JPH0220725B2 - - Google Patents

Info

Publication number
JPH0220725B2
JPH0220725B2 JP59114399A JP11439984A JPH0220725B2 JP H0220725 B2 JPH0220725 B2 JP H0220725B2 JP 59114399 A JP59114399 A JP 59114399A JP 11439984 A JP11439984 A JP 11439984A JP H0220725 B2 JPH0220725 B2 JP H0220725B2
Authority
JP
Japan
Prior art keywords
spinning
spinneret
temperature
guide rod
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59114399A
Other languages
Japanese (ja)
Other versions
JPS60259619A (en
Inventor
Toshimasa Kuroda
Tatsuya Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP11439984A priority Critical patent/JPS60259619A/en
Publication of JPS60259619A publication Critical patent/JPS60259619A/en
Publication of JPH0220725B2 publication Critical patent/JPH0220725B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は紡糸孔に嵌入され、しかも吐出面より
突出せしめられた紡糸液案内棒より構成された紡
糸口金を使用することにより通常の紡糸口金で溶
融紡糸する際に必要される紡糸口金温度よりも低
い紡糸口金温度でポリエステル繊維を製造する方
法に関するものである。更に詳しくは、かかる低
紡糸口金温度で溶融紡糸しても通常の紡糸口金温
度で製造されるポリエステル繊維と何ら遜色のな
い紡糸性性能を有するポリエステル繊維の製造法
に関する。 <従来技術> ポリエステルに代表される熱可塑性ポリマーよ
り製造される合成繊維は、ポリマーをその融点以
上の温度で紡糸口金細孔より押出し、冷却細化し
て線状の固体としつつ引取るか又は巻取る、いわ
ゆる溶融紡糸法により製造されている。通常、紡
糸口金細孔(以下吐出孔と略す)は直径0.1〜0.8
mm、長さ数mmの通常円形の細管(ノズル)で、そ
の吐出先端は口金吐出面に平行にかつ細管軸に垂
直に切断された形をとつている。 かかる通常の紡糸口金を用いて紡糸する過程で
は、ポリマー流が吐出面を出た時点で応力が集中
して急激な変形を受けると云われており、適正紡
糸条件を設定の為にはポリマーの融点、溶融粘
度、紡糸口金温度、吐出孔形状等が重要な役割を
持つている。特に、紡糸口金温度が低すぎると溶
融粘度が上り、極端な場合は弱糸化、断糸増加に
至り、シヤークスキンやメルトフラクチヤーと云
われる現象を見るに至る。通常の口金では口金温
度を下げて来ると断糸する口金温度、即ち、弱糸
化口金温度又は可紡下限紡糸口金温度と云われる
温度があるが、通常ポリエチレンテレフタレート
の場合、固有粘度〔η〕f等のポリマー特性と関
連しておおよそ280〜300℃の間の口金温度が採用
されている。この紡糸口金温度は、ポリエチレン
テレフタレートの融点である254〜260℃に比較し
て25℃以上もの高温であり、又、可紡下限の紡糸
温度でさえ融点より25℃位高い、約278℃以上で
あるのが通常である。 一般にポリエステルは融点以上の高温に長時間
曝すと熱分解等の熱劣化により溶融粘度の低下を
伴ない、分子量低下を起こすので、高温状態での
熱履歴時間を極力短縮することに努力が払われて
いる。特に高強力、高モジユラス繊維を得る為に
高〔η〕fのポリマーを紡糸する場合、通常口金
を用いて安定紡糸するには、前述の紡糸口金温度
を相当高温にして、適正な溶融粘度にする必要が
あり、その際の高温熱履歴による分子量低下
(〔η〕f低下)は普通〔η〕fのポリマーより極
めて大であるのが現状であり、〔η〕f低下の少
ないポリマーあるいは高に高〔η〕fポリマーの
製造に多大な努力が払われている。一方、ポリエ
チレンテレフタレートの改質を目的として機能性
付与の為、各種添加剤が混合されたり、共重合ポ
リエステルや他種のポリマー等、物理的、化学的
に異質な熱可塑性ポリマーとの複合紡糸が広く行
なわれているが、添加剤や共存ポリマーの熱安定
性と現状の紡糸口金温度との関係で、安定紡糸達
成の為には厳密な紡糸条件が強いられたり、又、
ポリエチレンテレフタレートの改質の可能性拡大
の大きな障害となつている。 <発明の目的> 従つて、本発明の目的は当業者にとつては永年
の夢であるポリエステルテレフタレートの低紡糸
口金温度による紡糸(低温紡糸)を可能ならし
め、以て熱劣化防止〔η〕f低下防止等によるポ
リエチレンテレフタレート自体の性能ポテンシヤ
ル向上及びポリエチレンテレフタレート改質の為
の各種複合化紡糸技術の大巾な拡大を容易にし、
加えて、現在注入されている多大な労力の大巾低
減を図ることにある。 <発明の構成> かかる状況をかんがみ、本発明らはポリエチレ
ンテレフタレートの低温紡糸化実現の為、鋭意検
討した結果、紡糸液案内棒を吐出孔を通過して吐
出面下流迄突出せしめた紡糸口金を用いることで
容易に低温紡糸できることを見い出し、本発明に
至つたものである。 即ち、本発明は、エチレンテレフタレートを主
成分とするポリエステル繊維を溶融紡糸により製
造するに際し、ポリエステルポリマー(融点+
30)℃以上の溶融温度で完全溶融した後、紡糸液
導入孔とそれに連なる紡糸液吐出孔から成る紡糸
孔を少なくとも1個以上有する紡糸口金板に於い
て、下部を針状になした紡糸液案内棒が各紡糸孔
に嵌入されており該案内棒はその軸が少なくとも
紡糸液導入孔下部から吐出孔を経て、先端に至る
範囲に亘つて導入孔及び吐出孔の軸と一致してお
り、しかも該案内棒が吐出孔を経て吐出面より下
方に突出せしめられて成る紡糸口金を用いて、紡
糸口金温度T(℃)を(融点+5)℃以上(融点
+20)℃以下で溶融紡糸することを特徴とするポ
リエステル繊維の製造法である。 ここで本発明で使用する語句・記号の説明をす
る。 (イ) 固有粘度〔η〕fは溶融紡糸により得られた
紡出糸で測定したものであり、次式で決定され
る。 〔η〕f= LimC0lo(ηrel)/C 〔(ηrel)はo−クロロフエノールを溶媒とする
ポリエステルの稀薄溶液の粘度と同温単位で測定
した前記溶媒の粘度との比であり、Cは100c.c.溶
液中のポリエステルのグラム数である。〕 (ロ) 融点Tm(℃)は、ポリエステルポリマーの
チツプを示差熱測定装置を用いて昇温速度10
℃/minで測定した時の融解のピーク温度であ
る。 本発明について更に詳細に説明する。要約する
ならば、本発明は次の2点にその最大の特徴を有
している。即ち、 紡糸口金が通常の紡糸口金と異なり、針状を
成す紡糸液案内棒を吐出孔を通過して吐出面下
流迄突出するように配置した紡糸口金であるこ
と、 上記紡糸口金を用いて、紡糸口金温度が(融
点+5)℃以上(融点+20)℃以下の条件で紡
糸すること。換言するならば、通常口金での可
紡下限紡糸口金温度が(融点+20)℃にほぼ相
当することから、通常口金の可紡下限紡糸口金
温度より低温側で溶融紡糸すること、 である。 本発明において言うポリエステルとは、繰り返
し単位の85モル%以上がポリエチレンテレフタレ
ートであり、必要に応じて少なくとも1種以上の
共重合成分を共重合して成る共重合ポリエステル
でもよく、又、艶消剤、制電剤、防炎剤、滑剤、
熱安定剤等の添加剤を含んでいてもよい。尚本発
明では特定的にポリエチレンテレフタレート系重
合体を用いて説明するが、本発明のある態様は溶
融紡糸可能な熱可塑性重合体群に対して全般的に
応用可能であることは容易に理解される所であ
る。 本発明で用いるポリエステルの固有粘度〔η〕
fは特に制限されるものではなく、衣料、非衣料
を問わず、実用に供される範囲の〔η〕fが用い
られる。又、ポリエステルの融点(Tm)につい
ても特に制限されるものではなく、一般に熱的に
実用に耐え得るTmを有するポリマーであれば何
ら差しつかえない。 本発明において第1に重要なことは、紡糸口金
が通常の紡糸口金と異なり、針状を成す紡糸液案
内棒を吐出孔を通過して吐出面下流迄突出するよ
うに配置した紡糸口金であることが必要である。
以下図を用いて本発明の紡糸口金の特徴を詳細に
説明する。 第1図は本発明に於ける紡糸口金の要部縦断面
図、第2図は本発明の紡糸口金に嵌入する紡糸液
の案内棒の一実施態様を示す斜視図、第3図は第
2図に示す紡糸液案内棒を嵌入して成る紡糸口金
の要部縦断面図イ及び要部横断面図ロである。 本発明の紡糸口金は、第1図に示す如く、上部
を大径になし下部を漸次小径となした紡糸液導入
孔1とそれに連なる紡糸液吐出孔2とから成る紡
糸孔3を少なくとも1個以上有する紡糸口金板4
に於いて、第2図に示す如く上部の周方向に複数
の(本例では4個の)羽根5を等間隔に設け、下
部6を一様な針状に(本例では円注状になした)
紡糸液案内棒7が第3図に示す如く各紡糸孔3に
嵌入されて、該案内棒7の羽根6を含む上部が紡
糸液導入孔1の大径の上部に固着されている。更
に第3図に示す如く、該案内棒7の軸は少なくと
も紡糸液導入孔1の下部8から吐出孔2を経て、
先端6に至る範囲に亘つて導入孔1及び吐出孔2
の軸と一致しており、しかも該案内棒7が吐出孔
2を経て吐出面9より下部に突出せしめられてい
る。 かかる構造の本発明の紡糸口金によれば紡糸液
は各紡糸孔3に嵌入固着された紡糸液案内棒7の
上部羽根5と導入孔1の大径部の内壁10とで囲
まれ、かつ、等間隔に形成される複数の通路11
を通つて、次に案内棒7の先端6の上部12と導
入孔1の下部8及び吐出孔2とによつて形成され
る環状通路13に入り、この環状通路13の先端
より紡糸液案内棒7の柱状部12の外周に沿つて
流れ、先端6より引出されて繊維状に紡糸され
る。 本発明の紡糸口金において、第1図に示す紡糸
孔3の形状は、概に通常口金のそれと相似してい
るが、寸法的には通常口金の寸法より一般に大き
い値(0.8〜5mm程度)が採用される。 第1図に示す紡糸液導入孔1の大径部の径は、
第2図に示す紡糸液案内棒7が嵌入可能な寸法が
必要であり、案内棒7の工作上の難易度等から約
3mm以上が好ましく、又、紡糸液吐出孔2の径
は、案内棒7の柱状部12の径より約0.1mm以上
大きい値が好ましいが、紡糸液の粘度、吐出糸の
繊度(De)等によつて吐出孔2の径と柱状部1
2の径の組合せは任意に調整可能であることは云
うまでもない。 次に第2図に示す紡糸液案内棒7の上部形状
は、4枚羽根型で示してあるが、この部分の働き
は案内棒7を紡糸孔3にしつかりと固着させるこ
と、及び紡糸液を吐出孔2へ導く通路を形成する
か、あるいは保持していることにあり、上部形状
は何ら限定されるものではなく、第4図に示す案
内棒7の上部の周方向に複数の小円形の紡糸液流
入孔を等間隔に設けた形状でも差しつかえない。 又、第2図に示す紡糸液案内棒7の下部柱状部
12から先端6に至る形状は、本例では円柱状に
示してあるが、特に限定されるものではなく、先
端が尖鋭子錐状を成した円錐状でもよく、又、楕
円形(錐)、三角形(錐)や五角柱(錐)等の多
角柱(錐)、その他各種の異形断面柱(錐)であ
つても差しつかえない。 更に、円管、多角管、その他各種の異形断面の
中空管の形状を成した案内棒を用いることによつ
て中空糸条の紡出も可能であり、更には、紡糸孔
3の紡糸液入口から吐出孔2の先端に至る範囲を
ほぼ2分割する如く配置される形状の案内棒7を
用いれば、サイドバイサイド型複合糸が得られる
し、又、通常のシース・コア型複合紡糸口金に本
発明の紡糸液案内棒を適用することも可能であ
る。 第3図に示す本発明の紡糸口金で紡糸孔3と紡
糸液案内棒7との組合せ構造において大切なこと
は、まず案内棒7の軸が少なくとも紡糸導入孔1
の下部8から吐出孔2を経て、先端6に至る範囲
に亘つて、導入孔1及び吐出孔2と軸と実質上一
致していることである。案内棒の軸が極端に偏心
しているとか紡糸液が第3図に示す通路13を通
過する過程で流速に斑が生じ、吐出面9を出た直
後にベンデイング等を起こし好ましくない。次に
大切なことは第3図に示す如く、案内棒7の柱状
部12の下部から先端6が吐出面9より突出して
いることである。この突出の程度は、吐出孔2の
径、案内棒7の柱状部12の径、紡糸液の粘度、
吐出量、紡糸口金温度等に依存するが1〜30mm、
好ましくは2〜20mm程度である。突出の程度が小
さい場合、通常口金と同様、吐出面9直後の紡糸
液の応力変形が急激となり、紡糸口金温度を通常
より下げていくとさほど下げてない条件下でも弱
糸や断糸発生が起こり安定紡糸が難かしく、低温
紡糸の効果が充分得られなくなる。一方、突出の
程度が極端に大であると、紡糸液が案内棒7の柱
状部12から先端6に沿つて流下する過程で紡糸
液の冷却が進み極端な場合、紡糸液が固化してし
まい曵糸できなくなることがあるので好ましくな
い。 本発明において第2に重要なことは、前述の第
3図に示す如き紡糸口金を用いて、紡糸口金温度
T(℃)が(ポリエステルポリマーの融点+5)
℃以上、(融点+20)℃以下の条件で紡糸するこ
と、換言するならば通常口金での可紡下限紡糸口
金が(融点+25)℃にほぼ相当することから、通
常口金の可紡下限紡糸口金温度より低温側で溶融
紡糸することである。 <作用> 本発明の紡糸口金によつて低温紡糸が可能とな
る詳細な原理は定かではないが、恐らく以下の理
由によるものと考えられる。 一般に高分子溶融体の流動は、ずり応力下の流
動(主に剪断流動による)と伸長応力下の流動に
分けられ、合成繊維の紡糸工程について考えれば
前者は紡糸孔、特に吐出孔内の流動であり、後者
は紡糸孔外での流動である。合成繊維の繊維化
