JPS63110786A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS63110786A
JPS63110786A JP25754086A JP25754086A JPS63110786A JP S63110786 A JPS63110786 A JP S63110786A JP 25754086 A JP25754086 A JP 25754086A JP 25754086 A JP25754086 A JP 25754086A JP S63110786 A JPS63110786 A JP S63110786A
Authority
JP
Japan
Prior art keywords
layer
type
mask
light
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25754086A
Other languages
Japanese (ja)
Inventor
Yoshifumi Tsunekawa
吉文 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP25754086A priority Critical patent/JPS63110786A/en
Priority to FR8714606A priority patent/FR2606223B1/en
Priority to US07/113,788 priority patent/US4856013A/en
Priority to DE19873736497 priority patent/DE3736497A1/en
Publication of JPS63110786A publication Critical patent/JPS63110786A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the noise to be caused by the returned light and to reduce the astigmatism by forming a stripe-like electrode on a light-guide path. CONSTITUTION:An n-type GaAs buffer layer 202, a first n-type AlxGa1-xAs clad layer 203, an AlyGa1-yAs active layer 204, a second p-type AlzGa1-zAs clad layer 205 and a p-type GaAs contact layer 206 are formed in succession on an n-type GaAs substrate 201. Then, after a dielectric film or a metal film has been formed, a contact layer 206 and a part of the second clad layer 205 are etched by photolithography and by using a mask 207 for selective growth use in such a way that an area 208 indicated by oblique lines is etched. Then, a buried layer 209 is grown by a low-pressure MOCVD method while the mask 207 for selective growth use is kept mounted;both sides of a rib are buried; the mask 207 is removed; an insulating film 210 is formed; a window for injecting an electric current is opened near the center of a waveguide path; a p-type electrode 211 on the side of the growth layer is formed; an n-type electrode 212 on the reverse side is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低雑音でかつ横モード時性の安定な半導体レ
ーザ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device with low noise and stable transverse mode time.

〔従来の技術〕[Conventional technology]

半導体レーザ(以下LDと記す。)を、光ディスクに情
報に書き込んだり、あるいは記録されている情J4を洸
み出し几りするいわゆる元情報処理用光源として使用す
る際、LDより出射された元が元ディスク面おるいは外
部に設けらすL足元学系にエリ反射され、その元が再び
LDの共振器に戻ると、再入射光の干渉効果Vc=り微
弱な戻り元であってもレーザ出力光の雑音(以下劣り光
雑音と化す。)が生ずる。この劣り光雑音を低減させる
手段として、LD共振器端端面屈折率の異なる日電体r
多層に積層してLDUiM器端面の見かけ上の反射率を
上げ戻り光の共振器内への再入射を代訊させる方法、あ
るいは一般に利得導波型LDの特徴である縦多軸モード
発振させ雑音とは減嘔せる方法が知られている。
When using a semiconductor laser (hereinafter referred to as LD) as a so-called original information processing light source for writing information on an optical disk or extracting recorded information, the source emitted from the LD is When it is reflected from the original disk surface or externally provided L foot system, and the source returns to the LD resonator, the interference effect of the re-incident light Vc = 1. Even if the return source is weak, the laser Noise (hereinafter referred to as inferior optical noise) is generated in the output light. As a means to reduce this inferior optical noise, a
A method of stacking multiple layers to increase the apparent reflectance of the end face of the LDUiM device to increase the re-injection of the returned light into the resonator, or a method of vertical multi-axis mode oscillation, which is generally a characteristic of gain waveguide type LDs, to reduce noise. There are known ways to reduce nausea.

上記のことを考慮し九T、Dとしては、特開昭60−1
50682.特開昭60−140774寺がある。
Considering the above, 9T and D are JP-A-60-1
50682. There is a temple called JP-A-60-140774.

〔発明が解決しょうとする問題点〕[Problem that the invention seeks to solve]

しかし前述の従来技術では以下の二つな問題点をイ■す
る。
However, the above-mentioned prior art has the following two problems.

