and the external differential quantum efficiency increases. Therefore, high output oscillation can be achieved with a relatively low current value.

更に、本発明の構造では非点隔差も小さくなる。Furthermore, the structure of the present invention also reduces the astigmatism difference.

通常のSASレーザでは非点隔差は溝幅によって規定さ
れるが、本発明の構造では非点隔差は凸状領域の中央部
分凸部領域によって規定される。
In a normal SAS laser, the astigmatism difference is defined by the groove width, but in the structure of the present invention, the astigmatism difference is defined by the central convex region of the convex region.

従って、スポットサイズが広がっても小非点隔差を維持
する事ができる。第3図はこの非点隔差の計算結果を示
したものである。
Therefore, even if the spot size increases, a small astigmatism difference can be maintained. FIG. 3 shows the calculation result of this astigmatism difference.

第3図は非点隔差Δ2と凸状領域の底部の傾斜の割合と
の関係を表わしたもので、傾斜を表わす値として光吸収
層の底部から傾斜の生じる位置(図の中でH)の値を用
いた。図において凸部領域の幅はW、底部領域の全幅は
6μm、活性層厚0.03μm1凸状領域外部のクラッ
ド層の厚さは0.2μmの場合であり、他の層厚、組成
は第1の実施例を用いた計算結果である。図から明らか
な様に、H=0.5.umで、かつ、W≦3.umであ
れば、Δ2≦3.5μmが得られる事がわかる。さらに
、Wは狭い程良い事、ある程度傾きが急峻になると(H
が大になると)ΔZが急激に増大する変極点がある事、
その値はWが大きい程小さくなる事がわかる。従って、
Wを狭くし、傾きをゆるくする程Δ2は小さくなり、ま
たその許容範囲が広くなる。第3図では斜線の部分が許
容範囲になる。
Figure 3 shows the relationship between the astigmatism difference Δ2 and the slope ratio of the bottom of the convex region. The value was used. In the figure, the width of the convex region is W, the total width of the bottom region is 6 μm, the active layer thickness is 0.03 μm, the thickness of the cladding layer outside the convex region is 0.2 μm, and the other layer thicknesses and compositions are as follows. These are calculation results using Example 1. As is clear from the figure, H=0.5. um, and W≦3. um, it can be seen that Δ2≦3.5 μm can be obtained. Furthermore, the narrower W is, the better; if the slope becomes steep to some extent (H
There is an inflection point where ΔZ increases rapidly (as ΔZ becomes large),
It can be seen that the value becomes smaller as W becomes larger. Therefore,
The narrower W and the gentler the slope, the smaller Δ2 becomes, and the wider its allowable range becomes. In FIG. 3, the shaded area is the allowable range.

このように非点隔差が狭ければ光の集光率もよくなり、
比較的低い光出力でも光デイスク盤面上では高出力を維
持する事ができる。
In this way, the narrower the astigmatism difference, the better the light collection efficiency.
Even with relatively low optical output, high output can be maintained on the optical disk surface.

また、本発明の構造では、前記した様に、光は大きな光
吸収損失領域近傍まで広がっており、等測的には活性層
水平横方向に可飽和吸収体をもっている事になり、光が
この影響をうけると自励振動が生じやすくなる。本発明
の構造では利得分布の幅が屈折率分布の幅にくらべて狭
くなることも自励振動を助長する。すなわち、注入キャ
リア密度分布が変動すると、光はその影響をうけて変動
しやすくなる。こうして自励振動が生じると、その結果
、軸モードが多モード化し、軸モードのコヒーレントが
低減するために反射光に対する雑音を低く抑える事がで
きる。
In addition, in the structure of the present invention, as mentioned above, the light spreads to the vicinity of the large light absorption loss region, and isometrically, there is a saturable absorber in the horizontal and lateral directions of the active layer, so that the light When affected, self-excited vibration is likely to occur. In the structure of the present invention, the fact that the width of the gain distribution is narrower than the width of the refractive index distribution also promotes self-oscillation. That is, when the injected carrier density distribution fluctuates, the light tends to fluctuate under its influence. When self-excited vibration occurs in this way, the axial mode becomes multi-mode, and the coherence of the axial mode is reduced, so that noise in reflected light can be suppressed to a low level.