は、紡糸孔外の伸長応力下で起こることは周知の
ところであるが、紡糸孔内の流動特性が繊維化に
種々影響を与えていることも事実である。 通常の紡糸口金においては、紡糸孔、特に吐出
孔通過の過程で受けたずり変形は吐出孔を出た時
点以降で緩和の方向に動くが、引続いて起こる伸
長応力によつて高分子溶融体は急激な変形を受
け、細化される。従つて、紡糸口金温度が低下す
ると高分子溶融体は高粘度化、高弾性化し、その
結果、伸長応力による急激な変形が紡糸口金近
傍、極端な場合は吐出孔内部に迄およぶことにな
り、紡糸口金での高分子での高分子流が乱れて弱
糸になつたり、破断に至るものと考えられる。 一方、本発明の紡糸口金においては、紡糸孔内
で受けたずり変形は吐出面を出た後も、高分子流
が紡糸液案内棒に沿つて流下する過程で緩やかに
緩和され、引続いて起こる伸長応力の高分子流へ
の影響も案内棒の先端より上流に行くに従い、
徐々に減少する為、高分子流の受ける変形は案内
棒に沿つて流れる長い領域でより緩やかなものと
なり、案内棒先端を離れる時点ではよりスムース
に次の伸長応力変形過程へ移行するものと考えら
れる。従つて、紡糸口金温度をかなり低くして、
高分子流が高粘度化、高弾性化しても、通常口金
におけるような急激な変形を受けることが少ない
ので、紡糸できると考えられる。 本発明における紡糸口金温度にはおのずと限界
(下限)があり、即ち、案内棒を流下する過程で
高分子流が固化してしまうような口金温度では伸
長応力による弾性変形から脆性破壊に至り紡糸不
能となるから、(ポリエステルポリマーの融点+
5)℃以上の口金温度が必要である。 一方、本発明における紡糸口金温度の上限は、
通常口金で可紡下限の口金温度以下にそれを置く
べきであり、この可紡下限口金温度以下におい
て、本発明の有用性を見い出すことができるので
ある。従つて、本発明の口金温度の上限は上記可
紡下限口金温度にほぼ相当する(ポリエステルポ
リマーの融点+20)℃とするものである。 以上説明した本発明のポリエステル繊維の製造
法において得られる紡出糸の繊度(De)や紡糸
速度は特に限定されるものではないが、紡出糸の
繊度は約1deの、いわゆる極細繊維から、数十de
の極太繊維の範囲迄紡糸可能であり、紡出速度は
紡出糸の繊度や紡糸口金温度にも依存するが、概
して数十m/分の低紡速から数千m/分の高紡速
域迄紡糸可能である。尚、本発明による紡出糸条
は紡糸工程で一旦巻取つた後、次工程の延伸等に
供してもよく、又、直接延滞(SDY)してもよ
く、特に規定されるものではない。 <効果> 本発明の効果、有用性について述べると、 通常口金の紡糸口金温度で紡糸可能である、
即ち低温紡糸が可能であることから、耐熱性に
乏しい添加剤等を含むポリエステル、ブレンド
あるいは共重合ポリエステル、口金汚れや異物
の多いポリエステル等の安定紡糸が容易にでき
る。又、融点がかなり異なる異種ポリエステル
間の複合紡糸も、高融点側ポリエステルの紡糸
温度が下げられる結果、従来よりも容易にでき
る。 紡糸口金温度低下でポリマーの溶融粘度を上
げることができる為、従来難かしいとされた低
〔η〕fポリエステルの紡糸が可能である。 紡糸口金の紡糸孔や紡糸液案内棒の形状を大
幅に変更する必要なく、極細から極太の繊度の
紡糸が可能である。 高粘度性ポリエステル、高結晶性ポリエステ
ルは口金温度を通常口金の如く高温にする必要
なく紡糸することができる。従つて、高粘度や
高結晶性ポリマーの持つ本来の特性を有効に活
用することができる。 本発明の紡糸口金で低温紡糸したものは通常
口金で同じ紡速で得られた通常紡出糸より低伸
度、低NDRの傾向にあり、本発明の口金と通
常口金を同一口金内に併設することによつて任
意の伸度差を有する紡糸混繊糸を容易に得るこ
とができる。 本発明により得られる紡出糸は通常口金から
の糸条の同一伸度のものよりも濃染化傾向にあ
り、これは同一条件下での延伸熱処理又は仮撚
加工した糸においてもその傾向があり通常より
染着色が向上する。 このように、本発明は通常紡糸では達成するの
が困難であつた、いくつかの問題点を克服しう
る、工業的に極めて有意義な作用効果をもたらす
ものである。 以下、実施例により本発明を説明する。 実施例 1 第1図に示す紡糸口金板3(導入孔1の大径5
mm;吐出孔2の径1.3mm、長さ1.0mm;吐出孔2の
数12)と第2図に示す紡糸液案内棒7(柱状部
12の径1.0mm、長さ5mm)を組み合せて成る、
第3図に示す紡糸口金(吐出面9より下方に突出
している案内棒の長さ3mm)を用いて、固有粘度
〔η〕fが0.60、ポリマーチツプの融点255℃のポ
リエチレンテレフタレートを溶融温度295℃で溶
融紡糸した。紡出糸の延伸後の単糸Deが約3de、
破断伸度が約25%になるように吐出量を調整し、
紡糸口金温度と紡速を種々変更して紡糸した結果
を表−1に示す。 比較例として、通常口金(吐出孔の径0.3mm、
長さ0.6mm、吐出孔数12)を用い、上記と同じポ
リエチレンテレフタレートを溶融温度295℃で、
紡糸口金温度と紡速を変えて紡糸した結果も併せ
て表−1に示す。
<Industrial Application Field> The present invention uses a spinneret composed of a spinning solution guide rod that is fitted into a spinning hole and protrudes from the discharge surface. The present invention relates to a method for producing polyester fibers at a spinneret temperature lower than the spinneret temperature at which the fibers are produced. More specifically, the present invention relates to a method for producing polyester fibers that have spinnability comparable to polyester fibers produced at normal spinneret temperatures even when melt-spun at such low spinneret temperatures. <Prior art> Synthetic fibers made from thermoplastic polymers such as polyester are produced by extruding the polymer through the pores of a spinneret at a temperature above its melting point, cooling it and thinning it into a linear solid before taking it off or winding it. It is manufactured by the so-called melt spinning method. Usually, the spinneret pores (hereinafter referred to as discharge holes) have a diameter of 0.1 to 0.8
mm, usually a circular thin tube (nozzle) with a length of several mm, and its discharge tip is cut parallel to the discharge surface of the nozzle and perpendicular to the thin tube axis. In the process of spinning using such a normal spinneret, it is said that stress is concentrated and the polymer stream undergoes rapid deformation when it leaves the discharge surface. Melting point, melt viscosity, spinneret temperature, discharge hole shape, etc. play important roles. In particular, if the spinneret temperature is too low, the melt viscosity will increase, and in extreme cases, this will lead to weakened yarns and increased yarn breakage, leading to phenomena called shark skin and melt fracture. In a normal spinneret, when the spinneret temperature is lowered, there is a temperature at which the yarn breaks, which is called the weakening spinneret temperature or the lower limit spinning spinneret temperature, but normally in the case of polyethylene terephthalate, the intrinsic viscosity [η] A die temperature of approximately between 280 and 300° C. is employed in conjunction with polymer properties such as f. This spinneret temperature is 25°C or more higher than the melting point of polyethylene terephthalate, which is 254 to 260°C, and even the spinning temperature at the lower limit of spinnability is approximately 278°C or higher, about 25°C higher than the melting point. There is usually one. In general, when polyester is exposed to high temperatures above its melting point for a long period of time, thermal deterioration such as thermal decomposition causes a decrease in melt viscosity and molecular weight, so efforts are made to shorten the thermal history time at high temperatures as much as possible. ing. In particular, when spinning a high [η]f polymer to obtain high strength and high modulus fibers, in order to achieve stable spinning using a normal spinneret, the spinneret temperature described above must be set to a fairly high temperature to maintain an appropriate melt viscosity. At that time, the molecular weight reduction ([η]f reduction) due to high-temperature thermal history is usually much larger than that of [η]f polymers, and polymers with less [η]f reduction or high Significant efforts have been made to produce high [η]f polymers. On the other hand, in order to modify polyethylene terephthalate and give it functionality, various additives are mixed into it, and composite spinning with physically and chemically different thermoplastic polymers such as copolyester and other types of polymers is carried out. Although this method is widely used, strict spinning conditions are required to achieve stable spinning due to the thermal stability of additives and coexisting polymers and the current spinneret temperature.
