JPS6330405B2 - - Google Patents

Info

Publication number
JPS6330405B2
JPS6330405B2 JP59223897A JP22389784A JPS6330405B2 JP S6330405 B2 JPS6330405 B2 JP S6330405B2 JP 59223897 A JP59223897 A JP 59223897A JP 22389784 A JP22389784 A JP 22389784A JP S6330405 B2 JPS6330405 B2 JP S6330405B2
Authority
JP
Japan
Prior art keywords
slit
spinneret
cooling
spinning
slits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59223897A
Other languages
Japanese (ja)
Other versions
JPS61108707A (en
Inventor
Hideo Maruyama
Setsuro Kato
Osamu Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP22389784A priority Critical patent/JPS61108707A/en
Publication of JPS61108707A publication Critical patent/JPS61108707A/en
Publication of JPS6330405B2 publication Critical patent/JPS6330405B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] 本発明は偏心中空繊維の溶融紡糸方法に関する
ものである。さらに詳しくは、潜在捲縮能を有す
る偏心中空繊維の溶融紡糸方法の改良に関するも
のである。 [従来技術とその問題点] 一般に潜在捲縮能を有する繊維を得るには、い
わゆるバイメタル型もしくは偏心芯鞘型で代表さ
れる複合紡糸法、および紡糸糸条を急冷する非対
称冷却法が知られているが、本発明は後者のしか
も中空繊維に関するものである。 従来、非対称冷却法によつて、潜在捲縮性中空
繊維を得るための紡糸口金としては、第6図に平
面図として例示するように、紡糸口金本体1に複
数個のスリツト2を穿設したものが使用されてき
た。かかる紡糸口金を使用して、潜在捲縮能を有
する偏心中空繊維を得るに際しては、第6図の場
合、スリツトの巾Wが同じものであるがために、
冷却風によつて断面異方性をもたせようとして
も、冷却差による断面異方性はあまり期待できな
かつた。また、大きな断面異方性を得るために、
冷却風を強くすると、紡糸中に糸切れが多発し、
紡糸性が不良であつた。 そこで、たとえば特公昭56−29007号公報に記
載された発明のように、中空繊維の断面の一部分
を肉薄とした偏心中空繊維とし、その肉薄の部分
に冷却風をあてることが考えられた。つまり、第
7図に示すような、紡糸口金本体1に、同一の巾
のスリツト2cおよび2dを穿設し、スリツト2
cと2dとの間に切り欠き部分Sを設けた紡糸口
金を使用し、第8図に示すような切り欠き部分S
でのポリマ吐出量の少ない部分Tを肉薄とする偏
心中空繊維3を得て、肉薄部分Tに冷却風をあて
るのである。 しかし、この方法では、確かに偏心した中空繊
維は得られるが、得られた偏心中空繊維の肉薄部
分Tの範囲Rが狭いために、後述する測定法で測
定した潜在捲縮能1/dを、3.0以上とすること
ができないという欠点を有していた。 [発明の目的] 本発明の目的は、上記従来技術の問題点を克服
し、紡糸性が良好で、かつ潜在捲縮性能に優れた
偏心中空繊維を安定して得ることのできる溶融紡
糸方法を提供することにある。 [発明の構成] 上記目的を達成するため、本発明は、一方向か
らのみ流れる冷却風で冷却しながら中空繊維を溶
融紡糸するに際して、紡糸口金面に、実質的に同
一円周上に位置するように不連続なスリツトを穿
設することにより各孔を形成し、前記スリツトの
うち、冷却側のスリツトの巾Waと、反対側のス
リツトの巾Wbとの関係が1.2≦Wb/Wa≦2.0か
らなる紡糸口金で紡糸することを特徴とするもの
である。 以下、本発明を図面に基づいて具体的に説明す
る。 第1図〜第4図は、本発明に用いる紡糸口金の
吐出孔であるスリツトの形状の例を示す平面図で
ある。第5図は、本発明で得られた偏心中空繊維
の横断面図である。 第1図〜第4図において、1は紡糸口金本体、
2aは冷却側、つまり冷却風の風上側のスリツ
ト、2bはその反対側つまり風下側のスリツトで
ある。4は一方向からのみ流れる冷却風である。 本発明においては、冷却側のスリツト2aの巾
Waと、反対側のスリツト2bの巾Wbとの関係
を、1.2≦Wb/Wa≦2.0とする必要がある。すな
わち、冷却側のスリツト2aの巾を狭くし、反対
側のスリツト2bの巾を広くするものである。 スリツト巾の比Wb/Waが1.2未満では、紡糸
して得られる中空繊維の断面異方性が小さいもの
となり、従来品の潜在捲縮能と変らないものとな
つてしまう。また、Wb/Waが2.0を越えると、
潜在捲縮能は大きくなり良好となるが、紡糸中や
紡糸後に肉薄部分が破れてパンクしたり、中空成
型が不良となつたりするからである。スリツト巾
Waは、0.08〜0.14mm、Wbは0.10〜0.24mmとする
ことが好ましい。 また、スリツト2a,2bは実質的にそのいず
れかの円周上に揃うように配置する必要がある。
ここで「実質的に」とは、各スリツト2a,2b
を円周方向に結んでも、同一円周上からはみだす
スリツトが存在する場合、たとえば第4図に示す
ような半径の短い方のスリツトの外周半径r1に対
する半径の長い方のスリツトの内周半径r2の比
r2/r1を、1.05以下とすることをいう。 このような紡糸口金を使用して溶融紡糸する
と、第5図に示すような偏心した中空繊維3が安
定して得られる。ここで重要なのは、肉薄部分T
の範囲Rが第8図に示したRよりも大きく、した
がつて後述するように潜在捲縮能1/dが大きい
ことである。 さらに偏心が助長された、すなわち上記Rがよ
り一層大きな偏心中空繊維を得るには、たとえば
特公昭56−29007号公報に示されているようなス
リツトの切り欠き部分Sを、第3図のように、本
発明のスリツト2aに設けるとよい。 冷却側のスリツト2aの長さは円周全体の長さ
の35〜60%、逆に反対側のスリツト2bの長さは
60〜35%が好ましいが、両者を各45〜55%とする
のがより好ましい。長さの割合が、この範囲を外
れると潜在捲縮能が低下する傾向にあるからであ
る。また、冷却風4の温度は20℃が好ましく、そ
の送風速度は50〜100m/分の範囲が好ましい。 本発明はポリアミド、ポリエステル、アクリル
などの熱可塑性合成重合体を溶融紡糸して得られ
る繊維に適用することができる。 [発明の効果] 以上説明したように、本発明によれば、巾の狭
いスリツトから吐出されるポリマは、巾の広いス
リツトから吐出されるポリマに比較して、より速
く、より強く冷却されることになり、そのため
に、断面異方性の差をより大きくすることができ
る。しかも、一方向からのみ流れる冷却風で冷却
するので、その効果がより一層助長される。した
がつて、潜在捲縮能が大変に優れた繊維を安定し
て得ることができる。 以下、実施例により、本発明の効果を具体的に
説明する。なお、実施例に記載した潜在捲縮能を
表わす1/dは、次の方法によつて求めた。 <潜在捲縮能> 紡糸した中空未延伸糸の単繊維を3.5mmに切断
し、これを98℃の温水に浸漬する。この時、単繊
維は捲縮発現してコイル状となる。このコイルの
直径dを目盛付き実体顕微鏡で観察して測定し、
1/dを求めた。1/dは大きい方(具体的には
3.0以上)が潜在捲縮能に優れていることを意味
する。 [実施例1] 極限粘度0.625のポリエチレンテレフタレート
を溶融温度290℃で、第1図に示すスリツト形状
の紡糸口金で、WaとWbを表1に示すように、
種々変更したものを用いて、紡糸口金面下5〜45
cmの範囲で、矢印の方向から冷却風を80m/分の
割合で吹き付け、冷却・固化して引取つた。この
未延伸糸の単繊維の潜在捲縮能1/dを、上述の
方法によつて求めたところ、表1に示すような結
果が得られた。
[Technical Field] The present invention relates to a method for melt spinning eccentric hollow fibers. More specifically, the present invention relates to an improvement in a method for melt-spinning eccentric hollow fibers having latent crimp ability. [Prior art and its problems] In general, in order to obtain fibers with latent crimp ability, there are known composite spinning methods such as the so-called bimetal type or eccentric core-sheath type, and an asymmetric cooling method in which the spun yarn is rapidly cooled. However, the present invention relates to the latter, and moreover, to hollow fibers. Conventionally, as a spinneret for obtaining latent crimpable hollow fibers by an asymmetric cooling method, a plurality of slits 2 are bored in a spinneret body 1, as illustrated in a plan view in FIG. things have been used. When using such a spinneret to obtain an eccentric hollow fiber having latent crimp ability, in the case of FIG. 6, since the width W of the slits is the same,
Even if an attempt was made to create cross-sectional anisotropy using cooling air, it was not possible to expect much cross-sectional anisotropy due to the difference in cooling. In addition, in order to obtain large cross-sectional anisotropy,
If the cooling air is strengthened, thread breakage occurs frequently during spinning.
The spinnability was poor. Therefore, for example, as in the invention described in Japanese Patent Publication No. 56-29007, it has been considered to make a hollow fiber into an eccentric hollow fiber with a thinner part in its cross section, and to apply cooling air to the thinner part. That is, as shown in FIG. 7, slits 2c and 2d of the same width are bored in the spinneret body 1, and
Using a spinneret with a notch S between c and 2d, the notch S as shown in Fig. 8 is used.