本発明の第2の構造では、上記に加えて共振器長て方向
に可飽和吸収体をもっている事になる。
In addition to the above structure, the second structure of the present invention has a saturable absorber in the longitudinal direction of the resonator.

すなわち、矩形の溝の領域では光は矩形の両側では吸収
損失をうける。これに対して凸状領域は光は横方向に広
がっており、この光が矩形の溝を通過する際に吸収損失
をうける。従って第1の構造より容易に自励振動が生じ
低雑音を維持する領域も広くなる。
That is, in a rectangular groove region, light undergoes absorption loss on both sides of the rectangle. On the other hand, in the convex region, light spreads laterally, and when this light passes through the rectangular groove, it undergoes absorption loss. Therefore, the region in which self-excited vibration occurs more easily than in the first structure and low noise is maintained becomes wider.

本発明の第3の構造では共振器の長て方向に光吸収層で
光吸収損失をうけない領域を含んでいる。
The third structure of the present invention includes a region in the longitudinal direction of the resonator that is free from light absorption loss due to the light absorption layer.

この領域はゲインガイデイング機構になる。ゲインガイ
デイングでは多軸モード化してコヒーレンスが悪くなる
ので第1の構造より低雑音化を達成しやすくなる。
This area becomes a gain guiding mechanism. In gain guiding, coherence deteriorates due to multi-axis mode, so it is easier to achieve noise reduction than in the first structure.

本発明の第4の構造は第1の構造と構造は異なるが、全
く同じ効果をもつ。すなわち、第4の構造では、基板の
上に成長した電流ブロック層22が光吸収効果をもつ。
Although the fourth structure of the present invention is different in structure from the first structure, it has exactly the same effect. That is, in the fourth structure, the current blocking layer 22 grown on the substrate has a light absorption effect.

本発明の第5の構造は第1の構造の効果に加えて高出力
化に有効である。両端面で光は水平横方向垂直方向と大
きく広がるのでCODレベルが上昇する。更に共振器中
央付近では活性層が厚いので低量化も達成できる。
The fifth structure of the present invention is effective in increasing output in addition to the effects of the first structure. Since the light spreads widely in the horizontal, lateral, and vertical directions at both end faces, the COD level increases. Furthermore, since the active layer is thick near the center of the resonator, it is possible to reduce the amount of active layer.

〔発明の効果〕〔Effect of the invention〕

本発明の第1の半導体レーザは。 The first semiconductor laser of the present invention is:

(1)基本横モード発振を維持する事ができる(2)非
点隔差が小さく光の集光を簡単にできる(3)スポット
サイズが大きく高効率である(4)  自励振動が生じ
やすく低雑音レーザになる(5)構造が比較的簡単であ
るので再現性よく高歩留りにつくる事ができる 利点を有する。
(1) Fundamental transverse mode oscillation can be maintained (2) Astigmatism difference is small and light can be easily focused (3) Spot size is large and high efficiency (4) Self-excited vibration easily occurs and low (5) Since the structure is relatively simple, it has the advantage of being able to be manufactured with good reproducibility and high yield.

本発明の第2の半導体レーザは上記効果に加えて、共振
器長て方向に可飽和吸収体を備え自励振動が容易に生じ
その許容範囲も広い利点をもつ。
In addition to the above-mentioned effects, the second semiconductor laser of the present invention has the advantage that it has a saturable absorber in the longitudinal direction of the resonator, so that self-excited vibration easily occurs and its permissible range is wide.

本発明の第3の半導体レーザは、第1の半導体レーザの
効果に加えて、共振器長て方向にゲインガイデイング機
構を備え、多軸モード化し低雑音特性が得られる。
In addition to the effects of the first semiconductor laser, the third semiconductor laser of the present invention is equipped with a gain guiding mechanism in the longitudinal direction of the resonator, and has a multi-axis mode, thereby achieving low noise characteristics.

本発明の第4の半導体レーザは、第1の半導体レーザと
構造は異なるが、同じ効果をもつ。
The fourth semiconductor laser of the present invention has a different structure from the first semiconductor laser, but has the same effect.