This is a major obstacle to expanding the possibilities of modifying polyethylene terephthalate. <Object of the invention> Therefore, the object of the present invention is to enable spinning of polyester terephthalate at a low spinneret temperature (low temperature spinning), which has been a long-held dream for those skilled in the art, thereby preventing thermal deterioration [η] Improve the performance potential of polyethylene terephthalate itself by preventing the decrease in f, and facilitate the wide expansion of various composite spinning technologies for modifying polyethylene terephthalate.
In addition, the aim is to significantly reduce the amount of effort currently being invested. <Structure of the Invention> In view of the above circumstances, the present inventors have made intensive studies to realize low-temperature spinning of polyethylene terephthalate, and have developed a spinneret in which a spinning solution guide rod passes through a discharge hole and protrudes downstream of the discharge surface. It was discovered that low-temperature spinning can be easily performed by using this method, leading to the present invention. That is, the present invention provides a polyester polymer (melting point +
30) After completely melting at a melting temperature of ℃ or higher, the spinning solution is placed in a spinneret plate having at least one spinning hole consisting of a spinning solution introduction hole and a spinning solution discharge hole connected to the spinning solution introduction hole, and the spinning solution has a needle-shaped lower part. A guide rod is fitted into each spinning hole, and the axis of the guide rod is aligned with the axes of the introduction hole and the discharge hole at least over a range from the lower part of the spinning solution introduction hole through the discharge hole to the tip, Moreover, melt spinning is performed at a spinneret temperature T (°C) of (melting point +5)°C or more and (melting point +20)°C or less by using a spinneret in which the guide rod projects downward from the discharge surface through the discharge hole. This is a method for producing polyester fiber characterized by the following. Here, the words and symbols used in the present invention will be explained. (a) Intrinsic viscosity [η] f is measured using a spun yarn obtained by melt spinning, and is determined by the following formula. [η] f = Lim C0 l o (ηrel)/C [(ηrel) is the ratio of the viscosity of a dilute solution of polyester using o-chlorophenol as a solvent to the viscosity of the solvent measured in the same temperature unit. and C is the number of grams of polyester in 100 c.c. solution. (b) Melting point Tm (°C) is determined by measuring polyester polymer chips at a heating rate of 10 using a differential thermal measurement device.
It is the peak temperature of melting as measured in °C/min. The present invention will be explained in more detail. To summarize, the present invention has the following two main features. That is, the spinneret is different from a normal spinneret, and is a spinneret in which a needle-shaped spinning solution guide rod is arranged so as to pass through a discharge hole and protrude downstream of the discharge surface; Spinneret temperature must be above (melting point + 5)°C and below (melting point + 20)°C. In other words, since the lower limit spinneret temperature for normal spinnerets is approximately equivalent to (melting point + 20)°C, melt spinning should be performed at a temperature lower than the lower limit spinneret temperature for normal spinnerets. The polyester referred to in the present invention may be a copolymerized polyester in which 85 mol% or more of the repeating units are polyethylene terephthalate, and if necessary, copolymerized with at least one copolymer component, or a matting agent. , antistatic agent, flame retardant, lubricant,
It may also contain additives such as heat stabilizers. Although the present invention will be specifically explained using a polyethylene terephthalate polymer, it is easily understood that certain embodiments of the present invention are generally applicable to melt-spun thermoplastic polymers. It is a place where Intrinsic viscosity of polyester used in the present invention [η]
f is not particularly limited, and [η]f within a practical range is used regardless of clothing or non-clothing. Furthermore, the melting point (Tm) of the polyester is not particularly limited, and any polymer can be used as long as it has a Tm that can withstand practical use. The first important thing in the present invention is that the spinneret is different from a normal spinneret in that it has a needle-shaped spinning solution guide rod that is arranged so as to pass through the discharge hole and protrude downstream of the discharge surface. It is necessary.
The features of the spinneret of the present invention will be explained in detail below with reference to the drawings. FIG. 1 is a longitudinal cross-sectional view of essential parts of a spinneret according to the present invention, FIG. 2 is a perspective view showing an embodiment of a spinning solution guide rod fitted into the spinneret of the present invention, and FIG. FIG. 1 is a longitudinal cross-sectional view (a) of a main part and a cross-sectional view (b) of a main part of a spinneret in which the spinning solution guide rod shown in the figure is inserted. As shown in FIG. 1, the spinneret of the present invention has at least one spinning hole 3 consisting of a spinning solution introduction hole 1 having a large diameter at the top and a gradually decreasing diameter at the bottom, and a spinning solution discharge hole 2 connected thereto. Spinneret plate 4 having or more
As shown in Fig. 2, a plurality of (four in this example) blades 5 are provided at equal intervals in the circumferential direction of the upper part, and the lower part 6 is shaped like a uniform needle (in this example, circularly shaped). )
A spinning solution guide rod 7 is fitted into each spinning hole 3 as shown in FIG. 3, and the upper part of the guide rod 7 including the blades 6 is fixed to the large diameter upper part of the spinning solution introduction hole 1. Furthermore, as shown in FIG. 3, the axis of the guide rod 7 extends from at least the lower part 8 of the spinning solution introduction hole 1 through the discharge hole 2,
The introduction hole 1 and the discharge hole 2 extend all the way to the tip 6.
The guide rod 7 is projected downward from the discharge surface 9 through the discharge hole 2. According to the spinneret of the present invention having such a structure, the spinning solution is surrounded by the upper blade 5 of the spinning solution guide rod 7 fitted and fixed in each spinning hole 3 and the inner wall 10 of the large diameter portion of the introduction hole 1, and A plurality of passages 11 formed at equal intervals
, and then enters an annular passage 13 formed by the upper part 12 of the tip 6 of the guide rod 7, the lower part 8 of the introduction hole 1, and the discharge hole 2, and from the tip of this annular passage 13, the spinning solution guide rod It flows along the outer periphery of the columnar part 12 of No. 7, is pulled out from the tip 6, and is spun into a fiber. In the spinneret of the present invention, the shape of the spinning hole 3 shown in FIG. Adopted. The diameter of the large diameter part of the spinning solution introduction hole 1 shown in FIG.
It is necessary to have a size that allows the spinning solution guide rod 7 shown in FIG. The diameter of the discharge hole 2 and the diameter of the columnar part 1 are preferably about 0.1 mm or more larger than the diameter of the columnar part 12 of No.
It goes without saying that the combination of the two diameters can be adjusted as desired. The upper part of the spinning solution guide rod 7 shown in FIG. The purpose is to form or hold a passage leading to the discharge hole 2, and the shape of the upper part is not limited in any way. A shape in which spinning solution inflow holes are provided at equal intervals may also be used. The shape from the lower columnar part 12 to the tip 6 of the spinning solution guide rod 7 shown in FIG. It may be a conical shape, or it may be a polygonal prism (cone) such as an ellipse (cone), a triangle (cone), a pentagonal prism (cone), or any other irregular cross-section prism (cone). . Furthermore, by using a guide rod in the shape of a circular tube, a polygonal tube, or a hollow tube with various other irregular cross sections, it is possible to spin hollow fibers. If the guide rod 7 is arranged so as to roughly divide the range from the inlet to the tip of the discharge hole 2 into two, a side-by-side type composite yarn can be obtained, and it can also be used in a normal sheath-core type composite spinneret. It is also possible to apply the spinning solution guide rod of the invention. What is important in the combined structure of the spinning hole 3 and the spinning solution guide rod 7 in the spinneret of the present invention shown in FIG.
The range from the lower part 8 to the distal end 6 via the discharge hole 2 is substantially aligned with the axis of the introduction hole 1 and the discharge hole 2. If the axis of the guide rod is extremely eccentric, or the spinning solution passes through the passage 13 shown in FIG. 3, unevenness will occur in the flow velocity, causing bending or the like immediately after exiting the discharge surface 9, which is undesirable. The next important thing is that the lower end 6 of the columnar part 12 of the guide rod 7 protrudes from the discharge surface 9, as shown in FIG. The degree of this protrusion is determined by the diameter of the discharge hole 2, the diameter of the columnar part 12 of the guide rod 7, the viscosity of the spinning solution,
1 to 30 mm, depending on discharge rate, spinneret temperature, etc.
Preferably it is about 2 to 20 mm. If the degree of protrusion is small, the stress deformation of the spinning solution immediately after the discharge surface 9 will be rapid, as is the case with a normal spinneret, and if the spinneret temperature is lowered below normal, weak yarn or yarn breakage will occur even under conditions where the temperature is not lowered that much. This makes stable spinning difficult, and the effect of low-temperature spinning cannot be obtained sufficiently. On the other hand, if the degree of protrusion is extremely large, the spinning solution will cool as it flows down from the columnar part 12 of the guide rod 7 along the tip 6, and in extreme cases, the spinning solution will solidify. This is not preferable because it may make it impossible to thread the thread. The second important thing in the present invention is that the spinneret temperature T (°C) as shown in FIG.
The spinning must be carried out under the conditions of ℃ or more and (melting point + 20) ℃ or less, in other words, the minimum spinneret that can be spun with a normal spinneret is approximately equivalent to (melting point + 25) ℃. Melt spinning is performed at a temperature lower than the temperature. <Function> Although the detailed principle by which low-temperature spinning is enabled by the spinneret of the present invention is not clear, it is probably due to the following reasons. In general, the flow of a polymer melt can be divided into flow under shear stress (mainly due to shear flow) and flow under elongation stress.When considering the spinning process of synthetic fibers, the former is the flow in the spinning hole, especially the discharge hole. The latter is the flow outside the spinning hole. Although it is well known that fiberization of synthetic fibers occurs under elongation stress outside the spinning hole, it is also true that the flow characteristics within the spinning hole have various effects on fiberization. In a normal spinneret, the shear deformation received during the process of passing through the spinning hole, especially the discharge hole, moves in the direction of relaxation after leaving the discharge hole, but the subsequent elongation stress causes the polymer melt to melt. undergoes rapid deformation and becomes thinner. Therefore, when the spinneret temperature decreases, the polymer melt becomes highly viscous and highly elastic, and as a result, rapid deformation due to elongation stress extends to the vicinity of the spinneret, and in extreme cases, to the inside of the discharge hole. It is thought that the polymer flow in the polymer in the spinneret is disturbed, resulting in a weak yarn or breakage. On the other hand, in the spinneret of the present invention, even after exiting the discharge surface, the shear deformation received in the spinning hole is gently relaxed during the process in which the polymer flow flows down along the spinning solution guide rod, and then The effect of the elongation stress on the polymer flow also increases as you move upstream from the tip of the guide rod.
Because the polymer flow gradually decreases, the deformation experienced by the polymer flow becomes more gradual in the long region flowing along the guide rod, and it is thought that when it leaves the tip of the guide rod, it transitions more smoothly to the next elongation stress deformation process. It will be done. Therefore, the spinneret temperature is kept fairly low;
Even if the polymer flow becomes highly viscous and highly elastic, it is considered that spinning is possible because it is unlikely to undergo rapid deformation as in a normal spinneret. There is a natural limit (lower limit) to the spinneret temperature in the present invention.In other words, at a spinneret temperature at which the polymer flow solidifies during the process of flowing down the guide rod, elastic deformation due to elongation stress leads to brittle fracture and spinning becomes impossible. Therefore, (melting point of polyester polymer +
5) A cap temperature of ℃ or higher is required. On the other hand, the upper limit of the spinneret temperature in the present invention is
Normally, the spinneret temperature should be kept below the lower limit of spinnability, and the usefulness of the present invention can be found below this lower spindle temperature. Therefore, the upper limit of the die temperature in the present invention is set to approximately correspond to the above-mentioned lower limit spinneret temperature (melting point of polyester polymer +20°C). The fineness (De) and spinning speed of the spun yarn obtained in the method for producing polyester fiber of the present invention as described above are not particularly limited, but the fineness of the spun yarn is from so-called ultrafine fibers having a fineness of about 1 de. tens of de
It is possible to spin ultra-thick fibers in the range of 100 to 100 m/min, and the spinning speed depends on the fineness of the spun yarn and the spinneret temperature, but in general, it ranges from a low spinning speed of several tens of m/min to a high spinning speed of several thousand m/min. Can be spun up to a wide range. Note that, after the spun yarn according to the present invention is once wound up in the spinning process, it may be subjected to drawing in the next process, etc., or may be directly delayed (SDY), and is not particularly specified. <Effects> Regarding the effects and usefulness of the present invention, spinning is possible at the spinneret temperature of a normal spinneret.
That is, since low-temperature spinning is possible, stable spinning of polyesters containing additives with poor heat resistance, blended or copolymerized polyesters, polyesters with a lot of spindle stains and foreign matter, etc. can be easily performed. Furthermore, composite spinning between different types of polyesters having considerably different melting points can be performed more easily than before because the spinning temperature of the higher melting point polyester is lowered. Since the melt viscosity of the polymer can be increased by lowering the spinneret temperature, it is possible to spin low [η]f polyester, which was previously considered difficult. It is possible to spin fibers with fineness ranging from extremely fine to extremely thick without having to significantly change the shape of the spinning hole of the spinneret or the spinning solution guide rod. High viscosity polyesters and highly crystalline polyesters can be spun without the need to raise the temperature of the spinneret to a high temperature as in a normal spinneret. Therefore, the inherent characteristics of high viscosity and highly crystalline polymers can be effectively utilized. Threads spun at low temperatures using the spinneret of the present invention tend to have lower elongation and lower NDR than normally spun yarns obtained at the same spinning speed using a normal spinneret. By doing so, it is possible to easily obtain a spun mixed fiber yarn having an arbitrary difference in elongation. The spun yarn obtained by the present invention tends to be dyed more deeply than the yarn of the same elongation from the spinneret, and this tendency also occurs in yarns that have been subjected to drawing heat treatment or false twisting under the same conditions. Yes, the coloring is better than usual. As described above, the present invention can overcome several problems that are difficult to achieve by conventional spinning, and brings about industrially extremely significant effects. The present invention will be explained below with reference to Examples. Example 1 Spinneret plate 3 (large diameter 5 of introduction hole 1) shown in FIG.
mm; the diameter of the discharge hole 2 is 1.3 mm, the length is 1.0 mm; the number of discharge holes 2 is 12), and the spinning solution guide rod 7 shown in FIG. 2 (the diameter of the columnar part 12 is 1.0 mm, the length is 5 mm) is combined. ,
Polyethylene terephthalate having an intrinsic viscosity [η] f of 0.60 and a melting point of polymer chips of 255°C is melted at a melting temperature of 295°C using the spinneret shown in Fig. 3 (length of the guide rod protruding downward from the discharge surface 9: 3 mm). Melt spun at °C. The single yarn De after drawing the spun yarn is approximately 3de,
Adjust the discharge amount so that the elongation at break is approximately 25%,
Table 1 shows the results of spinning with various spinneret temperatures and spinning speeds. As a comparative example, a normal mouthpiece (discharge hole diameter 0.3mm,
Using the same polyethylene terephthalate as above at a melting temperature of 295℃,
Table 1 also shows the results of spinning at different spinneret temperatures and spinning speeds.

【表】 (注) *は本発明外の比較例を示す。
表−1において実験No.1〜13は、本発明の紡糸
口金を用いて口金温度を紡速を変えて紡糸性と糸
物性をみたものである。No.1は、口金温度が255
℃と低い為、実験紡速2000m/分では断糸が多発
して紡糸できなかつた。 No.2〜5は口金温度260℃での結果であるが、
紡速4000m/分(伸度67%)で時々単糸切れが発
生し、弱糸化するが、これより低い紡速の広い範
囲で紡糸できた。No.6〜13は口金温度265、275℃
での結果であるが、実験紡速(4000m/分)以下
の範囲において特に問題なく紡糸することができ
た。No.2〜13において特徴的な点は、口金温度を
下げると、同一紡速で得られる紡出糸条の伸度が
低下する傾向がよくでている。一方、No.14〜23は
通常口金を用いて口金温度と紡速を変えてみたも
のである。口金温度が通常採用されている温度で
ある283℃、(No.21〜23)では、紡速6000m/分
(伸度66%)で単糸切れが発生するが、これ以下
の広い紡速範囲では安定紡糸ができる。口金温度
を275℃に下げるとNo.17〜20に示されるように低
紡速では紡糸できても高紡速では単糸切れが発生
し、極端な場合断糸多発で紡糸できない。更に口
金温度を270℃に下げると(No.14〜16)断糸発生
で紡糸が困難であり、例に低紡速で紡糸できても
(No.14)延伸時ラツプが出やすい。このように本
発明によれば相当の低口金温度下でも安定紡糸が
可能であることがわかる。 又、本発明の低温紡糸による付髄効果として表
−1でもわかるように、同一紡速において通常紡
出糸の伸度より低伸度になることから、より低紡
送で通常の高速紡速並の糸条が得られる有用性を
持つている。 実施例 2 実施例1で用いた紡糸口金において吐出面より
下方に突出している案内棒の長さlを3、10、
15、20mmにする以外は変えずに、しかも実施例1
と同じポリエチレンテレフタレートを用いて溶融
温度295℃、口金温度275℃、紡出糸条の単糸デニ
ール約5de、紡速1500m/分で溶融紡糸した結果
を表−2に示す。
[Table] (Note) * indicates a comparative example other than the present invention.
In Table 1, Experiments Nos. 1 to 13 were conducted using the spinneret of the present invention and examining spinnability and yarn physical properties by changing the spinneret temperature and spinning speed. No. 1 has a cap temperature of 255
Because the temperature was so low, yarn breakage occurred frequently at an experimental spinning speed of 2000 m/min, and spinning could not be completed. No. 2 to 5 are the results at a cap temperature of 260℃,
At a spinning speed of 4000 m/min (elongation 67%), single yarn breakage occasionally occurred and the yarn became weak, but spinning was possible over a wide range of lower spinning speeds. No. 6 to 13 have a cap temperature of 265 and 275℃
As a result, it was possible to perform spinning without any particular problem within the range of the experimental spinning speed (4000 m/min) or lower. A characteristic feature of Nos. 2 to 13 is that when the spinneret temperature is lowered, the elongation of the spun yarn obtained at the same spinning speed tends to decrease. On the other hand, Nos. 14 to 23 are samples obtained by using a normal spinneret and changing the spinneret temperature and spinning speed. When the spindle temperature is 283℃ (No. 21 to 23), which is the temperature normally used, single yarn breakage occurs at a spinning speed of 6000 m/min (elongation 66%), but a wide spinning speed range below this This allows stable spinning. When the spinneret temperature is lowered to 275°C, as shown in Nos. 17 to 20, although spinning is possible at low spinning speeds, single yarn breakage occurs at high spinning speeds, and in extreme cases, yarn breakage occurs frequently and spinning is impossible. Further, when the spinneret temperature is lowered to 270° C. (Nos. 14 to 16), yarn breakage occurs and spinning becomes difficult, and even if spinning is possible at a low spinning speed (No. 14), wraps tend to occur during drawing. As described above, it can be seen that according to the present invention, stable spinning is possible even at a considerably low spindle temperature. In addition, as can be seen in Table 1, the pithing effect of the low-temperature spinning of the present invention results in lower elongation than that of normally spun yarn at the same spinning speed. It has the usefulness of producing average yarn. Example 2 In the spinneret used in Example 1, the length l of the guide rod protruding below the discharge surface was 3, 10,
No changes other than 15 and 20 mm, and Example 1
Table 2 shows the results of melt spinning using the same polyethylene terephthalate as above at a melting temperature of 295°C, a spinneret temperature of 275°C, a single filament denier of the spun yarn of about 5 de, and a spinning speed of 1500 m/min.

【表】 表−2からもわかるように、案内棒の長さを長
くすることで案内棒を流下するポリマーの冷却効
果が促進され、紡速相当よりもかなり低伸度の紡
出糸が得られる。No.27の実施例では低紡速(1500
m/分)でありながら、中間配向系(いわゆる
POY;紡速3300〜3500m/分)並の低伸度糸条
となつている。このように案内棒の長さと口金温
度、更には紡速との組合せによつて、相当広範囲
に亘る任意の伸度を有する紡出糸条を得ることが
可能である。 以上、実施例で説明したように本発明によれば
通常紡糸より相当低い口金温度で安定紡糸が可能
であること、得られた紡出糸条の物性が通常紡出
糸に見られない特徴を有している等、本発明の工
業的意義が極めて大である。
[Table] As can be seen from Table 2, increasing the length of the guide rod promotes the cooling effect of the polymer flowing down the guide rod, resulting in a spun yarn with a considerably lower elongation than the spinning speed. It will be done. In Example No. 27, the spinning speed is low (1500
m/min), while the intermediate orientation system (so-called
It is a low elongation yarn similar to POY (spinning speed 3300 to 3500 m/min). In this way, depending on the combination of the guide rod length, die temperature, and spinning speed, it is possible to obtain spun yarn having any elongation over a fairly wide range. As explained above in the examples, according to the present invention, stable spinning is possible at a much lower spindle temperature than normal spinning, and the physical properties of the obtained spun yarn have characteristics not found in normal spinning yarn. The industrial significance of the present invention is extremely great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に於ける紡糸口金の要部縦断面
図、第2図は本発明の紡糸口金に於ける紡糸液案
内棒の一実施態様を示す斜視図、第3図は第2図
に示す紡糸液案内棒を嵌入して成る紡糸口金の要
部縦断面図イ及びイのA−A′面での要部横断面
図ロである。 1:紡糸液導入孔;2:紡糸液吐出孔;3:紡
糸孔;4:紡糸口金板;5:羽根;6:案内棒先
端;7:案内棒;8:導入孔下部;9:吐出面;
10:導入孔大径部内壁;11:通路;12:案
内棒柱状部;13:環状通路。
FIG. 1 is a vertical cross-sectional view of essential parts of a spinneret according to the present invention, FIG. 2 is a perspective view showing an embodiment of a spinning solution guide rod in a spinneret according to the present invention, and FIG. FIG. 2 is a vertical cross-sectional view of a main part of a spinneret in which a spinning solution guide rod shown in FIG. 1: Spinning solution introduction hole; 2: Spinning solution discharge hole; 3: Spinning hole; 4: Spinneret plate; 5: Vane; 6: Guide rod tip; 7: Guide rod; 8: Lower part of introduction hole; 9: Discharge surface ;
10: Inner wall of large diameter part of introduction hole; 11: Passage; 12: Guide rod columnar part; 13: Annular passage.

Claims (1)

【特許請求の範囲】 1 エチレンテレフタレート単位を主成分とする
ポリエステル繊維を溶融紡糸により製造するに際
し、ポリエステルポリマーを(融点+30)℃以上
の溶融温度で完全溶融した後、紡糸液導入孔とそ
れに連なる紡糸液吐出孔から成る紡糸孔を少なく
とも1個以上有する紡糸口金板に於いて、下部を
針状になした紡糸液案内棒が各紡糸孔に嵌入され
ており、該案内棒はその軸が少なくとも紡糸液導
入孔下部から吐出孔を経て、先端に至る範囲に亘
つて導入孔及び吐出孔の軸と一致しており、しか
も該案内棒が吐出孔を経て吐出面より下方に突出
せしめられて成る紡糸口金を用いて、紡糸口金温
度(T℃)が下記式を満足するように溶融紡糸す
ることを特徴とするポリエステル繊維の製造法。 Tm+5≦T≦Tm+20(℃) 〔但し、Tmはポリエステルポリマーの融点
(℃)で、ポリマーチツプの示差熱測定における
融解のピーク温度で示す。〕
[Claims] 1. When producing polyester fibers containing ethylene terephthalate units as a main component by melt spinning, after the polyester polymer is completely melted at a melting temperature of (melting point + 30) °C or higher, a spinning solution introduction hole and a In a spinneret plate having at least one spinning hole consisting of a spinning solution discharge hole, a spinning solution guide rod with a needle-shaped lower part is fitted into each spinning hole, and the guide rod has an axis that is at least The range from the lower part of the spinning solution introduction hole through the discharge hole to the tip is aligned with the axes of the introduction hole and the discharge hole, and the guide rod is made to protrude downward from the discharge surface through the discharge hole. A method for producing polyester fiber, which comprises performing melt spinning using a spinneret such that the spinneret temperature (T° C.) satisfies the following formula. Tm+5≦T≦Tm+20 (°C) [However, Tm is the melting point (°C) of the polyester polymer, which is expressed as the peak temperature of melting in differential thermal measurement of the polymer chip. ]
JP11439984A 1984-06-06 1984-06-06 Manufacture of polyester fiber Granted JPS60259619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11439984A JPS60259619A (en) 1984-06-06 1984-06-06 Manufacture of polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11439984A JPS60259619A (en) 1984-06-06 1984-06-06 Manufacture of polyester fiber

Publications (2)

Publication Number Publication Date
JPS60259619A JPS60259619A (en) 1985-12-21
JPH0220725B2 true JPH0220725B2 (en) 1990-05-10

Family

ID=14636705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11439984A Granted JPS60259619A (en) 1984-06-06 1984-06-06 Manufacture of polyester fiber

Country Status (1)

Country Link
JP (1) JPS60259619A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102557217B1 (en) * 2021-09-15 2023-07-20 주식회사 대영합섬 Method Of Manufacturing Cotton-Like Recycled Polyester Draw-Textured Yarn Having Excellent Bulkiness And Flexibility

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140116A (en) * 1980-04-04 1981-11-02 Teijin Ltd Preparation of polyester fiber
JPS5756337A (en) * 1980-07-28 1982-04-03 Nat Res Dev Fiber manufacture and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140116A (en) * 1980-04-04 1981-11-02 Teijin Ltd Preparation of polyester fiber
JPS5756337A (en) * 1980-07-28 1982-04-03 Nat Res Dev Fiber manufacture and apparatus

Also Published As

Publication number Publication date
JPS60259619A (en) 1985-12-21

Similar Documents

Publication Publication Date Title
PL169424B1 (en) Method of making cellulose formpieces
JPS62243824A (en) Production of ultrafine polyester filament yarn
JPH0220725B2 (en)
JPH0310723B2 (en)
JPH0120243B2 (en)
JP3790313B2 (en) Method for producing split synthetic fibers
JPS5949328B2 (en) Manufacturing method of polyamide deformed hollow fiber
JPH0931749A (en) Production of polyester fiber
JPH06287809A (en) Production of potentially crimping polyester fiber
JPH11241216A (en) Production of hollow polyester fiber
JPS6215321A (en) Production of modified cross-section combined filament polyester yarn
JP7332307B2 (en) Method for producing highly hollow polyester fiber
JP2006336117A (en) Method for producing polyester hollow yarn
JPH1150329A (en) Melt spinning of eccentric conjugate fiber
JP3333750B2 (en) Method for producing polyester fiber
JPS5842286B2 (en) Fine denim polyester fiber and its manufacturing method
JP3895167B2 (en) Ultrafine fiber melt spinneret and melt spinning method
JPS6112906A (en) Melt-spinning of mixed yarn having elongation difference between constituent filaments
JPS62104907A (en) Spinneret for melt spinning
KR940002376B1 (en) Method for preparation of ultrafine multifilament fiber
JPS61124619A (en) Spinneret for modified cross section filaments
JPS6330405B2 (en)
KR810001545B1 (en) A process for melt-spinning of filament
JP2003049324A (en) Method for producing polytrimethylene terephthalate fiber
JPH0235043B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees