JPH01260642A - Optical head - Google Patents

Optical head

Info

Publication number
JPH01260642A
JPH01260642A JP63087230A JP8723088A JPH01260642A JP H01260642 A JPH01260642 A JP H01260642A JP 63087230 A JP63087230 A JP 63087230A JP 8723088 A JP8723088 A JP 8723088A JP H01260642 A JPH01260642 A JP H01260642A
Authority
JP
Japan
Prior art keywords
optical
optical head
laser
memory medium
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63087230A
Other languages
Japanese (ja)
Inventor
Hidenao Tanaka
秀尚 田中
Yoshio Suzuki
鈴木 与志雄
Hiroo Ukita
宏生 浮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63087230A priority Critical patent/JPH01260642A/en
Publication of JPH01260642A publication Critical patent/JPH01260642A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the stable output of a beam of high power density and a longer life by using a laser having an InGaAsP layer strong to light damage as a light source and using the same in proximity to an optical memory medium. CONSTITUTION:The optical head 1 is mounted to a slider 3 attached to a load spring 4 of an arm 5 which moves at a high speed in the radial direction of the optical memory medium 2. The distance (proximate quantity) between the optical head 1 and the memory medium 2 is maintained at the specified value determined by the load of the spring 4, the shape and weight of the slider 3 and the traveling speed of the memory medium 2. The semiconductor laser having the InGaAsP as the active layer 7 is used as the light source, then writing and reading are executed while the width of the exit end of the beam is approximate nearly to 1mum from the memory medium 2 by having a waveguide 6 narrower than the width of the central part. The stable output by the high light power at the end face of the laser and the longer life are thereby obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光記憶装置に関し、特に書込みおよび読取りを
行なう半導体レーザを光源とする光ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical storage device, and more particularly to an optical head using a semiconductor laser as a light source for writing and reading.

[従来の技術] 従来、実用に供されている光ヘッドは、例えば第5図に
示すように、半導体レーザ47から出射した光をレンズ
46.ビームスプリッタ−45,プリズム44.対物レ
ンズ41よりなる光学系により記録媒体40に集光し、
反射した光を対物レンズ41.プリズム44.ビームス
プリッタ−45,レンズ43を経て光検出器42に入射
して記録媒体40上の情報を再生する構成となっていた
[Prior Art] Conventionally, optical heads that have been put into practical use pass light emitted from a semiconductor laser 47 through a lens 46 , as shown in FIG. Beam splitter 45, prism 44. The light is focused on the recording medium 40 by an optical system consisting of an objective lens 41,
The reflected light is passed through the objective lens 41. Prism 44. The beam was configured to enter the photodetector 42 through the beam splitter 45 and lens 43 to reproduce information on the recording medium 40.

この光ヘッドによる記録媒体40の記憶密度は基本的に
は光ビームのスポット径Wで決まり、その値は対物レン
ズ41の開口数NAと半導体レーザ47の発振波長λに
依存し次式による。
The storage density of the recording medium 40 by this optical head is basically determined by the spot diameter W of the light beam, and its value depends on the numerical aperture NA of the objective lens 41 and the oscillation wavelength λ of the semiconductor laser 47, and is expressed by the following equation.

W=にλ/ N Aここで、に−比例定数このため、記
憶密度を上げるためには波長λの短いレーザを用いる必
要があり、従来の光ヘッドではへμGaへsを活性層と
する0、78〜0.85μmの波長で発振する半導体レ
ーザが用いられている。これによりスポット径Wは1μ
m程度になっている。
W = λ / N A where, - proportionality constant Therefore, in order to increase the storage density, it is necessary to use a laser with a short wavelength λ, and in conventional optical heads, the active layer is 0 μGa to s. , a semiconductor laser that oscillates at a wavelength of 78 to 0.85 μm is used. As a result, the spot diameter W is 1μ
It is about m.

しかし、 AλGa八sをへ性層に用いるレーザは酸化
されやすいAJ2を含むため、端面の酸化による劣化が
避けられない。特に、記録を高速に行なうためには、光
パワー密度が高くなると起きる突然の劣化(光学損傷)
や、長期的な寿命の低下の困難かある。また、長寿命化
のためには不活性気体中で使わなければならないなど、
使用条件に制約がある。
However, since a laser using AλGa8S as a hemilayer contains AJ2 which is easily oxidized, deterioration due to oxidation of the end face is unavoidable. In particular, in order to perform high-speed recording, sudden deterioration (optical damage) that occurs when the optical power density increases
Or, it may be difficult to reduce long-term lifespan. In addition, in order to extend the lifespan, it must be used in an inert gas, etc.
There are restrictions on usage conditions.