本発明の第5の半導体レーザは、第1の半導体レーザの
効果に加えて、(1)高出力発振が可能である、(2)
低閾値発振する、利点をもつ。
In addition to the effects of the first semiconductor laser, the fifth semiconductor laser of the present invention (1) is capable of high-output oscillation; (2)
It has the advantage of low threshold oscillation.

なお、上記実施例において、p、nを反転させてもよい
。また実施例はAj7GaAs/GaAsダブルヘテロ
接合結晶材料について説明したが、その他の結晶材料例
えばInGaP/AAInP。
Note that in the above embodiment, p and n may be reversed. Furthermore, although the embodiments have been described with respect to the Aj7GaAs/GaAs double heterojunction crystal material, other crystal materials such as InGaP/AAInP may be used.

InGaAsP/InGaP、InGaAsP/InP
InGaAsP/InGaP, InGaAsP/InP
.

AI!GaAsSb/GaAsSbII多くの結晶材料
に適用する事ができる。
AI! GaAsSb/GaAsSbII can be applied to many crystal materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の斜視図、第2図(a)
は第1図のA−A’断面図、第2図(b)は第2図(a
)に対応する利得損失分布図、第2図(c)は第2図(
a)に対応する屈折率分布図、第3図は非点隔差(Δ2
)と凸状領域の底部領域の傾斜を示す光吸収層の底から
の距離(H)との関係の計算結果を示す図、第4図は本
発明の第2の実施例の斜視図、第5図は第4のB−B’
断面図、第6図は本発明の第3の実施例の斜視図、第7
図は第6図のC−C’断面図、第8図は第4の実施例の
斜視図、第9図は第8図のD−D’断面図、第10図は
第5の実施例の上面図、第11図は第10図のE−E’
断面図、第12図は第10図のF−F′断面図である。 図において 10・・・・・・n形GaAs基板、11・・・・・・
n形AI2゜450 & o、ssA S第1クラッド
層、12−−A 1 o、+ s G a Q、l S
As活性層、13・・・・・・p形A II 0.45
0 a o、s s A S第2クラッド層、14・・
・・・・p形G a A sキャップ層、15・・・・
・・凸状領域、16・・・・・・凸部領域、17・・・
・・・傾斜状底部領域、18・・・・・・n形GaAs
光吸収層、19・・・・・・p形オーミックコンタクト
、2o・・・・・・n形オーミックコンタクト、21・
・・・・・p形GaAs基板、22・・・・・・n形G
 a A s層、23・・・・・・凹状領域、24・・
・・・・p形A 12 Li2 G & 、、ss A
 S第1クラッド層、25−−A II O,18G 
& a、ssA s活性層、26”””n形A (l 
tL4s G a ass A s第2クラッド層、2
7・・・・・・n形GaAsキャップ層、28・・・・
・・n形オーミックコンタクト、29・・・・・・p形
オーミックコンタクト をそれぞれ示す。 代理人 弁理士  内 原   音 麓 /2:活桂層 15:凸仏′4′pt城 16ユ凸部領域 17:#!斜グ人゛広音pイカカ殴 78:nノFIt ea A sN:、’、!そリノ(
)−し宋  1  図 00      θ5      1.0DLSTAN
CE  FROMA  BOTTO閂OF  BL、O
GK   LAYERH(pm、)罰 3 閃 B             Bフ 第  5 図 躬 6 霞 躬7図 刀2;ふ舌+1眉      /3:第2.クラッド1
5:凸法係域′16:凸舒領戚 I7: 姿!!、e+IX爪音m鉦変 18  :n斤
9GoAsX、olk’+lA策9図
Fig. 1 is a perspective view of the first embodiment of the present invention, Fig. 2(a)
is a cross-sectional view taken along line AA' in Figure 1, and Figure 2 (b) is a cross-sectional view taken along line AA' in Figure 1;