An eccentric hollow fiber 3 is obtained in which the portion T where the amount of polymer discharged is small is made thinner, and cooling air is applied to the thinner portion T. However, although eccentric hollow fibers can be obtained with this method, the range R of the thin wall portion T of the obtained eccentric hollow fibers is narrow, so that the potential crimp capacity 1/d measured by the measurement method described later is , it had the disadvantage that it could not be made higher than 3.0. [Object of the Invention] The object of the present invention is to overcome the problems of the above-mentioned conventional techniques and to provide a melt spinning method that can stably obtain eccentric hollow fibers with good spinnability and excellent latent crimp performance. It is about providing. [Structure of the Invention] In order to achieve the above object, the present invention provides methods for melt spinning hollow fibers while cooling them with cooling air flowing from only one direction. Each hole is formed by drilling discontinuous slits such that the relationship between the width Wa of the slit on the cooling side and the width Wb of the slit on the opposite side is 1.2≦Wb/Wa≦2.0. It is characterized by spinning with a spinneret consisting of: Hereinafter, the present invention will be specifically explained based on the drawings. 1 to 4 are plan views showing examples of the shapes of slits, which are discharge holes of a spinneret used in the present invention. FIG. 5 is a cross-sectional view of the eccentric hollow fiber obtained by the present invention. In FIGS. 1 to 4, 1 is a spinneret body;
2a is a slit on the cooling side, that is, on the windward side of the cooling air, and 2b is a slit on the opposite side, that is, on the leeward side. 4 is cooling air that flows only from one direction. In the present invention, the width of the slit 2a on the cooling side
The relationship between Wa and the width Wb of the slit 2b on the opposite side must be 1.2≦Wb/Wa≦2.0. That is, the width of the slit 2a on the cooling side is narrowed, and the width of the slit 2b on the opposite side is widened. If the slit width ratio Wb/Wa is less than 1.2, the cross-sectional anisotropy of the hollow fiber obtained by spinning will be small, and the potential crimpability will be the same as that of conventional products. Also, if Wb/Wa exceeds 2.0,
This is because although the latent crimp ability increases and becomes good, the thin wall portions may tear during or after spinning, resulting in punctures or poor hollow molding. Slit width
It is preferable that Wa is 0.08 to 0.14 mm and Wb is 0.10 to 0.24 mm. Further, the slits 2a and 2b must be arranged so as to be substantially aligned on one of the circumferences.
Here, "substantially" means that each slit 2a, 2b
Even if the slits are connected in the circumferential direction, if there are slits protruding from the same circumference, for example, as shown in Figure 4, the inner radius of the slit with the longer radius is the outer radius r 1 of the slit with the shorter radius. Ratio of r 2
This means that r 2 /r 1 is 1.05 or less. When melt spinning is performed using such a spinneret, eccentric hollow fibers 3 as shown in FIG. 5 can be stably obtained. What is important here is the thin part T
The range R is larger than R shown in FIG. 8, and therefore the potential crimp capacity 1/d is large, as will be described later. In order to obtain an eccentric hollow fiber in which the eccentricity is further promoted, that is, the above-mentioned R is even larger, the cutout portion S of the slit as shown in Japanese Patent Publication No. 56-29007 can be cut out as shown in Fig. 3. It is preferable to provide the slit 2a of the present invention. The length of the slit 2a on the cooling side is 35 to 60% of the entire circumference, and the length of the slit 2b on the opposite side is
Although 60 to 35% is preferable, it is more preferable that both are 45 to 55% each. This is because when the length ratio is outside this range, the potential crimp ability tends to decrease. Further, the temperature of the cooling air 4 is preferably 20°C, and the blowing speed is preferably in the range of 50 to 100 m/min. The present invention can be applied to fibers obtained by melt-spinning thermoplastic synthetic polymers such as polyamide, polyester, and acrylic. [Effects of the Invention] As explained above, according to the present invention, polymer discharged from a narrow slit is cooled faster and more strongly than polymer discharged from a wide slit. Therefore, the difference in cross-sectional anisotropy can be made larger. Moreover, since the cooling air flows from only one direction, the effect is further enhanced. Therefore, fibers with very good latent crimp ability can be stably obtained. EXAMPLES Hereinafter, the effects of the present invention will be specifically explained with reference to Examples. Note that 1/d, which represents the potential crimp ability described in the Examples, was determined by the following method. <Potential crimping ability> A single fiber of the spun hollow undrawn yarn is cut into 3.5 mm pieces and immersed in warm water at 98°C. At this time, the single fiber develops crimp and becomes coiled. Observe and measure the diameter d of this coil with a graduated stereomicroscope,
1/d was calculated. 1/d is the larger one (specifically
3.0 or higher) means that the potential crimp capacity is excellent. [Example 1] Polyethylene terephthalate with an intrinsic viscosity of 0.625 was melted at a melting temperature of 290°C, using a slit-shaped spinneret shown in Fig. 1, and Wa and Wb as shown in Table 1.
Using various modifications, spinneret surface 5 to 45
Cooling air was blown at a rate of 80 m/min from the direction of the arrow within a range of 1.5 cm, and the material was cooled and solidified before being collected. When the potential crimp capacity 1/d of the single fibers of this undrawn yarn was determined by the method described above, the results shown in Table 1 were obtained.

【表】 No.2および3は実施例であり、No.1および4は
本発明の効果を明確にするための比較例である。 No.2および3は1/dが大きく、潜在捲縮能が
優れていることを示している。これに対して、比
較例のNo.1は1/dが小さく、潜在捲縮性能の点
で不満足であつた。また、No.4は1/dが大きい
ものの、スリツト巾の比が大きすぎるため、中空
部にパンクが見られ中空成型性が不良となつた。 [実施例2] 第2図、第3図に示すスリツト形状の紡糸口金
で、WaとWbを表2に示したものを用いた以外
は、実施例1と同様の条件で未延伸糸を得た。こ
の未延伸糸の単繊維の1/dを上述の方法によつ
て求めたところ、表2に示すような結果が得られ
た。
[Table] Nos. 2 and 3 are examples, and Nos. 1 and 4 are comparative examples for clarifying the effects of the present invention. Nos. 2 and 3 have large 1/d, indicating excellent potential crimp ability. On the other hand, Comparative Example No. 1 had a small 1/d and was unsatisfactory in terms of latent crimp performance. In addition, although No. 4 had a large 1/d, the slit width ratio was too large, so punctures were observed in the hollow part and the hollow moldability was poor. [Example 2] An undrawn yarn was obtained under the same conditions as in Example 1, except that Wa and Wb shown in Table 2 were used with the slit-shaped spinneret shown in FIGS. 2 and 3. Ta. When the 1/d of the single fibers of this undrawn yarn was determined by the method described above, the results shown in Table 2 were obtained.

【表】 No.6は紡糸口金のスリツト2aに切り欠き部分
Sを設けた、より好ましい実施例であり、No.7は
本発明の効果を明確にするための比較例である
(比較例においては、第7図に示した紡糸口金を
用いた)。 No.5は実施例1と同様、潜在捲縮能が優れてい
た。またNo.6は、No.5よりも相対的に1/dが大
きく、潜在捲縮能がより一層優れていることを示
している。これに対して、比較例のNo.7は1/d
が小さく、潜在捲縮能の点で不満足であり、紡糸
性も不安定であつた。
[Table] No. 6 is a more preferred embodiment in which a notch S is provided in the slit 2a of the spinneret, and No. 7 is a comparative example to clarify the effects of the present invention (in the comparative example The spinneret shown in FIG. 7 was used). Like Example 1, No. 5 had excellent potential crimp ability. Further, No. 6 has a relatively larger 1/d than No. 5, indicating that the potential crimp ability is even more excellent. On the other hand, Comparative Example No. 7 is 1/d
was small, the crimp potential was unsatisfactory, and the spinnability was unstable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明に用いる紡糸口金の吐
出孔であるスリツトの形状の例を示す平面図であ
る。第5図は本発明で得られた偏心中空繊維の一
例を示す横断面図である。第6図、第7図は従来
の紡糸口金のスリツトの例を示す平面図である。
第8図は第7図の紡糸口金で得られた偏心中空繊
維の一例を示す横断面図である。 1:紡糸口金本体、2:スリツト、3:偏心中
空繊維、4:冷却風。
1 to 4 are plan views showing examples of the shapes of slits, which are discharge holes of the spinneret used in the present invention. FIG. 5 is a cross-sectional view showing an example of an eccentric hollow fiber obtained by the present invention. FIGS. 6 and 7 are plan views showing examples of conventional spinneret slits.
FIG. 8 is a cross-sectional view showing an example of an eccentric hollow fiber obtained using the spinneret of FIG. 7. 1: spinneret body, 2: slit, 3: eccentric hollow fiber, 4: cooling air.

Claims (1)

【特許請求の範囲】 1 一方向からのみ流れる冷却風で冷却しながら
中空繊維を溶融紡糸するに際して、紡糸口金面
に、実質的に同一円周上に位置するように不連続
なスリツトを穿設することにより各孔を形成し、
前記スリツトのうち、冷却側のスリツトの巾Wa
と、反対側のスリツトの巾Wbとの関係が、1.2≦
Wb/Wa≦2.0からなる紡糸口金で紡糸すること
を特徴とする偏心中空繊維の溶融紡糸方法。 2 冷却側のスリツトに1個以上の切り欠き部分
を設けてなる特許請求の範囲第1項記載の偏心中
空繊維の溶融紡糸方法。
[Claims] 1. When melt-spinning hollow fibers while cooling with cooling air flowing from only one direction, discontinuous slits are bored on the spinneret surface so as to be located substantially on the same circumference. Form each hole by
Among the slits, the width of the slit on the cooling side Wa
The relationship between this and the width Wb of the slit on the opposite side is 1.2≦
A method for melt spinning eccentric hollow fibers, characterized by spinning with a spinneret having Wb/Wa≦2.0. 2. The method for melt spinning eccentric hollow fibers according to claim 1, wherein one or more notches are provided in the slit on the cooling side.
JP22389784A 1984-10-26 1984-10-26 Melt-extrusion of eccentrically hollowed fiber Granted JPS61108707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22389784A JPS61108707A (en) 1984-10-26 1984-10-26 Melt-extrusion of eccentrically hollowed fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22389784A JPS61108707A (en) 1984-10-26 1984-10-26 Melt-extrusion of eccentrically hollowed fiber

Publications (2)

Publication Number Publication Date
JPS61108707A JPS61108707A (en) 1986-05-27
JPS6330405B2 true JPS6330405B2 (en) 1988-06-17

Family

ID=16805417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22389784A Granted JPS61108707A (en) 1984-10-26 1984-10-26 Melt-extrusion of eccentrically hollowed fiber

Country Status (1)

Country Link
JP (1) JPS61108707A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439626A (en) * 1994-03-14 1995-08-08 E. I. Du Pont De Nemours And Company Process for making hollow nylon filaments
DE102013016628A1 (en) * 2013-10-08 2015-04-09 Trützschler GmbH & Co Kommanditgesellschaft Spinneret for extruding self-crimping hollow fibers and self-crimping hollow fibers and method for producing self-crimping hollow fibers
CN103835012A (en) * 2014-02-21 2014-06-04 苏州龙杰特种纤维股份有限公司 Spinneret plate and method for producing multi-dimensional hollow elastic polyester yarn

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053622A (en) * 1973-09-17 1975-05-12
JPS5721510A (en) * 1980-07-08 1982-02-04 Toray Ind Inc Spinneret for hollow fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053622A (en) * 1973-09-17 1975-05-12
JPS5721510A (en) * 1980-07-08 1982-02-04 Toray Ind Inc Spinneret for hollow fiber

Also Published As

Publication number Publication date
JPS61108707A (en) 1986-05-27

Similar Documents

Publication Publication Date Title
CA1183313A (en) Melt spinning process
EP0087291B1 (en) Process for increasing void volume of hollow filaments
JPS6330405B2 (en)
CA1118172A (en) Self crimping yarn
KR0123943B1 (en) Spinnerat for polyester fiber
JP3799061B2 (en) Method for making filaments from optically anisotropic spinning solution
JP2002363828A (en) Side by side conjugated fiber and method of producing the same
JP3247286B2 (en) Cellulose acetate multifilament yarn having a special cross section and method for producing the same
JPH0120243B2 (en)
US3321802A (en) Spinnerets
Ruckdashel et al. Hollowness Variation with Die Wall Thickness in Melt-Spinning of Polypropylene Hollow Fibers
JP3148566B2 (en) Spinneret for special hollow fiber
JPH0655966B2 (en) Spinneret for hollow fibers with irregular cross section
JP3872169B2 (en) Spinneret for core-sheath composite fiber
KR0162550B1 (en) The spinning nozzle for manufacturing hollow fiber
JPH1150329A (en) Melt spinning of eccentric conjugate fiber
KR950013479B1 (en) A spinert for producing a hollow fiber
JPH0663131B2 (en) Method for producing polyester hollow composite fiber
JPH0220725B2 (en)
JPS6115162B2 (en)
JPH07310225A (en) Spinneret for core-sheath hollow conjugate fiber and production of core-sheath hollow conjugate fiber
JPH10273813A (en) Spinneret comprising h-shaped slit
KR0135185B1 (en) Process for manufacturing polyester hollow fiber
JPS61124619A (en) Spinneret for modified cross section filaments
JPH0514166U (en) Spinneret for hollow fibers