JPS63142879A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS63142879A
JPS63142879A JP29026486A JP29026486A JPS63142879A JP S63142879 A JPS63142879 A JP S63142879A JP 29026486 A JP29026486 A JP 29026486A JP 29026486 A JP29026486 A JP 29026486A JP S63142879 A JPS63142879 A JP S63142879A
Authority
JP
Japan
Prior art keywords
width
layer
compound semiconductor
waveguide
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29026486A
Other languages
Japanese (ja)
Other versions
JPH0569318B2 (en
Inventor
Yoshifumi Tsunekawa
吉文 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP29026486A priority Critical patent/JPS63142879A/en
Priority to FR8714606A priority patent/FR2606223B1/en
Priority to DE19873736497 priority patent/DE3736497A1/en
Priority to US07/113,788 priority patent/US4856013A/en
Publication of JPS63142879A publication Critical patent/JPS63142879A/en
Publication of JPH0569318B2 publication Critical patent/JPH0569318B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To inhibit return-beam noises, to emit laser beams having small astigmatic difference and to enable low threshold current oscillation, in which reactive currents flowing on the outside of an active region are suppressed extremely, by making the width of an optical guide narrower than a central section in the vicinity of at least one resonator end surface and forming a buried layer by a II-VI compound semiconductor. CONSTITUTION:A II-VI compound semiconductor ZnSe buried layer 208 is shaped through an MOCVD method. A shaded part represents a II-VI compound semiconductor layer and a stripe at a central section a section in which a P-type GaAs contact layer 206 is exposed through etching. The width of an index waveguide and current injection width are brought to the same extent in the vicinity of resonator end-surfaces and an index waveguide mechanism is shaped, thus allowing stable single transverse mode oscillation, then emitting laser beams having extremely small astigmatic difference. On the other hand, the width of said index waveguide is made sufficiently wider than current injection width at the central section of a resonator and a gain waveguide mechanism is formed, thus allowing longitudinal multiaxis mode oscillation, then exceedingly inhibiting return-beam noises.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 不発t94に、低雑音でかつ償モード特性の安定な半導
体1/−ザ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor device with low noise and stable compensation mode characteristics.

〔従来の技術〕[Conventional technology]

半導体1ノ−ザ(以下LDと記す。)を光情報処理用装
置等の光源として使用する際、出射光の一部が反射によ
り再度共振器に戻ることにより生ずる雑音(以下戻り光
雑音と記す。)が生じ、災用に供することが不可能にな
る場合がある。この戻り+雑音を低減させる手段として
、I、Tl共振器端面に屈折率の異なるg1体を多層に
償層して端面の反射率を上げる′;15決めるいは縦モ
ードを多軸発振させる方法等がある。後者実施例として
特開昭60−140,774.特開昭60−15068
2がある。
When a semiconductor laser (hereinafter referred to as LD) is used as a light source for an optical information processing device, etc., there is noise (hereinafter referred to as return optical noise) generated when a part of the emitted light returns to the resonator due to reflection. ) may occur, making it impossible to use for disaster relief. As a means to reduce this return + noise, the reflectance of the end face is increased by compensating the I and Tl resonator end faces with multiple layers of G1 bodies with different refractive indexes; etc. As an example of the latter, Japanese Patent Application Laid-Open No. 60-140,774. JP-A-60-15068
There are 2.

一方m−v族化合物半導体より國るリッジ状の光導波路
側面の埋め込みには、通蕗行なわれている液層成長法(
以下LPK法と記す、)によう頂−V族化合物半導体層
全形成する方法、あるいに有機金属気相底長法(以下M
OCvD法と記す、)の選択成長によりm−v族化合物
半導体層全形匹する方法がある。後者の実施例としては
、ジャパニーズ ジャーナル オプ アプライドフィジ
ックス(ffapanese  、Tournal  
ofAppliea Physics ) 25巻6号L498頁−I、500頁1986年がある
On the other hand, the commonly used liquid layer growth method (
(hereinafter referred to as the LPK method), a method for forming the entire top-V group compound semiconductor layer, or an organometallic vapor phase bottom length method (hereinafter referred to as the M
There is a method of forming an entire m-v group compound semiconductor layer by selective growth (referred to as OCvD method). An example of the latter is the Japanese Journal of Applied Physics (ffapanese).
ofApplia Physics) Vol. 25 No. 6 L498-I, 500 pages 1986.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しがし前述の従来技術では以下のような問題点を有する
However, the prior art described above has the following problems.