), Figure 2(c) is a gain-loss distribution diagram corresponding to Figure 2(c).
The refractive index distribution map corresponding to a), Figure 3, shows the astigmatism difference (Δ2
) and the distance (H) from the bottom of the light absorption layer showing the slope of the bottom region of the convex region. FIG. 4 is a perspective view of the second embodiment of the present invention. Figure 5 shows the fourth B-B'
A sectional view, FIG. 6 is a perspective view of the third embodiment of the present invention, and FIG.
The figure is a sectional view taken along the line CC' in FIG. 6, FIG. 8 is a perspective view of the fourth embodiment, FIG. 9 is a sectional view taken along the line DD' in FIG. 8, and FIG. 10 is a sectional view of the fifth embodiment. The top view of FIG. 11 is EE' in FIG. 10.
The sectional view, FIG. 12, is a sectional view taken along line FF' in FIG. In the figure, 10... n-type GaAs substrate, 11...
n-type AI2゜450&o, ssA S first cladding layer, 12--A 1 o, + s Ga Q, l S
As active layer, 13... p-type A II 0.45
0 a o, s s A S second cladding layer, 14...
...p-type GaAs cap layer, 15...
...Convex region, 16...Convex region, 17...
... Slanted bottom region, 18 ... n-type GaAs
Light absorption layer, 19...p-type ohmic contact, 2o...n-type ohmic contact, 21.
...p-type GaAs substrate, 22...n-type G
a As layer, 23... Concave region, 24...
...p-type A 12 Li2 G & ,,ss A
S first cladding layer, 25--A II O, 18G
&a, ssA sactive layer, 26"""n type A (l
tL4s G a ass A s second cladding layer, 2
7...n-type GaAs cap layer, 28...
. . . n-type ohmic contact, 29 . . . p-type ohmic contact, respectively. Agent Patent Attorney Uchihara Onroku/2: Katsura Layer 15: Convex Buddha '4'pt Castle 16 Yu Convex Area 17: #! Diagonal person ゛ Hiroon p Ikaka punch 78: nno FIt ea A sN:,',! Sorino (
)-Song 1 Figure 00 θ5 1.0DLSTAN
CE FROMA BOTTO bolt OF BL, O
GK LAYERH (pm,) Punishment 3 Flash B B Bfu No. 5 Zuman 6 Kasumiman 7 Zuto 2; Futon + 1 eyebrow /3: 2nd. Clad 1
5: Convex area '16: Convex area I7: Appearance! ! , e + IX Tsume sound m gong change 18: n cat9GoAsX, olk'+lA measure 9 figure

Claims (1)

【特許請求の範囲】 1、活性層を当該活性層よりもバンドギャップの広い材
料から成るクラッド層で挟みこんだダブルヘテロ接合構
造を備え、該クラッド層の一方が凸状の領域を有し、該
凸状領域は矩形状に近い凸部領域とそれに続く傾斜状の
底部領域からなり、該凸部領域ではその幅がキャリア拡
散長よりも狭く、該底部領域では該凸部領域の中心から
両側を少くともキャリア拡散長の幅にわたって傾斜状を
した形状を備え、該凸状領域を除いた両側に電気的には
電流をブロックしかつ活性層の光を吸収する物質からな
る光吸収層で埋め込んだ多層構造を備え、該活性層から
しみ出す光を該光吸収層が該凸状領域を除いた領域から
傾斜状をなす該底部領域にわたって吸収する構造とし、
その吸収係数が凸部領域に近づくにつれて減少する事を
特徴とする半導体レーザ。 2、請求項1記載の半導体レーザにおいて、傾斜状をな
す底部領域を有する該凸状領域と底部にわたって該凸部
領域と同一幅をなす矩形状の凸状領域とが共振器の長て
方向に連なって形成されている事を特徴とする半導体レ
ーザ。 3、請求項1記載の半導体レーザにおいて、クラッド層
に形成した傾斜状をなす底部領域を有する該凸状領域が
共振器の長て方向の一部において該活性層からしみ出す
光を該凸状領域の外部でも吸収しない様に該クラッド層
厚を厚くした事を特徴とする半導体レーザ。 4、請求項1記載の半導体レーザにおいて、基板上に該
基板と電気極性の異なる電流ブロック層を形成し、これ
に隣接するクラッド層が層厚方向において該基板に対し
て傾斜状をなす底部領域を有する凸状領域となる様に溝
を形成し該溝の先端が該基板に隣接している事を特徴と
する半導体レーザ。 5、請求項4記載の半導体レーザにおいて、該溝を両端
面近傍に設けるとともに共振器中央領域では同一幅をも
つ矩形状の溝を該電流ブロック層に形成しこの溝の先端
が該基板に隣接していると共に各溝にクラッド層を介し
て隣近している活性層の層厚が両端面近傍で薄くなって
いる事を特徴とする半導体レーザ。
[Claims] 1. A double heterojunction structure in which an active layer is sandwiched between cladding layers made of a material with a wider band gap than the active layer, one of the cladding layers having a convex region; The convex region consists of a nearly rectangular convex region and an inclined bottom region following it, the width of the convex region is narrower than the carrier diffusion length, and the width of the convex region is narrower than the carrier diffusion length. has a sloped shape over at least the width of the carrier diffusion length, and is embedded with a light absorption layer made of a material that electrically blocks current and absorbs light from the active layer on both sides except for the convex region. has a multilayer structure, and the light absorbing layer absorbs light seeping out from the active layer from the region excluding the convex region to the bottom region forming an inclined shape,
A semiconductor laser characterized in that its absorption coefficient decreases as it approaches a convex region. 2. The semiconductor laser according to claim 1, wherein the convex region having an inclined bottom region and a rectangular convex region having the same width as the convex region across the bottom extend in the longitudinal direction of the resonator. A semiconductor laser characterized by being formed in a series. 3. In the semiconductor laser according to claim 1, the convex region having an inclined bottom region formed in the cladding layer directs light seeping from the active layer in a part of the longitudinal direction of the resonator to the convex region. A semiconductor laser characterized by having a thick cladding layer so as not to absorb even outside the region. 4. In the semiconductor laser according to claim 1, a current blocking layer having an electrical polarity different from that of the substrate is formed on the substrate, and a bottom region where the cladding layer adjacent to the current blocking layer is inclined with respect to the substrate in the layer thickness direction. 1. A semiconductor laser characterized in that a groove is formed to form a convex region having a convex shape, and a tip of the groove is adjacent to the substrate. 5. In the semiconductor laser according to claim 4, the groove is provided near both end faces, and a rectangular groove having the same width is formed in the current blocking layer in the central region of the resonator, and the tip of the groove is adjacent to the substrate. 2. A semiconductor laser characterized in that the thickness of an active layer adjacent to each groove via a cladding layer is thinner near both end faces.
JP30958690A 1990-11-15 1990-11-15 Semiconductor laser Pending JPH04180685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30958690A JPH04180685A (en) 1990-11-15 1990-11-15 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30958690A JPH04180685A (en) 1990-11-15 1990-11-15 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH04180685A true JPH04180685A (en) 1992-06-26

Family

ID=17994819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30958690A Pending JPH04180685A (en) 1990-11-15 1990-11-15 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH04180685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340259A (en) * 2004-05-24 2005-12-08 Sharp Corp Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340259A (en) * 2004-05-24 2005-12-08 Sharp Corp Semiconductor laser device

Similar Documents

Publication Publication Date Title
JPH04180685A (en) Semiconductor laser
JP2003086902A (en) Semiconductor laser device and optical disk recording/ reproducing device
US4807235A (en) Semiconductor laser device
JPS5861695A (en) Semiconductor laser element
JPS58197787A (en) Semiconductor laser
JPH0671121B2 (en) Semiconductor laser device
KR100284765B1 (en) Semiconductor laser diode and manufacturing method thereof
JPS62296490A (en) Semiconductor laser device
JPS6297384A (en) Semiconductor laser device
JPS6179288A (en) Semiconductor laser
JPH02178989A (en) Semiconductor laser element
JPH01132191A (en) Semiconductor laser element
JPH02178987A (en) Semiconductor laser element
JPH071818B2 (en) Integrated semiconductor laser
JPH0272688A (en) Semiconductor laser element
JPS62165389A (en) Semiconductor laser
JP2004023004A (en) Semiconductor laser
JPS6239088A (en) Semiconductor laser
JPH04291981A (en) Semiconductor laser device
JPH02181986A (en) Semiconductor laser
JPS6392076A (en) Semiconductor laser
JPS5917293A (en) Semiconductor laser element
JPS59125686A (en) Semiconductor laser
JPS6310583A (en) Semiconductor laser
JPS63305580A (en) Semiconductor laser