一方、本発明者は、特願昭61−218097号て第4
図に示すような「光記憶媒体近接浮上形の光ヘット」を
提案した。この光ヘットは対物レンズ等の光学系を用い
ず半導体レーザ18の出射端を約1μmの距離りで光記
憶媒体19に近接させてビームを直接出射し、反射光を
半導体レーザ18に直接帰還させて、複合共振作用によ
り光記録媒体19の反射率の変化を光出力20の変化と
して光検出器17で検出し、情報の再生を行なうもので
ある。この光ヘットでは、記憶密度は半導体レーザの出
射端の電界強度分布のみで決まり、かつ光学系がないた
め、電力も少なくて済む。
On the other hand, the present inventor has disclosed the patent application No. 4
As shown in the figure, we proposed a ``optical head that levitates close to the optical storage medium.'' This optical head does not use an optical system such as an objective lens, and directly emits a beam by bringing the emission end of the semiconductor laser 18 close to the optical storage medium 19 at a distance of about 1 μm, and returns the reflected light directly to the semiconductor laser 18. A change in the reflectance of the optical recording medium 19 is detected by the photodetector 17 as a change in the optical output 20 due to the complex resonance effect, and information is reproduced. In this optical head, the storage density is determined only by the electric field intensity distribution at the emission end of the semiconductor laser, and since there is no optical system, less power is required.

[発明が解決しようとする課題] この光記憶媒体近接浮上形光ヘットては、レーザの共振
器長りが光ヘットの光記憶媒体への近接量りによって決
まり、レーザの共振器長しのλ/2の周期の変動で光出
力が変化するため、安定な出力を得るためにはレーザの
波長人に比例して光ヘットの近接量の変動を小さくしな
ければならず、また、光学系か無くなった分たけ消費電
力か減るが、活性層に八fLGaAsを用いる場合はレ
ーザ端面の高光パワーによる光学損傷と寿命の低下は避
けられないという欠点がある。
[Problems to be Solved by the Invention] In this optical storage medium floating type optical head, the resonator length of the laser is determined by the proximity of the optical head to the optical storage medium, and the laser resonator length λ/ Since the optical output changes due to fluctuations in the period of 2, in order to obtain a stable output, it is necessary to reduce the fluctuation in the proximity of the optical head in proportion to the laser wavelength. Although the power consumption is reduced to a certain extent, when 8fL GaAs is used for the active layer, there is a drawback that optical damage and shortened life due to the high optical power of the laser end face are unavoidable.

[課題を解決するための手段] 本発明の光ヘッドは、光記憶媒体に対しほぼ1μmの距
離に近接した状態で書込みおよび読取りを行なうInG
aAsPを活性層とする半導体レーザを光源とする。
[Means for Solving the Problems] The optical head of the present invention is an InG optical head that writes and reads from and to an optical storage medium at a distance of approximately 1 μm.
A semiconductor laser with aAsP as an active layer is used as a light source.

本発明の光ヘットは、ビーム出射端の幅が中央部の幅よ
り狭い導波路を有し、光記憶媒体に対しほぼ1胛の距離
に近接した状態て書込みおよび読取りを行なうInGa
AsPを活性層とする半導体レーザを光源とする。
The optical head of the present invention has a waveguide in which the width of the beam emitting end is narrower than the width of the central part, and the optical head is an InGa waveguide that performs writing and reading while being close to the optical storage medium at a distance of approximately one length.
A semiconductor laser with AsP as an active layer is used as a light source.

[作 用] 八、QGaAsを活性層に持つ半導体レーザては、光損
傷が起きる光パワー密度はI X 106W/Cl11
2程度であり、サージ電流等に対するマージンを考え、
最大定格はこの1/2〜1/3以下となるのが普通であ
る。寿命等を考えると、動作条件はさらに低い光パワー
密度になる。一方、InGaAsPを活性層とする半導
体レーザでは光損傷が起きにくく、通信用光源としてI
 X 106W/cm2程度の光パワー密度で動作させ
ても、通常の条件のAl1GaAsを活性層に持つ半導
体レーザと同等の寿命を実現てきる。
[Function] 8. In a semiconductor laser having QGaAs in the active layer, the optical power density at which optical damage occurs is I x 106W/Cl11
It is about 2, considering the margin against surge current etc.
The maximum rating is usually 1/2 to 1/3 of this or less. Considering the lifespan, etc., the operating condition becomes an even lower optical power density. On the other hand, semiconductor lasers with InGaAsP as the active layer are less prone to optical damage and are suitable for communication light sources.
Even when operated at an optical power density of about X 106 W/cm2, a lifetime equivalent to that of a semiconductor laser having an active layer of Al1GaAs under normal conditions can be achieved.

第6図(a)は0.85μmで発振する八uGaAsを
活性層に持つレーザと、1.5μmで発振するInGa
AsPを活性層に持つレーザの出射端を想定したリブ型
導波路の両佃fを空気層としたときの構成図で、第6図
(b)はその横基本モードの電界強度分布の半値全幅(
ビーム径)の計算結果のグラフを示す図である。
Figure 6(a) shows a laser with an active layer of 8uGaAs that oscillates at 0.85 μm and an InGa laser that oscillates at 1.5 μm.
This is a diagram of the configuration of a rib-type waveguide assuming the emission end of a laser with AsP as the active layer, when both sides f are air layers. Figure 6(b) shows the full width at half maximum of the electric field intensity distribution of the transverse fundamental mode. (
FIG. 4 is a diagram showing a graph of calculation results of beam diameter).

ここに示すように、InGaAsPを活性層に用いる場
合、同じリブ幅すではInGaAsPを活性層に持つ方
が半値全幅が大きいが、少しリブ幅すを狭くすれば十分
Aj2GaAsを活性層に持つ場合と同等の集光ができ
るので、ビーム出射端の導波路の幅すを2胛以下に納め
ることにより、ビーム径を1μmとすることかてきる。
As shown here, when InGaAsP is used for the active layer, the full width at half maximum is larger when the active layer is made of InGaAsP with the same rib width, but it is sufficient to make the rib width slightly narrower than when the active layer is made of Aj2GaAs. Since the same amount of light can be focused, the beam diameter can be reduced to 1 μm by keeping the width of the waveguide at the beam exit end to 2 or less.

なお、InGaAsPを活性層に用いる場合は光パワー
密度を高めることかできるため、 八R,GaAsを活
性層に用いる場合より出射端幅すを大幅に狭くすること
ができ、それにともなってビーム径もより細くすること
が可能となる。
Note that when InGaAsP is used for the active layer, the optical power density can be increased, so the output end width can be made much narrower than when 8R, GaAs is used for the active layer, and the beam diameter can also be reduced accordingly. It becomes possible to make it thinner.

さらに、波長が従来のAIl、GaAsのものと比べて
1.3〜1.9倍と長いのて近接量の変動による共振器
長変動のマージンを1.3〜1.9倍も大きくでき、安
定した出力を得ることができる。
Furthermore, since the wavelength is 1.3 to 1.9 times longer than that of conventional Al or GaAs, the margin for cavity length variation due to variation in proximity can be increased by 1.3 to 1.9 times. Stable output can be obtained.

[実施例] 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の光ヘットの一実施例を有する光記録装
置の一部を示す斜視図である。
FIG. 1 is a perspective view showing a part of an optical recording apparatus having an embodiment of the optical head of the present invention.

この光ヘット1は光記憶媒体2の半径方向へ高速移動す
るアーム5の負荷バネ4に取付けられているスライダー
3に装着されており、光ヘッド1と光記憶媒体2との距
l!!(近接量)h(第4図)は負荷バネ4の荷重と、
スライダ゛−3の形状、重量および光記憶媒体2の走行
速度で決まる一定値に保たれ、この近接量りは1−程度
である。
This optical head 1 is attached to a slider 3 attached to a load spring 4 of an arm 5 that moves at high speed in the radial direction of the optical storage medium 2, and the distance between the optical head 1 and the optical storage medium 2 is l! ! (Proximity amount) h (Fig. 4) is the load of the load spring 4,
It is maintained at a constant value determined by the shape and weight of the slider 3 and the traveling speed of the optical storage medium 2, and this proximity measurement is approximately 1-.

第2図は光ヘット1の半導体レーザの拡大斜視図である
FIG. 2 is an enlarged perspective view of the semiconductor laser of the optical head 1. FIG.

この半導体レーザは、光ヘッド1の光源で、n型1nP
基板15上のn型1nPクラット層9゜p型1nGaA
sP  (λ−1,3gn+)活性層7.p型InPク
ラッド層8からなるダブルへテロ構造をエツチングした
ストライブ構造と、p型InP電流ブロック層14.n
型InP電流ブロック層13の埋込み層と、p型1nG
aAsP電極層12およびAu電極II、 16とから
形成されており、さらに絶縁分離溝10により導波路6
の横方向が空気となるので第6図(b)のグラフにより
ビーム出射端の幅を2μ川とされている。この構成の出
射端によりビームの出射端における横方向のビームは約
1μmに集光される。本レーザは10mWの光出力でも
端面コートなしで大気中において十分安定に発光する。
This semiconductor laser is the light source of the optical head 1, and is an n-type 1nP laser diode.
n-type 1nP crat layer 9°p-type 1nGaA on substrate 15
sP (λ-1,3gn+) active layer7. A stripe structure formed by etching a double heterostructure consisting of a p-type InP cladding layer 8 and a p-type InP current blocking layer 14. n
The buried layer of the InP type current block layer 13 and the p-type 1nG
It is formed from an aAsP electrode layer 12 and Au electrodes II and 16, and is further formed by an insulating separation groove 10 to form a waveguide 6.
Since the horizontal direction of the beam is air, the width of the beam exit end is set to be 2μ according to the graph of FIG. 6(b). With this configuration of the output end, the lateral beam at the output end of the beam is focused to approximately 1 μm. This laser emits light stably in the atmosphere even with an optical output of 10 mW without an end face coating.

この光出力は、光学系を用いる従来の光ヘットの約20
m1?の光出力のレーザに匹敵する。
This light output is about 20% higher than that of a conventional optical head using an optical system.
m1? The light output is comparable to that of a laser.

第3図は光ヘッド1の半導体レーザの他の例の拡大斜視
図である。
FIG. 3 is an enlarged perspective view of another example of the semiconductor laser of the optical head 1. FIG.

この半導体レーザは第2図の例と同様にn型InP基板
35上のn型1nPクラッド層29.p型InGaAs
P活性層27、p型InPクラッド層28からなるダブ
ルへテロ構造をエツチングしたストライブ構造と、p型
1nP電流ブロック層34.n型InP電流ブロック層
33の埋込み層、p型1nGaAsP電極層32.Au
電極層31.36から形成されているが、絶縁分離溝は
なく、導波路26の出射端の幅はエッチツク時のストラ
イプ幅を狭くすることによって実現している。このため
、ストライブ構造の導波路26の横方向の屈折率差は小
さいがビーム出射端近傍てのストライプ幅を1μ■と細
くしであるのて、ビーム出射端における横方向のビーム
は約1μmに集光される。本レーザでは15mWの光出
力ても大気中で十分安定に発光する。この光出力は光学
系を用いる従来の光ヘットでは約30mWの光出力のレ
ーザの場合に匹敵する。
This semiconductor laser has an n-type 1nP cladding layer 29 on an n-type InP substrate 35, similar to the example shown in FIG. p-type InGaAs
A stripe structure is formed by etching a double heterostructure consisting of a P active layer 27, a p-type InP cladding layer 28, and a p-type 1nP current blocking layer 34. Buried layer of n-type InP current block layer 33, p-type 1nGaAsP electrode layer 32. Au
Although it is formed from electrode layers 31 and 36, there is no insulating isolation groove, and the width of the output end of the waveguide 26 is realized by narrowing the stripe width during etching. Therefore, although the lateral refractive index difference of the striped waveguide 26 is small, the width of the stripe near the beam exit end is narrowed to 1 μm, so the width of the lateral beam at the beam exit end is approximately 1 μm. The light is focused on. This laser emits light stably in the atmosphere even with an optical output of 15 mW. This optical output is comparable to that of a laser with an optical output of about 30 mW in a conventional optical head using an optical system.

この時、定電流の駆動で、光出力が極大値の90%以上
を維持できる近接量りの許容変動量は0.184aで、
波長0.83gmの八f1. GaAs径レーザを用い
た場合の近接量りの許容変動量0.1明と比へて1.8
倍の許容量となる。
At this time, the allowable variation amount of the proximity meter that can maintain the optical output at 90% or more of the maximum value with constant current driving is 0.184a.
Eight f1. wavelength of 0.83gm. When using a GaAs diameter laser, the permissible variation in proximity weighing is 0.1 compared to 1.8.
The amount allowed will be doubled.

[発明の効果] 以上説明したように本発明は、光損傷に強いInGaA
sPを活性層とするレーザを光源とし、かつ光記憶媒体
に近接させて用いることにより、次に述べるような効果
がある。
[Effects of the Invention] As explained above, the present invention provides InGaA that is resistant to optical damage.
By using a laser having an active layer of sP as a light source and using it in close proximity to an optical storage medium, the following effects can be obtained.

(1)酸化による劣化が著しく減り、不活性ガス中で使
用しなければならないという制限がなくなり、実装方法
を簡単化できる。また、不活性ガス中で使用するとさら
に長寿命化が図られる。
(1) Deterioration due to oxidation is significantly reduced, there is no restriction that the device must be used in an inert gas, and the mounting method can be simplified. Further, when used in an inert gas, the life can be further extended.

(2)近接量の許容幅が増大して、約1μm径の微小ス
ポットでI X 106W/cm2オーダの高パワー密
度のビームを安定出力できる。
(2) The permissible width of the proximity amount is increased, and a beam with a high power density on the order of I x 106 W/cm2 can be stably output with a micro spot with a diameter of about 1 μm.

(3)光記憶媒体の記録面密度を高くできる。(3) The recording surface density of optical storage media can be increased.

(4)書込み速度を高速化できる。(4) Writing speed can be increased.

(5)ヘッド構造の設計が容易になる。(5) Design of the head structure becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光ヘッドの一実施例を有する光記録再
生装置の一部の斜視図、第2図、第3図は第1図の光ヘ
ット1の半導体レーザの拡大斜視図、第4図は光記憶媒
体近接浮上形光ヘッドの光記憶媒体と半導体レーザとの
位置関係を示す図、第5図は光学系を有する光ヘッドの
従来例の斜視図、第6図(a) 、 (b)は0.85
gmで発振するAIl、Ga眞を活性層とするレーザと
、1.5μmで発振するInGaAsPを活性層とする
細い出射端を有するリブ型導波路の両側を空気層とした
ときの半導体レーザの構成を示す図と、その横基本モー
ドの電界強度分布の半値全幅(ビーム径)の計算結果の
グラフを示す図である。 1・・・光ヘッド、   2・・・光記憶媒体、3・・
・スライダー、   4・・・負荷バネ、5・・・アー
ム、     6・・・導波路、7.27−p型InG
aAsP活性層、8 、28−p型1nPクラッド、 9.29・・・n型TnPクラット、 10・・・絶縁分離溝、 II、 3]、 16.36− A u電極、12、3
2−p型InGaAsP電極層、13、33.15.3
5−n型1nP電流ブロック層、14、34・・・p型
1nP電流ブロック層。 特許出願人  日本電信電話株式会社
FIG. 1 is a perspective view of a part of an optical recording/reproducing apparatus having an embodiment of the optical head of the present invention, and FIGS. 2 and 3 are enlarged perspective views of the semiconductor laser of the optical head 1 of FIG. FIG. 4 is a diagram showing the positional relationship between an optical storage medium and a semiconductor laser in a floating optical head near an optical storage medium, FIG. 5 is a perspective view of a conventional example of an optical head having an optical system, and FIG. 6(a), (b) is 0.85
Configuration of a semiconductor laser with an air layer on both sides of a rib-type waveguide having a narrow emission end and an active layer of AlI and Ga that oscillates at 1.5 μm and an active layer of InGaAsP that oscillates at 1.5 μm. and a graph showing the calculation result of the full width at half maximum (beam diameter) of the electric field intensity distribution of the transverse fundamental mode. 1... Optical head, 2... Optical storage medium, 3...
・Slider, 4... Load spring, 5... Arm, 6... Waveguide, 7.27-p type InG
aAsP active layer, 8, 28-p-type 1nP cladding, 9.29... n-type TnP cladding, 10... insulation isolation groove, II, 3], 16.36- Au electrode, 12, 3
2-p-type InGaAsP electrode layer, 13, 33.15.3
5-n-type 1nP current blocking layer; 14, 34...p-type 1nP current blocking layer; Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 1、半導体レーザを光源とし、光記憶媒体に対しほぼ1
μmの距離に近接した状態で書込みおよび読取りを行な
う光ヘッドにおいて、 前記半導体レーザがInGaAsPを活性層とする半導
体レーザであることを特徴とする光ヘッド。 2、ビーム出射端の幅が中央部の幅より狭い導波路を有
する請求項1記載の光ヘッド。
[Claims] 1. A semiconductor laser is used as a light source, and approximately 1
An optical head that performs writing and reading at close distances of μm, characterized in that the semiconductor laser is a semiconductor laser having an active layer of InGaAsP. 2. The optical head according to claim 1, wherein the optical head has a waveguide in which the width of the beam emitting end is narrower than the width of the central portion.
JP63087230A 1988-04-11 1988-04-11 Optical head Pending JPH01260642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63087230A JPH01260642A (en) 1988-04-11 1988-04-11 Optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087230A JPH01260642A (en) 1988-04-11 1988-04-11 Optical head

Publications (1)

Publication Number Publication Date
JPH01260642A true JPH01260642A (en) 1989-10-17

Family

ID=13909057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087230A Pending JPH01260642A (en) 1988-04-11 1988-04-11 Optical head

Country Status (1)

Country Link
JP (1) JPH01260642A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010250A1 (en) * 1994-09-27 1996-04-04 Sony Corporation Optical recording method, optical recording apparatus and optical recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265742A (en) * 1985-05-20 1986-11-25 Nippon Telegr & Teleph Corp <Ntt> Optical head
JPS627186A (en) * 1985-07-03 1987-01-14 Toshiba Corp Semiconductor laser device
JPS6258432A (en) * 1985-09-06 1987-03-14 Olympus Optical Co Ltd Integrated optical pickup head
JPS6374128A (en) * 1986-09-18 1988-04-04 Nippon Telegr & Teleph Corp <Ntt> Optical head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265742A (en) * 1985-05-20 1986-11-25 Nippon Telegr & Teleph Corp <Ntt> Optical head
JPS627186A (en) * 1985-07-03 1987-01-14 Toshiba Corp Semiconductor laser device
JPS6258432A (en) * 1985-09-06 1987-03-14 Olympus Optical Co Ltd Integrated optical pickup head
JPS6374128A (en) * 1986-09-18 1988-04-04 Nippon Telegr & Teleph Corp <Ntt> Optical head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010250A1 (en) * 1994-09-27 1996-04-04 Sony Corporation Optical recording method, optical recording apparatus and optical recording medium
US5822287A (en) * 1994-09-27 1998-10-13 Sony Corporation Optical recording method, optical recording apparatus and optical recording medium

Similar Documents

Publication Publication Date Title
US4783788A (en) High power semiconductor lasers
US20070091955A1 (en) Semiconductor laser device and optical pickup apparatus using the same
ATE452445T1 (en) NITRIDE SEMICONDUCTOR LASER ELEMENT
US6574257B1 (en) Near-field laser and detector apparatus and method
JP3322512B2 (en) Design method of semiconductor laser device
US20060233210A1 (en) Semiconductor laser device, method for manufacturing the same, and optical pickup device using the same
WO2022038756A1 (en) Semiconductor chip and optical module
JPH08250821A (en) Semiconductor light source
US20020136255A1 (en) Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element
JPH01260642A (en) Optical head
US6778573B2 (en) Fundamental-transverse-mode index-guided semiconductor laser device having upper optical waveguide layer thinner than lower optical waveguide layer
US4791636A (en) Semiconductor laser device and a method for driving the same
JP2005072488A (en) Semiconductor laser
JPH0278291A (en) Semiconductor laser element
JPH0290586A (en) Multi-point light emitting type semiconductor laser device
JPS61131581A (en) Semiconductor laser
JPH071818B2 (en) Integrated semiconductor laser
JP4362873B2 (en) Semiconductor laser and optical disk apparatus
JPH10326932A (en) Distribution feedback type semiconductor laser
KR100259003B1 (en) Semiconductor laser diode
JP2002223038A (en) Semiconductor laser device
JPS63211786A (en) Semiconductor laser element
JPH0429235B2 (en)
JPH02257691A (en) Integrated type semiconductor laser
JPH0642578B2 (en) Semiconductor laser device