TJD共儀器端而端面折率の異なる誘電体?多層に積層
し、端面反射率を上げて戻り光にぶる影響を減らし戻り
光雑音を低減させる方法では、反射率全土げる為に誘電
体各層の膜厚全LDの出射光波長に対して正確に制御す
る必要がある。加えて端面での反射率が高いので出射光
強度が小さくなり、ディスク上への情報の書き込みの時
のLうに高出力が必要となる際には、TJD駆動を流を
上げなければならない。LD小駆動流を上げることは、
消費電力の増加となり素子内の温度が上がり素子の信頼
性のは下を1ねく。さらに多層膜積層というLD作製工
程の増加ともなる。
TJD symmetrical dielectric with different end face refractive index? In the method of stacking multiple layers to increase the end face reflectance, reduce the influence of the returned light, and reduce the return light noise, in order to increase the overall reflectance, the film thickness of each dielectric layer is accurate to the wavelength of the output light of the LD. need to be controlled. In addition, since the reflectance at the end face is high, the intensity of the emitted light is low, and when a high output is required to write information on the disk, the TJD drive must be increased. Increasing the LD small drive flow is
The power consumption increases, the temperature inside the device rises, and the reliability of the device decreases. Furthermore, the LD manufacturing process of laminating multiple layers increases.

次に、縦多軸モード発振させて劣り光を低減させる方法
では、二重異種接合構造(以下DH1ll造と記す。)
形成後上面VC@極ストストライプ成して成る利得導波
型T、 Dを用いることが考えられる。
Next, in the method of reducing inferior light by oscillating in longitudinal multi-axis mode, a double heterojunction structure (hereinafter referred to as DH11 structure) is used.
It is conceivable to use gain waveguide type T and D having a top surface VC@pole stripe after formation.

利得導波型LDは、縦多軸モード発振する為戻り元等の
雑音に対し影響は低減される。しかしながら利得導波機
構のLDは注入電流にエリ形成される利得分布にエリ、
共振器内k l/−ザ発振光は導波する。し九がってレ
ーザ発振光の等位相面は平面とならず波面収差をもつ、
つ1り非点収差が生じ、微小スポットIC集光する際複
雑な光学系が必要となる。さらに注入電流の変動あるい
は戻り元によって近視野像が変化する為光学系との結合
が不安定となる。
Since the gain waveguide type LD oscillates in longitudinal multi-axis modes, the influence of noise from the return source etc. is reduced. However, the LD with a gain waveguide mechanism has an error in the gain distribution formed by the injection current.
The oscillation light within the resonator is guided. Therefore, the equiphase front of the laser oscillation light is not a plane and has wavefront aberration.
Astigmatism occurs, and a complicated optical system is required when condensing light onto a minute spot IC. Furthermore, since the near-field image changes due to fluctuations in the injection current or the source of the return, the coupling with the optical system becomes unstable.

特開昭60−150682に示される素子を第2図に示
す。第2図(C)(31にこの素子の断面図を示す。活
性層(503)下に形成されている溝形状が共振器の中
央部と端部で異なる。この工うに電流阻止層(301)
に電流注入溝幅に比べて広い凹みを形成することにエリ
、屈折率導波路構造が注入電流幅に比べて充分広くなり
、その結果、利得導波機構が素子中央部に形成され、縦
多モード発振が得られる。し九がって共振器端面近傍で
屈折率導波機構、中央部で利得導波機構を有するLDと
なる。しかしながらこの構造を実現する為には、電流阻
子層(301)形成後に深さの異なる溝形成という複雑
な工程が必要であり、かつ液相成長法(以下L’PK法
と記す。)にエリ各層と形成しているので膜厚の制御性
に問題がある。
The device disclosed in Japanese Patent Application Laid-Open No. 60-150682 is shown in FIG. A cross-sectional view of this element is shown in FIG. )
By forming a recess that is wider than the width of the current injection groove, the refractive index waveguide structure becomes sufficiently wide compared to the width of the injection current, and as a result, a gain waveguide mechanism is formed in the center of the element, and a vertical multilayer structure is created. Mode oscillation is obtained. This results in an LD having a refractive index waveguide mechanism near the resonator end face and a gain waveguide mechanism at the center. However, in order to realize this structure, a complicated process of forming grooves of different depths after forming the current blocking layer (301) is required, and a liquid phase growth method (hereinafter referred to as L'PK method) is required. Since each layer is formed with an edge, there is a problem in controlling the film thickness.

複雑な形状の基板の形成による形状のバラツキお工び膜
厚のバラツキはLD素子の特性のバラツキに結びつき均
一な素子作製、均一な素子特性の芙曳が不可能となる。
Variations in shape and film thickness due to the formation of a substrate with a complex shape are linked to variations in the characteristics of the LD element, making it impossible to manufacture uniform devices and to maintain uniform device characteristics.

Lpz法では溝部と平坦部での膜の成長速度が異なる為
、特に下側クラッド層(3’02)の膜厚の制御には困
難をともなう。
In the Lpz method, since the growth rate of the film is different between the groove part and the flat part, it is particularly difficult to control the film thickness of the lower cladding layer (3'02).

そこで本発明はこの工うな問題点全解決するもので、そ
の目的とするところは、高出力動作時においても安定な
単一横モード発振が可能であり、4道多軸モード発iK
エリ戻り光雑音を区減し、非点収差の少ない半導体レー
ザな提供するところにある。
Therefore, the present invention is intended to solve all of these difficult problems, and its purpose is to enable stable single transverse mode oscillation even during high-power operation, and to enable four-way multi-axis mode oscillation.
The object of the present invention is to provide a semiconductor laser with reduced return optical noise and astigmatism.

〔問題点?解決する為の手段〕〔problem? Means to solve

本発明のLDは、半導体基板と平行な方向の光導波路幅
が、少なくとも一方の共振器端面近傍で、中央部りり狭
いLDにおいて、該光導波路上部に、電流通路を制限す
るストライプ状の電極を有すること?特徴とする。
In the LD of the present invention, the width of the optical waveguide in the direction parallel to the semiconductor substrate is narrow in the center near at least one resonator end face, and a striped electrode is provided on the optical waveguide to limit the current path. To have? Features.

〔作用〕[Effect]

本発明の上記構成によれば、共振器中央部では利得導波
にエリレーザ発振光が導波される為本素子は縦多モード
発振となり戻り光雑音を低減さぜることが可能であり、
かつ共振器端面近傍では屈折率導波にエリレーザ発振光
が導波される為、安定し足慣モード発振が得られ、かつ
非点収差を極めて小さくすることが可能である。
According to the above-described configuration of the present invention, since the Elyrelaser oscillation light is guided by the gain wave in the central part of the resonator, the device performs longitudinal multi-mode oscillation, and it is possible to reduce return optical noise.
In addition, since the Elyrelaser oscillation light is guided by the refractive index wave near the end face of the resonator, stable foot habitus mode oscillation can be obtained, and astigmatism can be made extremely small.

〔実施例〕〔Example〕

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

ここでは化合物半導体の代表であるAJ!GaAs系の
化合物半導体を例とするが、他の化合物半導体について
も同様に取り立つ。
Here, we introduce AJ!, a representative of compound semiconductors! Although a GaAs-based compound semiconductor will be taken as an example, other compound semiconductors will be discussed in the same manner.

(実施9’111) n型−GaAs基板(201)に、n型−GaAsバッ
ファー層(202)、n型−AAxCa 1−xAs第
1のクラッド層(20!l)、Afl、yGa 1−7
A8活性層(X>7)(204)、p型−AKzGa 
I−zAs第2のクラッド層(z>y)(zos)、p
型−GaAsコンタクト層(206)より取るDH購構
造遅続して形成する(第2図(a))。上記各層の成長
方法は、LPE法、有機金属気相成長法(以下MOCV
D法と記す。)分子、8!戊長法(以下MBE法と記す
。)等いかなる方法を用いても可能である。次いで酸化
シリコン膜あるいは窒化シリコン膜等の誘電体膜まtは
タングステン等の金属膜を形成後第2図(C)の胴線部
(20B)の如く形状に、通常のフォトリソグラフィ工
程を経て選択成長用マスク(207)とする。続いて選
択成長用マスク(207)の形状(20B)と同形状に
コンタクト層(206)、第2のクラッド層(205)
の1部をエツチングにエリ形成する。
(Example 9'111) An n-type GaAs substrate (201), an n-type GaAs buffer layer (202), an n-type AAxCa 1-xAs first cladding layer (20!l), Afl, yGa 1-7
A8 active layer (X>7) (204), p-type-AKzGa
I-zAs second cladding layer (z>y) (zos), p
A DH structure taken from the type-GaAs contact layer (206) is subsequently formed (FIG. 2(a)). The growth methods for each of the above layers include LPE method, metal organic chemical vapor deposition method (hereinafter referred to as MOCV).
It is written as D method. ) molecules, 8! It is possible to use any method such as the extrusion method (hereinafter referred to as MBE method). Next, after forming a dielectric film such as a silicon oxide film or a silicon nitride film or a metal film such as tungsten, the film is selected through a normal photolithography process into a shape as shown in the body line part (20B) in FIG. 2(C). It is used as a growth mask (207). Next, a contact layer (206) and a second cladding layer (205) are formed in the same shape as the selective growth mask (207) (20B).
A part of the surface is etched to form an edge.

(第21(d)) 絖いて選択成長用マスク(207)を載せ之ま1埋め込
み墳(209)全成長させ、第21(d)に示すリプの
側面を埋め込む。この埋め込み層(209)の成長には
、減圧状態で行なうMOOVD法を用いる。圧力お工び
成長温度を適切に設定することで、選択成長用マスク(
207)上への成長のない、選択的埋め込み成長が可能
となり、第2図(e)の如く断面形状となる。
(No. 21(d)) Then, a selective growth mask (207) is placed on the embedding mound (209) to fully grow, and the sides of the lip shown in No. 21(d) are embedded. The buried layer (209) is grown using MOOVD under reduced pressure. By appropriately setting the pressure and growth temperature, the mask for selective growth (
207) Selective buried growth without upward growth becomes possible, resulting in a cross-sectional shape as shown in FIG. 2(e).

埋め込み層(209)の材料は種々考えられる。Various materials can be considered for the buried layer (209).

活性層(204)エリもエネルギーギャップの小たる材
料を用いた場合、導波路外で発光し九九は、エネルギー
ギャップの小さな埋め込み層で吸収きれる。すなわち接
合に平行な方向に損失差により形成される屈折率段差が
生じ、屈折率導波構造となる。
When the active layer (204) is also made of a material with a small energy gap, the light emitted outside the waveguide can be completely absorbed by the buried layer with a small energy gap. That is, a refractive index step formed by a loss difference occurs in a direction parallel to the junction, resulting in a refractive index waveguide structure.

一方逆に、活性層(204)エリもエネルギーギャップ
の大であり、かつ屈折率が第2のクラッド+−(205
)より小なる材料を用いt場合、接合方向には、複素屈
折率の実部による屈折率差が生じ、同様に屈折率導波構
造となる。欠いて選択成長用マスク(207)?除去し
、再び酸化シリコン膜あるいは窒化シリコン膜等電流狭
窄用絶縁膜(210)’i影形成、導波路の中央付近に
のみ電流注入される工う第2図りの如く、フォトリソグ
ラフィ工程を経て、電流注入用の窓を開ける。
On the other hand, the active layer (204) area also has a large energy gap and has a refractive index of the second cladding +-(205
) If a material smaller than t is used, a refractive index difference due to the real part of the complex refractive index will occur in the joining direction, resulting in a refractive index waveguide structure. Missing selective growth mask (207)? The insulating film (210) for current confinement, such as a silicon oxide film or a silicon nitride film, is removed and then subjected to a photolithography process, as shown in the second diagram, in which a current is injected only in the vicinity of the center of the waveguide. Open the window for current injection.

以後國長層(IQのp型電極(211)の形状、基板裏
面のケンマ、続いてn型電極(212)を形状して第1
図に示す如く本発明のLDを作製できる。
After that, the shape of the p-type electrode (211) of the Kuninaga layer (IQ, the shape of the kenma on the back side of the substrate, and then the shape of the n-type electrode (212) and the first
The LD of the present invention can be manufactured as shown in the figure.

本素子の構造では、共振器中央部において屈折率導波路
幅がt流圧大幅エリ充分広いので利得導波構造となって
いる。し九がって縦多モード発振が得られることになる
、 一方共県器端部では、屈折率導波路幅と電流注入幅が同
程度で、共振器中央部エリ細いことから屈折率導波11
!造となっている。し九がって接合に平行な方向のビー
ムウェストが共振器端面にほぼ一致し、非点収差が極め
て小さくなる。加えて屈折率導波型LD同様に、安定し
几横モードで発振が可能となる。
In the structure of this element, the refractive index waveguide width is sufficiently wide in the t current pressure range at the center of the resonator, so that it forms a gain waveguide structure. As a result, longitudinal multimode oscillation can be obtained.On the other hand, at the ends of the resonator, the refractive index waveguide width and the current injection width are about the same, and the central area of the resonator is narrow, so the refractive index waveguide 11
! It is constructed. Therefore, the beam waist in the direction parallel to the junction almost coincides with the resonator end face, and astigmatism becomes extremely small. In addition, like the index-guided LD, stable oscillation is possible in the transverse mode.

(実施ylJ2) 第4図は本発明の別の実施例を示す斜視図お工びI、D
中央部での断面図である。
(Implementation ylJ2) Figure 4 is a perspective view showing another embodiment of the present invention.
FIG. 3 is a cross-sectional view at the center.

本実施列は前述の(実施例1)でリプ導波路形状に2い
て、エツチングrさらにGaAs’に板側まで進行嘔せ
、次いでM OCV D法による選択埋め込み成長2行
なうことで作成できる。
This embodiment can be fabricated by forming the lip waveguide shape 2 in the above-mentioned (Embodiment 1), etching the GaAs' further to the plate side, and then performing selective embedding growth 2 by the MOCVD method.

縦多軸モード発振、安定した横モード発振お工び非点収
差が臨めて小さくなる理由は(実施例1)の項と同様で
ある。
The reason why astigmatism becomes significantly smaller due to vertical multi-axis mode oscillation and stable transverse mode oscillation is the same as that described in the first embodiment.

本構造での埋め込み層(401)を、高抵抗でかつ活性
層(402)より屈折率の小なる材料とすれば、無効電
流を低減できかつ接合に平行な方向に有効な元の閉じ込
めが可能となる。
If the buried layer (401) in this structure is made of a material with high resistance and a lower refractive index than the active layer (402), reactive current can be reduced and effective original confinement can be achieved in the direction parallel to the junction. becomes.

〔発明の効果〕〔Effect of the invention〕

以上述べた工うに本発明に工れば以下のような効果が得
られる。
If the above-described method is applied to the present invention, the following effects can be obtained.

1)共振器中央部でrユ、元の導波が利得波+、&溝に
エリなされていふので本発明のI、Dは縦多モード発振
となる。したがって戻り光にエリ訪起される雑音を減小
させることが可能となる。故に元情報処理用光源等に広
く応用することが出来る。
1) At the center of the resonator, the original waveguide is eliminated by the gain waves + and &, so I and D of the present invention become longitudinal multimode oscillations. Therefore, it is possible to reduce the noise caused by the returned light. Therefore, it can be widely applied to light sources for information processing, etc.

2)共振器端面近傍では、党の4eが屈折率導波路幅に
=りなされているので、屈折率導波型LDと同様本発明
のLDも注入電流の変化に対しても定定な横モード発振
が得られる。
2) In the vicinity of the resonator end face, the angle 4e is formed by the width of the refractive index waveguide, so the LD of the present invention, like the refractive index waveguide type LD, has a constant horizontal axis even with respect to changes in the injection current. Mode oscillation is obtained.

3)上記2)と同様な理由にエリ、非実収差の極めて小
さな(≦5μm)レーザ発振光が得られる。
3) For the same reason as 2) above, laser oscillation light with extremely small non-real aberrations (≦5 μm) can be obtained.

4)戻り元に対しても安定であり安定な横モード発振が
得られ、かつ非点収差が榎めて小さいので、本発明のI
、D’i光学ヘッド等へ組み込む際、複雑な光学系を必
要とせず簡素化、軽量化が可能となる。
4) It is stable even with respect to the return source, stable transverse mode oscillation can be obtained, and astigmatism is extremely small, so the I of the present invention
, D'i optical head, etc., it is possible to simplify and reduce the weight without requiring a complicated optical system.

5)本発明のLDは、MOC!VDに;る2段階の成長
にエリ作成することが出来る。ま元MOO’VD法の特
徴は膜厚の均一性、再現性が良好なこと、さらには大面
積にわする成長が可能なことであるので、大面積にわt
り特性の均一なLDの作製が可能となる。
5) The LD of the present invention is MOC! It is possible to create two stages of growth in VD. The characteristics of the MOO'VD method are that it has uniform film thickness, good reproducibility, and can be grown over a large area, so it can be grown over a large area.
This makes it possible to manufacture an LD with uniform characteristics.

6)本発明のLDは戻り光雑音等の影響が極めて少ない
構造のLDでおるので、共振器端面に非対称反射率コー
ティングを行なうことで、低雑音でかつ高光出力のレー
ザ元の出射可能なLDとなる。
6) The LD of the present invention has a structure in which the influence of return light noise is extremely small, so by applying an asymmetrical reflectance coating to the cavity end face, it is possible to create an LD that can emit a laser source with low noise and high optical output. becomes.

7)埋め込み雫の材料の選択性に自由度があるので光出
射端面での近視野像のサイズ全材料により調整可能であ
るので、高光出力化に有効な手段となる。
7) Since there is a degree of freedom in the selection of the material of the embedded drop, the size of the near-field image at the light-emitting end face can be adjusted by all materials, which is an effective means for increasing light output.

8)雑音低減化の為に現在高周波重畳法が一般に用いら
れているが、本発明のT、Dは高周波7重畳することな
く雑音の低減化dE EJ能なF94gとなっている。
8) Currently, a high frequency superimposition method is generally used for noise reduction, but T and D of the present invention are F94g which can reduce noise without superimposing high frequency.

し九がって高周波重畳用回路等付加する必要は彦く、レ
ーザピックアップ等構成に際し、簡素化、軽量化、低価
格化に効果がある。
Therefore, there is no need to add a circuit for high frequency superimposition, etc., and it is effective in simplifying, reducing weight, and lowering the cost when constructing a laser pickup, etc.

【図面の簡単な説明】 第11(a) 、 (b)は本発明の’LDの一実施例
を示す斜視図および断面図。 第2図6)〜@は本発明のLDi実現する為の作製工程
図。 第3図(a)〜(C)は従来例を示す図。 第4図(a) 、 (b)は本発明のLl)の−実施料
を示す斜視図お=び断面図。 201−・・n型G a −h、 s基板202・・・
n型GaAsバッファ層 205−−・n型AfixGa1−XA8第1のクラッ
ド層204− AftyGa+−yAs活性層205−
p型AJ!zGa j−zAs第2のクラッド層206
・・・p型GaAsコンタクト層207・・・選択成長
用マスク 208・・・選択異長用マスク 209・・・埋め込み層 210・・・電流狭窄用絶縁膜 211・・・p側′1!也 212・・・n側電極 301・・・1流阻止層 502・・・下側クラッド層 303・・・活性層 401・・・埋め込み層 以上
BRIEF DESCRIPTION OF THE DRAWINGS No. 11(a) and 11(b) are a perspective view and a sectional view showing an embodiment of the 'LD of the present invention. FIG. 2 6) to @ are manufacturing process diagrams for realizing the LDi of the present invention. FIGS. 3(a) to 3(C) are diagrams showing conventional examples. FIGS. 4(a) and 4(b) are a perspective view and a cross-sectional view showing the Ll) implementation material of the present invention. 201-... n-type Ga-h, s substrate 202...
N-type GaAs buffer layer 205--/n-type AfixGa1-XA8 first cladding layer 204- AftyGa+-yAs active layer 205-
p-type AJ! zGa j-zAs second cladding layer 206
...P-type GaAs contact layer 207...Mask for selective growth 208...Mask for selective different length 209...Buried layer 210...Insulating film for current confinement 211...P side '1! 212...N-side electrode 301...1st flow blocking layer 502...Lower cladding layer 303...Active layer 401...Buried layer or higher

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面と平行な方向の光導波路幅が、少なくと
も一方の共振器端面近傍で、中央部より狭い半導体レー
ザにおいて、該光導波路上部に、電流通路を制限するス
トライプ状の電極を有することを特徴とする半導体レー
ザ。
A semiconductor laser in which the width of the optical waveguide in the direction parallel to the semiconductor substrate surface is narrower near at least one resonator end face than in the center, characterized by having a striped electrode on the top of the optical waveguide to limit the current path. semiconductor laser.
JP25754086A 1986-10-29 1986-10-29 Semiconductor laser Pending JPS63110786A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25754086A JPS63110786A (en) 1986-10-29 1986-10-29 Semiconductor laser
FR8714606A FR2606223B1 (en) 1986-10-29 1987-10-22 SEMICONDUCTOR LASER AND MANUFACTURING METHOD THEREOF
US07/113,788 US4856013A (en) 1986-10-29 1987-10-28 Semiconductor laser having an active layer and cladding layer
DE19873736497 DE3736497A1 (en) 1986-10-29 1987-10-28 SEMICONDUCTOR LASER AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25754086A JPS63110786A (en) 1986-10-29 1986-10-29 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63110786A true JPS63110786A (en) 1988-05-16

Family

ID=17307700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25754086A Pending JPS63110786A (en) 1986-10-29 1986-10-29 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63110786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516765A (en) * 2009-12-30 2013-05-13 アイピージー フォトニクス コーポレーション Optical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128689A (en) * 1983-12-16 1985-07-09 Hitachi Ltd Semiconductor laser device
JPS6174384A (en) * 1984-09-19 1986-04-16 Sony Corp Semiconductor laser
JPS61194890A (en) * 1985-02-25 1986-08-29 Oki Electric Ind Co Ltd Semiconductor laser element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128689A (en) * 1983-12-16 1985-07-09 Hitachi Ltd Semiconductor laser device
JPS6174384A (en) * 1984-09-19 1986-04-16 Sony Corp Semiconductor laser
JPS61194890A (en) * 1985-02-25 1986-08-29 Oki Electric Ind Co Ltd Semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516765A (en) * 2009-12-30 2013-05-13 アイピージー フォトニクス コーポレーション Optical element

Similar Documents

Publication Publication Date Title
JPH0567837A (en) Window-type semiconductor laser element
JP2003060303A (en) Semiconductor laser and manufacturing method therefor
JPS63110786A (en) Semiconductor laser
JP2846668B2 (en) Broad area laser
JP2723888B2 (en) Semiconductor laser device
JPH02116187A (en) Semiconductor laser
JPS63142879A (en) Semiconductor laser
JPS59165481A (en) Distributed feedback type semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP3075512B2 (en) Semiconductor laser device
JPH0268975A (en) Semiconductor laser
JPS60140774A (en) Semiconductor laser
JP2004087980A (en) Edge-emitting semiconductor laser, electronic equipment, control method of edge-emitting semiconductor laser and manufacturing method of edge-emitting semiconductor laser
JP4024319B2 (en) Semiconductor light emitting device
JPS59172287A (en) Semiconductor laser element
JPH02137286A (en) Semiconductor laser
JPS63110784A (en) Semiconductor laser
JPH0936482A (en) Semiconductor laser element and fabrication thereof
JPS63288086A (en) Semiconductor device
JPS61244082A (en) Semiconductor laser device
JP2001094193A (en) Semiconductor laser with modulator and manufacturing method therefor
KR19980069644A (en) Semiconductor laser diode and manufacturing method thereof
JPH06112582A (en) Semiconductor laser diode and fabrication thereof
JPH05875B2 (en)
JPH0267777A (en) Semiconductor laser