JPS63304611A - Through-type capacitor - Google Patents

Through-type capacitor

Info

Publication number
JPS63304611A
JPS63304611A JP62139735A JP13973587A JPS63304611A JP S63304611 A JPS63304611 A JP S63304611A JP 62139735 A JP62139735 A JP 62139735A JP 13973587 A JP13973587 A JP 13973587A JP S63304611 A JPS63304611 A JP S63304611A
Authority
JP
Japan
Prior art keywords
dielectric
solder
hole
central conductor
type capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62139735A
Other languages
Japanese (ja)
Inventor
Mamoru Kurokuzuhara
黒葛原 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62139735A priority Critical patent/JPS63304611A/en
Priority to US07/199,710 priority patent/US4853824A/en
Priority to KR1019880006632A priority patent/KR910005754B1/en
Publication of JPS63304611A publication Critical patent/JPS63304611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To obtain a through type capacitor wherein the dielectric is prevented from being damaged around the hole through which the central conductor of the dielectric is inserted, by forming a conductive electrode surface on the inner peripheral wall surface of the hole passing through the dielectric, and electrically connecting the conductive electrode surface to the surface of the central conductor passing through the hole by solder. CONSTITUTION:A central conductor 2 becoming one electrode is inserted through and soldered to the inner periphery of a dielectric 1, and a ground electrode plate 3 which is the other electrode is soldered to the outer periphery. Thereafter, sheath cases 4, 5 consisting of insulators are fitted into the ground electrode plate 3, and to improve the withstand voltage, a filler resin 6 is injected and set up, thereby forming a through type capacitor. The gap ground the central conductor 2 having a thickness of T is filled with a solder 7 to 50% in volume rate. With this, a highly reliable through type capacitor can be obtained wherein the damage of the ceramic dielectric due to a thermal shock is different to occur.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、誘電体を貫通する中心導体の周囲で、関係部
材の熱膨張係数の相違に基づく誘電体の破損が生じない
ようにした信頼性の高い貫通形コンデンサに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a reliable method for preventing damage to the dielectric material due to differences in thermal expansion coefficients of related members around a central conductor penetrating the dielectric material. Concerning feedthrough capacitors with high performance.

〔従来の技術〕[Conventional technology]

従来も、セラミックス系誘電体を円筒状に形成し、その
内外周壁面に電極を設けた貫通形コンデンサに関して、
例えば実開昭57−104446号公報に開示されてい
るが、その中心導体と誘電体との接合個所の構造に関し
ては言及していない。
Conventionally, feedthrough capacitors have been made by forming a ceramic dielectric material into a cylindrical shape and providing electrodes on the inner and outer peripheral walls.
For example, this is disclosed in Japanese Utility Model Application Publication No. 57-104446, but there is no mention of the structure of the joint between the center conductor and the dielectric.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

円筒状の誘電体の内外周面に電極を形成し、そこに電極
端子(線または板)を取付けた貫通形コンデンサに関し
ては、上記のように従来から技術文献に記載されてはい
るが、静電容量を得るための誘電体と、誘電体に穿設し
た孔に貫通させた中心導体との接合個所の構造に関して
は、特別な記述は見当らない。
Feedthrough capacitors, in which electrodes are formed on the inner and outer circumferential surfaces of a cylindrical dielectric body and electrode terminals (wires or plates) are attached thereto, have been described in technical literature as mentioned above, but static No special description is found regarding the structure of the joint between the dielectric material for obtaining capacitance and the center conductor passed through a hole drilled in the dielectric material.

通常、セラミックス系誘電体を使用した貫通形コンデン
サは、円筒状誘電体の内外周面にあらかじめニッケルめ
っきなどを施してメタライズしておいて、そこに中心導
体や接地電極板を半田付けして固定している。この場合
、特に中心導体側では、誘電体に設けた円筒状の孔と中
心導体との間のすきまが、半田で埋めつくされている場
合には、加速寿命試験たとえば熱シヨツクテストを行う
と、加熱に際しては、誘電体よりも中心導体の方が熱膨
張係数が大きいので、誘電体孔の半径方向に圧縮応力を
発生させ、冷却に際しては、半径方向に引張応力を発生
させる等の熱ショックを繰り返し印加することになり、
ついには両者の接触部分に破損を生せしめるにいたる。
Normally, feed-through capacitors using ceramic dielectrics are metalized by applying nickel plating to the inner and outer surfaces of the cylindrical dielectric in advance, and the center conductor and ground electrode plate are soldered and fixed there. are doing. In this case, especially on the center conductor side, if the gap between the cylindrical hole provided in the dielectric and the center conductor is completely filled with solder, if an accelerated life test such as a thermal shock test is performed, When heating, the center conductor has a larger coefficient of thermal expansion than the dielectric, so compressive stress is generated in the radial direction of the dielectric hole, and when cooling, thermal shock is generated such as tensile stress in the radial direction. It will be applied repeatedly,
Eventually, the contact area between the two ends up being damaged.

本発明は、加熱、冷却による熱ショックが繰り返し加わ
っても、誘電体の中心導体を挿通する孔の周辺で誘電体
の損壊を生じないようにした貫通形コンデンサを提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a feedthrough capacitor which prevents damage to the dielectric material around a hole through which a center conductor of the dielectric material is inserted even if thermal shocks due to heating and cooling are applied repeatedly.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明においては、誘電体
を貫通する孔の内周壁面に導電性電極面を形成させ、こ
の導電性電極面と、前記孔を貫通する中心導体の表面と
を半田で電気的に接続した貫通形コンデンサにおいて、
前記誘電体側導電性電極面と中心導体表面との間に存在
するすきま容積の10〜70%だけを半田で充填して前
記電気的接続を行うことにした。実際に、このような作
業を行うには、一般に印刷基板への部品取付は用半田作
業などの際に広く用いられている半田レジストで、中心
導体の周囲の、半田を充填したくない個所を被覆すれば
良い。また、この場合、関係部材の中で、半田(半田レ
ジストが残留する場合の半田レジストも)が比較的柔軟
性に富み、熱膨張係数の差による絶対値的には僅かな中
心導体と誘電体との熱変形の差を、半田の変形で吸収さ
せようというのであるから、半田で充填された個所が1
0%以下では電気的接続が不確実になってしまうし、ま
た70%以上では半田の変形が容易ではなくなってしま
い、発明の目的に対しては好ましくない。このようなこ
とから約50%を半田で充填するのが好適である。なお
、半田レジストは関係部材に対して腐食性などを示さず
、残留していても問題は生じない。
In order to solve the above problems, in the present invention, a conductive electrode surface is formed on the inner circumferential wall surface of a hole penetrating the dielectric, and this conductive electrode surface and the surface of the center conductor penetrating the hole are connected. In feed-through capacitors electrically connected with solder,
The electrical connection was made by filling only 10 to 70% of the volume of the gap existing between the dielectric side conductive electrode surface and the center conductor surface with solder. In fact, in order to perform this kind of work, it is generally necessary to use solder resist, which is widely used when attaching components to a printed circuit board, to fill in areas around the center conductor that you do not want to fill with solder. Just cover it. In addition, in this case, among the related components, the solder (and the solder resist if it remains) is relatively flexible, and the difference in thermal expansion coefficient between the center conductor and the dielectric is small in absolute value. The idea is to absorb the difference in thermal deformation with the solder by deforming the solder.
If it is less than 0%, the electrical connection will become uncertain, and if it is more than 70%, it will not be easy to deform the solder, which is not preferable for the purpose of the invention. For this reason, it is preferable to fill approximately 50% with solder. Note that the solder resist does not show any corrosive properties to related components, so even if it remains, no problem will occur.

〔作用〕[Effect]

問題の生ずる個所の関係部材は、誘電体と中心部材と、
その中間にある半田であるが、中心導体は一番強く、誘
電体は硬いが脆い。半田は王者のなかでは比較的柔軟で
可塑性に富み、中心導体と誘電体との中間に位置して、
両者の熱変形の差を塑性変形して吸収することが出来る
。しかし、半田に可塑性があるといっても、中心導体と
誘電体の間のすきまを完全に充填している場合は、変形
するための逃げ場(自由表面)は薄い円筒状すきまの上
下両端だけにしかないから、簡単には変形(円筒の半径
方向厚さの変化)出来ず、大きな力がかかって比較的弱
い誘電体が破損してしまう。
The related parts where the problem occurs are the dielectric, the central member,
Solder is somewhere in between, but the center conductor is the strongest, and the dielectric is hard but brittle. Among the kings, solder is relatively flexible and has a lot of plasticity, and is located between the center conductor and the dielectric.
The difference in thermal deformation between the two can be absorbed by plastic deformation. However, even though the solder has plasticity, if the gap between the center conductor and the dielectric is completely filled, the escape area (free surface) for deformation is limited to the upper and lower ends of the thin cylindrical gap. Because of this, it cannot be easily deformed (change in the radial thickness of the cylinder), and the relatively weak dielectric material will be damaged by the large force applied to it.

これに対し、本発明のようにすれば、半田が其の可塑性
によって変形する際、変形のための逃げ場が比較的多く
の個所に存在するので簡単に変形可能となり、誘電体に
大きな応力を生じさせず、従ってその破損も生じない。
On the other hand, according to the present invention, when the solder deforms due to its plasticity, there are relatively many places where the solder can escape for deformation, so it can be easily deformed, causing large stress on the dielectric. Therefore, its damage will not occur.

〔実施例〕〔Example〕

第1図は本発明一実施例の断面図である。1は円板状セ
ラミックス誘電体(例えばチタン酸ストロンチウム)で
、その内周面と外周面は夫々ニッケルめっきなどでメタ
ライズを施してあり、内外周壁面を電極としたコンデン
サを形成している。
FIG. 1 is a sectional view of one embodiment of the present invention. Reference numeral 1 denotes a disc-shaped ceramic dielectric (eg, strontium titanate) whose inner and outer peripheral surfaces are metalized with nickel plating or the like, forming a capacitor with the inner and outer peripheral walls serving as electrodes.

誘電体1の内周には一方の電極となる中心導体2を挿通
し、外周には、他方の電極である接地導体板3を、それ
ぞれ半田付けする。その後、絶縁体からなる外装ケース
4.5を接地電極板に嵌め込み、更に、耐電圧性を向上
させるために、充填樹脂6を注入固化し、貫通形コンデ
ンサを形成させる。第2図(a)、(b)は第1図中の
A−A’線断面図を示し、中心導体2の周囲の厚さTの
すきまは、容積率で約50%、はんだ7で充填されてい
る。図(、)に示す例では半田充填個所はほぼ半円形に
なっており、図(b)に示す例では半田充填個所は少し
ずつ分散している。この図で21は半田レジストによる
被覆で、この部分は半田付けされない。半田レジストを
使用しないで、半田を充填した部分と充填しない部分を
形成できれば半田レジストを使用しなくても良い。第3
図には、中心導体2の周囲の厚さTのすきまに対する半
田7の容積率100%、容積率50%の場合の、ヒート
ショック・サイクル累積故障率の比較を示す。本実施例
の作用、効果は既述の通りである。
A center conductor 2 serving as one electrode is inserted into the inner periphery of the dielectric 1, and a ground conductor plate 3 serving as the other electrode is soldered to the outer periphery. Thereafter, an external case 4.5 made of an insulator is fitted onto the ground electrode plate, and in order to improve voltage resistance, filling resin 6 is injected and solidified to form a feedthrough capacitor. FIGS. 2(a) and 2(b) show cross-sectional views taken along the line A-A' in FIG. has been done. In the example shown in Figures (,), the solder filling locations are approximately semicircular, and in the example shown in Figure (b), the solder filling locations are gradually dispersed. In this figure, 21 is a solder resist coating, and this portion is not soldered. If the portions filled with solder and the portions not filled with solder can be formed without using a solder resist, there is no need to use a solder resist. Third
The figure shows a comparison of heat shock cycle cumulative failure rates when the volume ratio of the solder 7 to the gap of thickness T around the center conductor 2 is 100% and the volume ratio is 50%. The functions and effects of this embodiment are as described above.

なお、本実施例では誘電体に対して1本の中心導体を挿
通した例を示したが、複数本の導体を挿通したものでも
全く同様の効果が得られることは勿論である。
Although this embodiment shows an example in which one central conductor is inserted through the dielectric, it goes without saying that the same effect can be obtained even if a plurality of conductors are inserted through the dielectric.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、極めて簡単な手段
によって、実際の使用状態で生ずる加熱、冷却の繰り返
しに際して、セラミックス誘電体の熱ショックによる破
損が発生し難い信頼性の高い貫通形コンデンサが得られ
る。
As explained above, according to the present invention, a highly reliable feed-through capacitor that is unlikely to be damaged due to thermal shock of the ceramic dielectric during repeated heating and cooling that occurs in actual use can be achieved by using extremely simple means. can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の断面図、第2図(a)、(b
)は第1図中のA−A’線断面図で、図(a)は半田充
填個所がほぼ半円形をなす例を示し、図(b)は半田充
填個所が少しずつ分散している例を示す図、第3図は本
発明の一実施例と従来技術の累積故障率の比較を示すグ
ラフである。 1・・・セラッミクス誘電体、2・・・中心導体、3・
・・接地導体板、4,5・・・外装ケース、6・・・充
填初詣、7・・・半田、21・・・半田レジスト。
Figure 1 is a sectional view of one embodiment of the present invention, Figures 2 (a) and (b)
) is a cross-sectional view taken along the line A-A' in Figure 1. Figure (a) shows an example in which the solder filling locations form an almost semicircular shape, and Figure (b) shows an example in which the solder filling locations are gradually dispersed. FIG. 3 is a graph showing a comparison of cumulative failure rates between an embodiment of the present invention and the prior art. 1... Ceramics dielectric, 2... Center conductor, 3...
...Ground conductor plate, 4, 5...Exterior case, 6...Filling hatsumode, 7...Solder, 21...Solder resist.

Claims (1)

【特許請求の範囲】 1、誘電体を貫通する孔の内周壁面に導電性電極面を形
成させ、この導電性電極面と、前記孔を貫通する中心導
体の表面とを半田で電気的に接続した貫通形コンデンサ
において、前記誘電体側導電性電極面と中心電極導体と
の間のすきま容積の10〜70%だけを半田で充填して
前記電気的接続を行うようにしたことを特徴とする貫通
形コンデンサ。 2、半田で充填しない部分には半田レジストを塗布した
特許請求の範囲第1項記載の貫通形コンデンサ。 3、すきま容積の約50%を半田で充填した特許請求の
範囲第1項記載の貫通形コンデンサ。
[Claims] 1. A conductive electrode surface is formed on the inner peripheral wall surface of a hole penetrating the dielectric, and this conductive electrode surface and the surface of the center conductor penetrating the hole are electrically connected with solder. In the connected feedthrough capacitor, the electrical connection is made by filling only 10 to 70% of the volume of the gap between the dielectric side conductive electrode surface and the center electrode conductor with solder. Feedthrough capacitor. 2. The feedthrough capacitor according to claim 1, wherein a solder resist is applied to the portions not filled with solder. 3. The feedthrough capacitor according to claim 1, wherein approximately 50% of the volume of the gap is filled with solder.
JP62139735A 1987-06-05 1987-06-05 Through-type capacitor Pending JPS63304611A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62139735A JPS63304611A (en) 1987-06-05 1987-06-05 Through-type capacitor
US07/199,710 US4853824A (en) 1987-06-05 1988-05-27 Through-type capacitor
KR1019880006632A KR910005754B1 (en) 1987-06-05 1988-06-02 Through-type capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139735A JPS63304611A (en) 1987-06-05 1987-06-05 Through-type capacitor

Publications (1)

Publication Number Publication Date
JPS63304611A true JPS63304611A (en) 1988-12-12

Family

ID=15252156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139735A Pending JPS63304611A (en) 1987-06-05 1987-06-05 Through-type capacitor

Country Status (1)

Country Link
JP (1) JPS63304611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984129A (en) * 1989-03-20 1991-01-08 Hitachi, Ltd. Through-type capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984129A (en) * 1989-03-20 1991-01-08 Hitachi, Ltd. Through-type capacitor

Similar Documents

Publication Publication Date Title
US4090288A (en) Solid electrolyte capacitor with metal loaded resin end caps
US3808478A (en) Multiple feed-through capacitor and methods of making
US3341752A (en) Spring clamp connector mounted capacitor
US2413539A (en) Lead connection for electrical apparatus
US4433360A (en) Tubular ceramic capacitor
JPS63304611A (en) Through-type capacitor
KR100332101B1 (en) Electronic component having lead
JPH06163314A (en) Power ceramic capacitor, resin molding method for power ceramic capacitor and resin molding die
JP3210042B2 (en) Electronic components for surface mounting
JPH02194614A (en) Chip capacitor and manufacture thereof
JPH05101975A (en) Surface mounting porcelain capacitor
JPH0623238U (en) High voltage capacitor and magnetron
JPS6317237Y2 (en)
JPH021857Y2 (en)
JPH02246204A (en) Through type capacitor
JPH0342671Y2 (en)
JP2817526B2 (en) Chip type electric double layer capacitor
JPH087621Y2 (en) Contact pin
JPS63250810A (en) Through type capacitor
JPH079369Y2 (en) High voltage penetration type porcelain capacitor
JP2580628Y2 (en) High voltage capacitors and magnetrons
JPH0219955Y2 (en)
JPS5833698Y2 (en) High pressure LC composite parts
JPH0541543Y2 (en)
JPS5840601Y2 (en) Feedthrough capacitor