LD共振器端面に屈折率の異なる#4体を多層に積層し
、端面反射率を上げて戻り元による影響を下げ戻り光雑
音を低減させる方法では、反射率を上げる為に誘電体各
層の膜厚ykLDの出射光波長に対して正確に制御する
必要がある。加えて端面での反射率が高いことで出射光
強度が小さくなる。故にディスク上への情報沓き込み時
のように鳥出力が必要となる際には、LD駆動電流をさ
らに上げる必要がある。LD駆動電流の増大は、消費電
力の増大となり素子内O温度が上が、り素子の信頼性−
寿命の低下を1ね〈、さらに多、1膜積層というLD作
製工程の増加ともなる・ 次に縦多軸モード発振嘔せて戻り光雑音t−区減する方
法では、二重異種接合構造(以下DH溝構造記す、)形
成後上面に電極ストライプを形成して成る利得導波型L
Di用いることが考えられる。
In the method of stacking #4 bodies with different refractive indexes in multiple layers on the end face of the LD resonator to increase the end face reflectance and reduce the influence of the return source and reduce the return optical noise, the film of each dielectric layer is stacked to increase the reflectance. It is necessary to accurately control the wavelength of the emitted light of the ykLD. In addition, the high reflectance at the end face reduces the intensity of the emitted light. Therefore, when a high output is required, such as when writing information onto a disk, it is necessary to further increase the LD drive current. An increase in the LD drive current increases power consumption, raises the O temperature inside the element, and reduces the reliability of the element.
This reduces the lifetime by one layer, and also increases the LD fabrication process of laminating more than one film.Next, in the method of reducing longitudinal multi-axis mode oscillation and return optical noise, a double heterojunction structure ( DH groove structure will be described below.) After formation, a gain waveguide type L is formed by forming electrode stripes on the upper surface.
It is possible to use Di.

利得導波型LDは、縦多軸モード発振が可能であり戻り
光等に起因する雑音に対する影響は低減される。しかし
利得導波型−Dは注入電流により形成される利得分布に
より共S″a内を接合に平行な方向のレーザ発掘光は導
波する。しtがって17一ザ発振党の等位相面は平面と
ならず波面収差をもつ、つまり非点収差が生じ、微小ス
ポットに集光する際複雑な光学系が必要となる。さらに
注入電流の変動あるいは戻り光によって近視野像が変化
する為光学系との結合が不安定とな9、各種装置への応
用に際し問題となる。
The gain waveguide type LD is capable of vertical multi-axis mode oscillation, and the influence of noise caused by returned light and the like is reduced. However, in the gain waveguide type -D, the laser excavation light in the direction parallel to the junction is guided within S''a due to the gain distribution formed by the injected current. The surface is not flat and has wavefront aberration, that is, astigmatism occurs, and a complicated optical system is required to focus the light on a minute spot.Furthermore, the near-field image changes due to fluctuations in the injected current or returned light. The coupling with the optical system is unstable9, which poses a problem when applied to various devices.

上記問題点を考慮して考案された実施例(特開昭6O−
150682)’i第3図に示す。第5図ゆ>e(c)
vcこの素子の断面図を示す。活性層(505)下に形
成されている溝形状が共振器の中央部と端面近傍で異な
っている。第3図(c)の如く電流阻止層(301)K
fi流注入溝偏に比べて広いくぼみを形成することによ
り、屈折率導波路幅が電流注入幅に比べて光分広く々り
その結果利得導波機構が素子中央部に形成され縦多軸モ
ード発振が得られる。し九がって共振器端面近傍で屈折
率導波路幅、中央部で利得導波機構を有するLDとなる
。しかしながらこの購造ヲ実現する為には、電流阻止層
(301)形成後に深さの異なる溝形成という複雑な工
楊が必要であり、かつLPE法により各層を形成してい
るので膜厚の制御性に問題がある。複雑な形状の基板の
形成による溝形状のバラツキおよび各成長層の膜厚のバ
ラツキはLD素子の特性のバラツキに結び付<s Lp
x法では溝部と平坦部での各層の成長速度が大きく異な
る為、膜厚制御には困翔がともない特性のバラツキが大
きく問題となる。
An embodiment devised in consideration of the above problems (Japanese Patent Application Laid-Open No.
150682)'i shown in FIG. Figure 5 Yu > e (c)
vc shows a cross-sectional view of this element. The shape of the groove formed under the active layer (505) is different between the central part of the resonator and the vicinity of the end face. As shown in FIG. 3(c), the current blocking layer (301)K
By forming a recess that is wider than the width of the fi flow injection groove, the refractive index waveguide width becomes optically wider than the current injection width, and as a result, a gain waveguide mechanism is formed in the center of the element, and a longitudinal multiaxial mode is generated. Oscillation is obtained. This results in an LD having a refractive index waveguide width near the resonator end face and a gain waveguide mechanism at the center. However, in order to realize this purchase, a complicated process of forming grooves of different depths after forming the current blocking layer (301) is required, and since each layer is formed by the LPE method, it is difficult to control the film thickness. I have a sexual problem. Variations in the groove shape due to the formation of a complex-shaped substrate and variations in the film thickness of each growth layer lead to variations in the characteristics of the LD element.<s Lp
In the x method, since the growth rate of each layer in the groove portion and the flat portion differs greatly, it is difficult to control the film thickness, and variations in characteristics become a major problem.

さらに、i−v族化合物半導体層の積層によるDH購造
に/frするリッジ状導波路を前述のT、PI法あるい
はMOC!VD法によるI−V族化合物半導体層により
埋め込んで匹るLD″′Cは、活性領域外を流れる無効
電流の影響を無視することに出来なかった。そこで本発
明にこのような問題点を解決するもので、その目的とす
るところは、低光出力動作から高光出力動作筐で安定な
単−横モード発振を行ない、かつ縦多軸モード発振によ
り戻り光雑音を抑えかつ非点隔差の小さい1ノ−ザ光を
出射し、かつ活性領域外を流れる無効電流を極力抑え7
を低しきい値電流発振する半導体レーザ″に提供すると
ころにある。
Furthermore, a ridge-shaped waveguide for DH fabrication by stacking IV compound semiconductor layers is fabricated using the above-mentioned T, PI method or MOC! In the case of an LD'''C buried with an IV group compound semiconductor layer formed by the VD method, the influence of reactive current flowing outside the active region cannot be ignored.The present invention therefore solves this problem. The purpose of this is to perform stable single-transverse mode oscillation from low optical output operation to high optical output operation, suppress return optical noise by vertical multi-axis mode oscillation, and generate a single-mode laser with small astigmatism difference. Emit laser light and suppress reactive current flowing outside the active region as much as possible7
The purpose of this invention is to provide a semiconductor laser that oscillates with a low threshold current.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体1ノ−ザU、I−1’族化合物半導体よ
り収るリッジ状の元導波路七Mし、かつ該光導波路側面
に半導体層よりなる埋め込み層を有して成る半導体1/
−ザにおいて、愁元導波路の幅は少なくとも一方の共振
器端面近傍で中央部より狭く、かつ該埋め込みノーはM
−VE族化合物半導体より成る該半導体層であることを
特徴とする特〔作用〕 本発明の上記mgによれば、共振器中央部では利得導波
樋溝により1ノ−ザ発振元が導波される為戻り光雑音の
少ない縦多軸モード発振を行ない、出射端面近傍では屈
折率導波機構によりレーザ発振光が導波される為非点隔
差の少ない安定した単−横モード発振が可能であり、か
つ高抵抗のI−■族化合物半導体で埋め込んだ構造であ
る為無効電流の極めて少なくl)低しきい値で発振する
半導体I/−ザとなる。
Semiconductor 1 of the present invention A semiconductor 1/1 comprising a ridge-shaped original waveguide 7M made of a nose U, I-1' group compound semiconductor, and a buried layer made of a semiconductor layer on the side surface of the optical waveguide.
- In the case, the width of the core waveguide is narrower in the vicinity of at least one resonator end face than in the center, and the buried nozzle is M
-Features characterized in that the semiconductor layer is made of a VE group compound semiconductor.According to the mg of the present invention, one nose oscillation source is guided by the gain waveguide groove in the central part of the resonator. Because of this, vertical multi-axis mode oscillation with less return light noise is performed, and since the laser oscillation light is guided by a refractive index waveguide mechanism near the output end face, stable single-transverse mode oscillation with less astigmatism difference is possible. 1) Since the structure is embedded with a high-resistance I-2 compound semiconductor, the reactive current is extremely small, resulting in a semiconductor I/-Z that oscillates at a low threshold voltage.

〔実施例〕〔Example〕

以下に本発明の詳細な説明する、ここではリプを構成す
る部分にI−V族化合物半導体の代表であるAjlGa
As系を使用するが他の化合物半導体についても同様で
ある。
The present invention will be explained in detail below.Here, AjlGa, which is a representative of the IV group compound semiconductor, is used as the part constituting the lip.
Although As-based semiconductors are used, the same applies to other compound semiconductors.

(実施例1) 第1因に本発明における1実施例を示す。第1図(a)
に共振器端面近傍の断面図を、第1図(1))は中央部
での断面図を示す。第2図に本発明の実施例の構造を達
成する為のプロセスを示す、以下第2図を用いて本発明
を説明する。
(Example 1) One example of the present invention will be described as the first factor. Figure 1(a)
1 shows a sectional view near the end face of the resonator, and FIG. 1(1)) shows a sectional view at the center. FIG. 2 shows a process for achieving the structure of an embodiment of the present invention, and the present invention will be described below with reference to FIG.

n型GaAs基板(201)に、n型GaAsバッファ
一層(202)、n型A 11 x Gat−cAs第
1のクラッド層(203)、AAyGa 1−yAs活
性111(X>7)(204)、p型AftzGa+ 
−2A8第2のクラッド層(z>y)(2os)、pi
GaAsコンタクト層より成るDI溝構造連続して形成
する。(第2図(a))上記各層の形成には、LPKi
−MOOVD@あるいuMBK法等のいかなる方法で%
可能である。仄いて通常のフォト11ソゲラフイエ程に
よりエツチング用のレジストマスク(207)を形成す
る。(第2図(b))レジストマスク(207)の形状
は第2図(C)の斜線で示す如く形状である。続いて1
ノジストマスク(207)iエツチング用のマスクとし
てp型GaAsコンタクト層(206)、およびp型A
AzGa+−zAs第2のクラッド層(205)の1部
をエツチングし、その後K +/レジストマスク207
)を除去する。(第2囚(d))次にI−M族化合物半
導体Zn5e埋め込み層(20B)をMOOVD法によ
り形成する。(第2図(θ))ZnSe以外の他のi−
w族化合物半導体の使用も可能である。続いてフォトリ
ングラフィ工程およびZnEIθ埋め込み層(209)
のエッチング工程ケ実施する。エツチング後の素子の上
面図を第2図(ロ)に示す。斜線部分がl−M族化合物
半導体、[−1中央部のストライプに、エツチングによ
シpWG a A sコンタクト層(206)が露出し
ている部分である。以後p側電極(210)形成、裏面
の基板ケンマ工程、続いてn側電極(211)を形成し
て本発明の半導体1ノーザとなる。
n-type GaAs substrate (201), n-type GaAs buffer layer (202), n-type A 11 x Gat-cAs first cladding layer (203), AAyGa 1-yAs active 111 (X>7) (204), p-type AftzGa+
-2A8 second cladding layer (z>y) (2os), pi
A DI trench structure consisting of a GaAs contact layer is continuously formed. (FIG. 2(a)) For the formation of each of the above layers, LPKi
-% by any method such as MOOVD@ or uMBK method
It is possible. A resist mask (207) for etching is then formed using a normal photolithography process. (FIG. 2(b)) The shape of the resist mask (207) is as shown by diagonal lines in FIG. 2(C). followed by 1
p-type GaAs contact layer (206) and p-type A as a mask for etching
Etching a portion of the AzGa+-zAs second cladding layer (205) followed by K+/resist mask 207
) to remove. (Second Capacity (d)) Next, an I-M group compound semiconductor Zn5e buried layer (20B) is formed by the MOOVD method. (Figure 2 (θ)) Other i- other than ZnSe
It is also possible to use w-group compound semiconductors. Subsequently, photolithography process and ZnEIθ buried layer (209)
Perform the etching process. A top view of the element after etching is shown in FIG. 2(b). The shaded area is the part where the pWGaAs contact layer (206) is exposed by etching in the central stripe of the l-M group compound semiconductor. Thereafter, a p-side electrode (210) is formed, a backside substrate cutting process is performed, and an n-side electrode (211) is then formed to form a semiconductor 1 node of the present invention.

本発明で使用したZn5e埋め込み層(209)の屈折
率に、いかなるhft混晶比のAJ!GaAs層よりも
小さい値であり、禁制帯幅はいかなるA2混晶比のAJ
AGaAs層よりも広い材料である。したがって不発明
により形成嘔れる導波路は、Zn5e層によるレーザ発
振光の吸収は生じない為接合に水平な方向に複素屈折率
の実数部によシ形成される屈折率差が生じ、屈折率導波
路となる。
AJ of any hft mixed crystal ratio in the refractive index of the Zn5e buried layer (209) used in the present invention! This value is smaller than that of the GaAs layer, and the forbidden band width is AJ of any A2 mixed crystal ratio.
It is a wider material than the AGaAs layer. Therefore, in a waveguide that is formed in an uninventive manner, since the laser oscillation light is not absorbed by the Zn5e layer, a refractive index difference formed by the real part of the complex refractive index occurs in the direction horizontal to the junction, and the refractive index guide It becomes a wave path.

加えて接合に水平な方向の屈折率差を決定する重要なパ
ラメータである第2のクラッド層のエツチング後の残)
膜厚は、Zn5a層の屈折率が小さい為AA()aAa
層埋め込みの場合より厚くしても単−償モード発振が可
能な屈折率差が得られる。
In addition, the residue after etching of the second cladding layer is an important parameter that determines the refractive index difference in the direction horizontal to the junction.
The film thickness is AA()aAa because the refractive index of the Zn5a layer is small.
Even if the thickness is made thicker than in the case of a buried layer, a refractive index difference that enables single-compensation mode oscillation can be obtained.

共振器端面近傍では上記屈折率導波路の幅と電流注入幅
を同程度として屈折率導波機構としているので、安定な
単−横モード発振が可能でかつ非点隔差の極めて小さな
レーザ光が出射される。
In the vicinity of the resonator end face, the width of the refractive index waveguide and the current injection width are approximately the same, creating a refractive index waveguide mechanism, which enables stable single-transverse mode oscillation and emits laser light with an extremely small astigmatism difference. be done.

一方共振器中央部では上記屈折率導波路の幅を電流注入
幅より元号広くすることで利得導波樋溝となり縦多軸モ
ード発振となり戻り光雑音を極力抑えることが出来る。
On the other hand, in the center of the resonator, by making the width of the refractive index waveguide wider than the current injection width, it becomes a gain waveguide groove, which causes vertical multi-axis mode oscillation, and returns optical noise can be suppressed as much as possible.

さらにZnBe層はAIGaA日層よりかなプ抵抗率が
高い材料であるので電流狭窄が有効に行なわれ活性領域
外を流れる無効電流を極力抑えることが出来る。
Furthermore, since the ZnBe layer is a material with a higher resistivity than the AIGaA layer, current confinement is effectively performed and reactive current flowing outside the active region can be suppressed as much as possible.

(実施例2) 第4図は本発明の他の実施例を示す構造図である。第4
図(a)は共振器端面近傍での断面図、第4図(b)に
共振器中央部での断面図である。
(Embodiment 2) FIG. 4 is a structural diagram showing another embodiment of the present invention. Fourth
FIG. 4(a) is a cross-sectional view near the end face of the resonator, and FIG. 4(b) is a cross-sectional view at the center of the resonator.

本実施例は前述の(実施例1)でのリブ導波路形成にお
いて、エツチングを活性層(402)下GaAs基板側
へ進行させt後に、Zn5e埋め込み層C401)で埋
め込んだ構造である。
This example has a structure in which, in the formation of the rib waveguide in the above-mentioned (Example 1), the etching proceeds to the GaAs substrate side under the active layer (402) and after t, it is buried with a Zn5e buried layer C401).

縦多軸モード発振・安定しt単−横モード発振および非
点隔差が極めて小さくなる理由、加えて無効電流が極め
て少なくなる理由は(実施例1)の項と同様である。
The reasons why the vertical multi-axis mode oscillation and stable t-single-transverse mode oscillation and the astigmatism difference are extremely small, as well as the reason why the reactive current is extremely small, are the same as in the section (Example 1).

〔発明の効果〕〔Effect of the invention〕

以上述べtように本発明によれば以下のような効果が得
られる。
As described above, according to the present invention, the following effects can be obtained.

1)共振器中央部では、光の導波が利得導波横溝により
なされているので本発明のLDは縦多軸モード発振とな
る。故に戻り光雑音が極めて小さな値となる。
1) In the center of the resonator, light is guided by the gain waveguide horizontal groove, so the LD of the present invention oscillates in a longitudinal multi-axis mode. Therefore, the return optical noise becomes an extremely small value.

2)1)なる理由により元情報処理用光源等幅広く応用
することが出来る― 3)少なくとも一方の共振器端面近傍では、光の導波が
屈折率導波機構によりなされているので、通常の屈折率
導波型LDと同様本発明のLDも注入電流の変化に対し
ても安定な単−横モード発振が得られる。
2) Due to reasons 1), it can be widely applied to light sources for information processing, etc. 3) At least near one of the resonator end faces, the light waveguide is performed by a refractive index waveguide mechanism, so normal refraction is not possible. Similar to the index waveguide type LD, the LD of the present invention also provides stable single-transverse mode oscillation even when the injection current changes.

4)5)と同様の理由により、非点隔差の極めて小さな
レーザ発掘光が得られる。
4) For the same reason as 5), laser excavation light with extremely small astigmatism difference can be obtained.

5)1)3)4)  なる理由により、本発明のLDを
光学ヘッド等へ組み込む際、出射ビーム整形等に必要な
複雑な光学系を必要としない。故に簡素化−軽量化かに
かられる。
5) 1) 3) 4) For the following reasons, when the LD of the present invention is incorporated into an optical head or the like, a complicated optical system required for output beam shaping etc. is not required. Therefore, simplification and weight reduction are concerned.

&)高抵抗率の層が得られるl−■族化合物半導体によ
り電流狭窄層を形成しているので、活性領域外を流れる
無効電流を極力抑えることが出来る。故にしきい値電流
の低減IC有効である。
&) Since the current confinement layer is formed of an l-■ group compound semiconductor that provides a layer with high resistivity, it is possible to suppress as much as possible the reactive current flowing outside the active region. Therefore, it is effective to reduce the threshold current.

7)本発明は膜質・膜厚の大面積にわ九る均−性拳再現
性に秀れ7jMOOVD法の2段階成長により作製可能
な溝道であるので、作表さfi九本発明のLDの特性も
均一性・再現性および信頼性の秀れたものである。
7) Since the present invention has excellent uniformity and reproducibility over a large area in film quality and film thickness, and can be produced by two-step growth using the MOOVD method, the LD of the present invention can be tabulated. Its characteristics are also excellent in uniformity, reproducibility, and reliability.

8)本発明のI、Dは以上に述べ九ように、低雑音で横
モードの安定性に秀れ、非点隔差も小さなLDである。
8) As mentioned above, I and D of the present invention are LDs with low noise, excellent transverse mode stability, and small astigmatism difference.

故に本発明のLDに共振器端面に保護膜を形成し端面劣
化を防ぐことにより、上記特性に加え高出力特性が得ら
れる。
Therefore, by forming a protective film on the resonator end face of the LD of the present invention to prevent end face deterioration, high output characteristics can be obtained in addition to the above characteristics.

9)埋め込みj−のI−VI族化合物半導体の屈折率が
小さい為上側クラッド層の残り、膜厚を変えることで近
視野像のスポットサイズを制御できる構造であるので、
高出力化に有効である。
9) Since the refractive index of the embedded I-VI group compound semiconductor is small, the spot size of the near-field image can be controlled by changing the thickness of the remaining upper cladding layer.
Effective for increasing output.

10)現在低雑音化には高周波′ML量法が有効とされ
ているが、本発明のLDはそのような付加的な方法を必
要とせず低雑音化を実現できる。故に付加的な回路を必
要とせず小型化・軽量化・低価値化が実現できる。
10) Although the high-frequency 'ML quantity method is currently considered effective for reducing noise, the LD of the present invention can achieve lower noise without requiring such an additional method. Therefore, it is possible to achieve smaller size, lighter weight, and lower value without requiring additional circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明のT、Dの一実施例
を示す断面図。 第2図(a)〜儲)は本発明のLD全実現する九めの作
製工程図。 第5図(a)〜(0)は従来例を示す図。 第4図(a)〜(b)框本発明のLDの一実施例を示す
断面図。 201−−−nfiGaAs基板 202・・・n型GaAsバッファ一層203 =・n
型AJ!xGa +−xAs第1のクラッド層 204、−−・ARyGa 1−yAs活性層205、
、、p型ARzGa 1−zAs第2のクラッド層20
6・・・p型GaAsコンタクト層207・208・・
・エツチング用1ノジストマスク209・・・Zn8s
埋め込み層 210・・・p側電極 211・・・n側電極 301・・・電流阻止)− 502・・・活性層 AOl・・・ZnEle埋め込み層 402・・・活性層 茅31元
FIGS. 1(a) and 1(b) are sectional views showing an embodiment of T and D of the present invention. FIG. 2(a) to (a) are the ninth manufacturing process diagrams for realizing the entire LD of the present invention. FIGS. 5(a) to 5(0) are diagrams showing conventional examples. FIGS. 4(a) to 4(b) are sectional views showing one embodiment of the LD of the present invention. 201---nfiGaAs substrate 202...n type GaAs buffer layer 203=・n
Type AJ! xGa +-xAs first cladding layer 204, --.ARyGa 1-yAs active layer 205,
,, p-type ARzGa 1-zAs second cladding layer 20
6...p-type GaAs contact layer 207, 208...
・1nodist mask 209 for etching...Zn8s
Buried layer 210...P-side electrode 211...N-side electrode 301...Current blocking)-502...Active layer AOl...ZnEle Buried layer 402...Active layer 31 elements

Claims (1)

【特許請求の範囲】[Claims] III−V族化合物半導体層の異種接合構造より成るリツ
ジ状の光導波路を有し、かつ該光導波路側面に半導体層
より成る埋め込み層を有して成る半導体レーザにおいて
、少なくとも一方の共振器端面近傍ではII−VI族化合物
半導体層で該光導波路を埋め込みかつ該光導波路の幅と
電流注入幅をほぼ等しくして屈折率導波路とし、共振器
中央部では該II−VI族化合物半導体層で該光導波路を埋
め込みかつ該光導波路の幅を該電流注入幅より充分広く
して利得導波路としたことを特徴とする半導体レーザ。
In a semiconductor laser comprising a ridge-shaped optical waveguide made of a heterojunction structure of III-V compound semiconductor layers, and a buried layer made of a semiconductor layer on the side surface of the optical waveguide, the vicinity of at least one cavity end face is provided. Then, the optical waveguide is buried with a II-VI group compound semiconductor layer and the width of the optical waveguide is made almost equal to the current injection width to form a refractive index waveguide. 1. A semiconductor laser characterized in that an optical waveguide is embedded and the width of the optical waveguide is made sufficiently wider than the current injection width to serve as a gain waveguide.
JP29026486A 1986-10-29 1986-12-05 Semiconductor laser Granted JPS63142879A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29026486A JPS63142879A (en) 1986-12-05 1986-12-05 Semiconductor laser
FR8714606A FR2606223B1 (en) 1986-10-29 1987-10-22 SEMICONDUCTOR LASER AND MANUFACTURING METHOD THEREOF
DE19873736497 DE3736497A1 (en) 1986-10-29 1987-10-28 SEMICONDUCTOR LASER AND METHOD FOR THE PRODUCTION THEREOF
US07/113,788 US4856013A (en) 1986-10-29 1987-10-28 Semiconductor laser having an active layer and cladding layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29026486A JPS63142879A (en) 1986-12-05 1986-12-05 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS63142879A true JPS63142879A (en) 1988-06-15
JPH0569318B2 JPH0569318B2 (en) 1993-09-30

Family

ID=17753887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29026486A Granted JPS63142879A (en) 1986-10-29 1986-12-05 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63142879A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531542A1 (en) * 1991-03-28 1993-03-17 Seiko Epson Corporation Surface emitting type semiconductor laser and its fabrication method
JPH10223966A (en) * 1997-01-31 1998-08-21 Sharp Corp Gain coupled distributed feedback semiconductor laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128092A (en) * 1981-01-30 1982-08-09 Sanyo Electric Co Ltd Imbedded type semiconductor laser device
JPS6058695A (en) * 1983-09-12 1985-04-04 Nec Corp Manufacture of buried type semiconductor laser element
JPS61144894A (en) * 1984-12-19 1986-07-02 Sony Corp Manufacture of semiconductor laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128092A (en) * 1981-01-30 1982-08-09 Sanyo Electric Co Ltd Imbedded type semiconductor laser device
JPS6058695A (en) * 1983-09-12 1985-04-04 Nec Corp Manufacture of buried type semiconductor laser element
JPS61144894A (en) * 1984-12-19 1986-07-02 Sony Corp Manufacture of semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531542A1 (en) * 1991-03-28 1993-03-17 Seiko Epson Corporation Surface emitting type semiconductor laser and its fabrication method
US5375133A (en) * 1991-03-28 1994-12-20 Seiko Epson Corporation Surface emitting semiconductor laser and method of manufacture
JPH10223966A (en) * 1997-01-31 1998-08-21 Sharp Corp Gain coupled distributed feedback semiconductor laser

Also Published As

Publication number Publication date
JPH0569318B2 (en) 1993-09-30

Similar Documents

Publication Publication Date Title
JP3862894B2 (en) Semiconductor laser device
US4852110A (en) Semiconductor laser of a refractive index-guided type and a process for fabricating the same
JP3183683B2 (en) Window type semiconductor laser device
JPH05129720A (en) Semiconductor laser device
US4914669A (en) Semiconductor laser array apparatus
JPS63142879A (en) Semiconductor laser
EP0284684B1 (en) Inverted channel substrate planar semiconductor laser
JP2702871B2 (en) Semiconductor laser and method of manufacturing the same
JP2846668B2 (en) Broad area laser
JP2723888B2 (en) Semiconductor laser device
JPS5861695A (en) Semiconductor laser element
US6707835B2 (en) Process for producing semiconductor laser element including S-ARROW structure formed by etching through mask having pair of parallel openings
JPH10154843A (en) Semiconductor laser element and optical disc unit employing the same
JPH0671121B2 (en) Semiconductor laser device
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPH09270563A (en) Semiconductor laser element and manufacturing method thereof
JP3075512B2 (en) Semiconductor laser device
JPS5911690A (en) Semiconductor laser device
JP2004087980A (en) Edge-emitting semiconductor laser, electronic equipment, control method of edge-emitting semiconductor laser and manufacturing method of edge-emitting semiconductor laser
JPS63110786A (en) Semiconductor laser
JP2912717B2 (en) Semiconductor laser device
JPH02178987A (en) Semiconductor laser element
JPS61244082A (en) Semiconductor laser device
JP2763781B2 (en) Semiconductor laser device and method of manufacturing the same
JPS62271486A (en) Semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees