JPS6330367A - Silicon carbide-silicon metal base composite material - Google Patents

Silicon carbide-silicon metal base composite material

Info

Publication number
JPS6330367A
JPS6330367A JP61173546A JP17354686A JPS6330367A JP S6330367 A JPS6330367 A JP S6330367A JP 61173546 A JP61173546 A JP 61173546A JP 17354686 A JP17354686 A JP 17354686A JP S6330367 A JPS6330367 A JP S6330367A
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
composite material
metal
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61173546A
Other languages
Japanese (ja)
Inventor
浩司 加古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KONETSU KOGYO KK
TOKAI KOUNETSU KOGYO KK
Original Assignee
TOKAI KONETSU KOGYO KK
TOKAI KOUNETSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KONETSU KOGYO KK, TOKAI KOUNETSU KOGYO KK filed Critical TOKAI KONETSU KOGYO KK
Priority to JP61173546A priority Critical patent/JPS6330367A/en
Publication of JPS6330367A publication Critical patent/JPS6330367A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粒状炭化けい素及び炭化けい素ウィスカーを
骨材として該炭化けい素どうしは結合させず、粒間に金
属けい素を充填させることにより、靭性を高めた炭化け
い素−金属けい素系複合材料に関するものである。該材
料は、耐熱構造材として有用な材料である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses granular silicon carbide and silicon carbide whiskers as aggregates, and the silicon carbide particles are not bonded to each other, but metallic silicon is filled between the particles. This invention relates to a silicon carbide-silicon metal composite material with improved toughness. The material is useful as a heat-resistant structural material.

〔従来の技術〕[Conventional technology]

金属けい素は、主として半導体シリコンウエノ・−の材
料として使用され、その生産量も年々増加をみている。
Metallic silicon is mainly used as a material for semiconductor silicon wafers, and its production volume is increasing year by year.

この金属けい素を耐熱材料として、特に高温での耐酸化
性という観点からみると好ましい材料の1つとされてい
る。金属けい素は、高温で表面酸化されて、二酸化けい
素膜を形成し、この二酸化けい素膜が酸化に対する保護
膜となってそれ以上の酸化を防止するからである。
This metallic silicon is considered to be one of the preferred heat-resistant materials, especially from the viewpoint of oxidation resistance at high temperatures. This is because metal silicon is surface oxidized at high temperatures to form a silicon dioxide film, and this silicon dioxide film serves as a protective film against oxidation to prevent further oxidation.

上述の様(こ、高温での優れた耐酸化性を有する金属け
4為素であるが、一般にアルミ合金中に添加したQ、N
i−Cr合金中に添加して合金の特性改良に使用される
例は多い。しかし、金属けい素そのものがもつ高温耐酸
化性を応用した材料として使用される例は少ない。
As mentioned above (this is a metal element with excellent oxidation resistance at high temperatures, Q and N are generally added to aluminum alloys).
There are many examples where it is added to i-Cr alloys and used to improve the properties of the alloys. However, there are few examples of its use as a material that takes advantage of the high-temperature oxidation resistance of metallic silicon itself.

一方、炭化けい素はその優れた耐熱性から比較的古くか
ら高温用構造材として使用されてさた。
On the other hand, silicon carbide has been used as a high-temperature structural material for a relatively long time due to its excellent heat resistance.

構造材としての強度を確保するために1よ、材料をでき
るだけ緻密化させる必要があり、様々な試みがなされて
いる。
In order to ensure strength as a structural material, it is necessary to make the material as dense as possible, and various attempts have been made.

例えば、炭化けい素焼成体に金属けい素を充填した、炭
化けい素焼成体−金属けい素系複合材料はその一例とい
える。
For example, a silicon carbide fired body-metal silicon based composite material in which a silicon carbide fired body is filled with metal silicon can be said to be one example.

異なる2物質が同時に存在するので熱サイクルによる内
部歪みで炭化けい素焼成体の炭化けい素どうしの結合が
破壊してしまい、ついには材料全体が破壊してしまう場
合があるという問題点があった。
Since two different substances are present at the same time, the bond between silicon carbide in the fired silicon carbide body may be broken due to internal strain caused by thermal cycles, and the entire material may eventually be destroyed.

この欠点を解決する方法として、特許願昭和60年17
2720号にて、炭化けい素どうしを結合させずに該炭
化けい素の粒間に金属けい素を充填させた粒状炭化けい
素−金属けい素系複合材料が考えられた。
As a way to solve this drawback, a patent application was filed in 1985.
No. 2720 proposed a granular silicon carbide-metallic silicon composite material in which metallic silicon was filled between silicon carbide particles without bonding silicon carbide to each other.

また、材料の複合化により高強度を得ようとする方法と
しで、繊維やウィスカーによって材料を強化することが
一般に行なわnている。例えば、繊維強化プラスチツク
複合体(例えば、炭素繊維強化エポキシ樹脂)あるいは
繊維強化金属(例えは、ホウ素繊維強化アルミニウム)
がある。
Furthermore, in order to obtain high strength by compositing materials, it is common practice to strengthen the materials with fibers or whiskers. For example, fiber-reinforced plastic composites (e.g. carbon fiber-reinforced epoxy resin) or fiber-reinforced metals (e.g. boron fiber-reinforced aluminum).
There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

金属けい素を単体で耐熱構造材として使用しようとする
場合、金属けい素は硬くて脆いため所用の成形体に冷間
で加工することは出来ない。、また、金属けい素単体を
熱間で加工成形する方法も一般の冶金工学的な技術が採
用出来ないという欠点を持っていた。例えば、この種の
金属で一般的な遠心鋳造法では金属けい素が溶融状態か
ら固化する過程で体積膨張するため、鋳型から成形体を
取り出すことが出来ないという欠点を持っていた。
When silicon metal is used alone as a heat-resistant structural material, silicon metal is hard and brittle and cannot be cold-processed into the desired molded body. In addition, the method of hot processing and forming a single metal silicon had the disadvantage that general metallurgical engineering techniques could not be used. For example, the centrifugal casting method that is common for this type of metal has the disadvantage that the molded body cannot be removed from the mold because silicon metal expands in volume during the process of solidifying from a molten state.

一方、炭化けい素焼成体−金属けい素系複合材料は、従
来技術で述べたように、内部歪みによる破壊という問題
点があった。
On the other hand, the fired silicon carbide-silicon metal composite material has the problem of destruction due to internal strain, as described in the prior art.

この問題点については、粒状炭化けい素−金属けい素系
複合材料が提供されることによって解決された。
This problem has been solved by providing a granular silicon carbide-metallic silicon composite material.

しかしながら、粒状炭化けい素−金属けい素系複合材料
は、構造材として極めて重要な要票である破壊靭性値が
小さく、材料に一度亀裂が発生すると、その亀裂先端に
応力が集中し、亀裂が急速に伝播して材料がたちまち破
壊してしまう。
However, granular silicon carbide-metal silicon composite materials have a low fracture toughness value, which is an extremely important key factor for structural materials, and once a crack occurs in the material, stress concentrates at the tip of the crack, causing the crack to It spreads rapidly and destroys the material quickly.

本発明の目的は、゛上記の粒状炭化けい素−金属けい素
系複合材料を改良し、炭化けい素ウィスカー1介在させ
ることにより破壊靭性を向上させた炭化けい素−金属け
い素系複合材料を提供することにある。
The object of the present invention is to improve the above-mentioned granular silicon carbide-silicon metal composite material and to provide a silicon carbide-silicon metal composite material with improved fracture toughness by interposing silicon carbide whiskers 1. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、炭化けい素−金属けい素屓複合材
料において、粒状炭化けい素及び炭化けい素ウィスカー
を骨材として該炭化けい素どうしは結合させず、粒間に
金属けい素を充填させたことを特徴とする。
That is, the present invention provides a silicon carbide-metallic silicon oxide composite material in which granular silicon carbide and silicon carbide whiskers are used as aggregates, and the silicon carbide is not bonded to each other, but metallic silicon is filled between the grains. It is characterized by:

ざらに本発明によれば、粒状炭化けい素と炭化けい素ウ
ィスカーの構成重量比が、9:lから7:3の間にある
ことが好ましい。なぜならば、破壊靭性を向上させるた
めに介在させる炭化けい素ウィスカーの添加量は、粒状
炭化けい素に対してl/9(9:l)以下では、はとん
ど効果はない。また、3/7(7:3)以上では、複合
材料自身の強度が小さくなってしまうからである。
Generally speaking, according to the present invention, it is preferred that the constituent weight ratio of granular silicon carbide to silicon carbide whiskers is between 9:1 and 7:3. This is because if the amount of silicon carbide whiskers added to improve fracture toughness is less than 1/9 (9:1) relative to granular silicon carbide, there is little effect. Moreover, if the ratio is 3/7 (7:3) or more, the strength of the composite material itself will be reduced.

〔作用・構成〕[Action/Composition]

次に図面により説明する。第1図及び第2図は亀裂進行
の模式図である。
Next, it will be explained with reference to the drawings. FIGS. 1 and 2 are schematic diagrams of crack progression.

一般に、脆性材料に亀裂が発生すると急速に伝播して材
料がたちまち破壊してしまう。(第2図)ところが、脆
性材料に高強度の繊維を共存させると亀裂が発生しても
、繊維の部分で亀裂の進行は止められ、材料の靭性が向
上する。(第1図)粒状炭化けい素及び炭化けい素ウィ
スカーを骨材として該炭化けい素どうしは結合させず、
粒間に金属けい素を充填させる方法として、粒状炭化け
い素及び炭化けい素ウィスカーを均一に混合し、有機バ
インダーによって所定の形状の成形体を形成する。該成
形体を構成する粒状炭化けい素及び炭化けい素ウィスカ
ー相互間に存在する空孔に、溶融した金属けい素を毛細
管現象を利用して含浸充填した。
Generally, when a crack occurs in a brittle material, it propagates rapidly and the material immediately breaks down. (Figure 2) However, when high-strength fibers coexist with a brittle material, even if cracks occur, the cracks are stopped from progressing at the fibers, improving the toughness of the material. (Fig. 1) Granular silicon carbide and silicon carbide whiskers are used as aggregates, and the silicon carbide is not bonded to each other,
As a method for filling metallic silicon between grains, granular silicon carbide and silicon carbide whiskers are uniformly mixed, and a molded body having a predetermined shape is formed using an organic binder. The pores existing between the granular silicon carbide and silicon carbide whiskers constituting the molded body were impregnated and filled with molten silicon metal using capillary action.

成形体の空孔に金属けい素を含浸充填する条件としでは
、加熱炉の雰囲気をN、又はAr等不活性ガス雰囲気と
し、加熱炉内の温度を金属けい素の融点以上にすれば、
金属けい素を含浸充填することができるが、望ましくは
、1480℃〜1580℃の間であった。
The conditions for impregnating and filling the pores of the compact with metallic silicon are as follows:
It can be impregnated and filled with silicon metal, but preferably at a temperature between 1480°C and 1580°C.

1480℃未満では、成形体に金属けい素を含浸充填す
ることはできたが不均一であった。1580℃以上では
、炭化けい素ウィスカーが粒状に変化しはじめ好ましく
ない。
At temperatures below 1480° C., it was possible to impregnate and fill the molded body with metallic silicon, but the filling was non-uniform. At temperatures above 1580°C, silicon carbide whiskers begin to change into grains, which is undesirable.

さらに、炭化けい素ウィスカーを複合させることによっ
て、材料の強度のバラツキが小さくなり、構造材として
の信頼性が高まるという好ましい現象も確認できた。
Furthermore, by combining silicon carbide whiskers, we have confirmed the favorable phenomenon that variations in material strength are reduced and reliability as a structural material is increased.

〔実施例〕〔Example〕

以下に、本発明の1実施例を説明する。 One embodiment of the present invention will be described below.

粒径30p以下の粒状炭化けい素4部と市販の炭化けい
素ウィスカー1部を水及び水溶性バインダーにて十分混
合・分散させ、20X30X40(mm)の直方体に成
形した。該成形体の上に塊状の金属けい素を置き、Ar
雰囲気中で1560℃1時間加熱して、成形体の空孔部
分に金属けい素を含浸充填して炭化けい素−金属けい素
系複合材料を得た。
4 parts of granular silicon carbide having a particle size of 30p or less and 1 part of commercially available silicon carbide whiskers were thoroughly mixed and dispersed in water and a water-soluble binder, and the mixture was formed into a rectangular parallelepiped of 20 x 30 x 40 (mm). A lump of metallic silicon is placed on the molded body, and Ar
The molded body was heated at 1560° C. for 1 hour to impregnate and fill the pores of the molded body with metal silicon to obtain a silicon carbide-metal silicon composite material.

この複合材料からJIS R1601に基づきサンプル
をきりだし、高温強度と破壊靭性Kroの測定を行なっ
た。
Samples were cut out from this composite material in accordance with JIS R1601, and high temperature strength and fracture toughness Kro were measured.

、高温強度は、27 Kg/mm” (1000°C)
、ワイブル係数は、17.破壊靭性K loは、4. 
F3 MN/m””であった。
, high temperature strength is 27 Kg/mm” (1000°C)
, the Weibull coefficient is 17. Fracture toughness K lo is 4.
F3 MN/m"".

〔比較例1〕 粒C430p以下の粒状炭化けい素のみを水及び水溶性
バインダーにて十分混合・分散させ、20x 30 x
 40 (mm)の直方体に成形した。該成形体の上に
塊状の金属けい素を置き、Ar雰囲気中で1560℃、
1時間加熱して、成形体の空孔部分に金属けい素を含浸
充填して粒状炭化けい素−金属けい素系複合材料を得た
[Comparative Example 1] Only granular silicon carbide of particle size C430p or less was thoroughly mixed and dispersed with water and a water-soluble binder, and 20 x 30 x
It was molded into a 40 (mm) rectangular parallelepiped. A lump of metallic silicon was placed on the molded body, and heated at 1560°C in an Ar atmosphere.
After heating for 1 hour, the pores of the molded body were impregnated and filled with metal silicon to obtain a granular silicon carbide-metal silicon composite material.

この粒状炭化けい素−金属けい素系複合材料がらJIs
 R1601に基づきサンプルをきりだし、高温強度と
破壊靭性KIOの測定2行なった。
This granular silicon carbide-metal silicon composite material JIs
A sample was cut out based on R1601, and two measurements of high temperature strength and fracture toughness KIO were performed.

高温強度は、25 Kg/mm” (1000℃)、ワ
イブル係数は、13.破壊靭性に、。は、3.1MN/
m”であった。
High temperature strength is 25 Kg/mm" (1000°C), Weibull coefficient is 13. Fracture toughness is 3.1 MN/
It was "m".

〔比較例2〕 粒径30μ以下の粒状炭化けい素6部と市販の炭化けい
素ウィスカー4部を水及び水溶性ノ(インダーにて十分
混合・分散させ、20X30X40(mm)の直方体に
成形した。該成形体の上に塊状の金属けい素を置き、A
r雰囲気中で1560℃。
[Comparative Example 2] 6 parts of granular silicon carbide with a particle size of 30 μm or less and 4 parts of commercially available silicon carbide whiskers were thoroughly mixed and dispersed in water and a water-soluble inder, and formed into a rectangular parallelepiped of 20 x 30 x 40 (mm). .Place a lump of metallic silicon on the molded body,
1560°C in r atmosphere.

1時間加熱して、成形体の空孔部分に金属けい素を含浸
充填して炭化けい素−金属けい素系複合材料を得た。
After heating for 1 hour, the pores of the molded body were impregnated and filled with metal silicon to obtain a silicon carbide-metal silicon composite material.

この複合材料からJIS R1601に基づきサンプル
をきりだし、高温強度と破壊靭性K r oの測定を行
なった。
Samples were cut out from this composite material in accordance with JIS R1601, and high temperature strength and fracture toughness K r o were measured.

高温強度は、16 Kg/mm” (1000℃)、ワ
イブル係数は、17.破壊靭性に工oは、4.5 MN
/m”であった。
High temperature strength is 16 Kg/mm” (1000°C), Weibull coefficient is 17. Fracture toughness is 4.5 MN
/m”.

〔発明の効果〕〔Effect of the invention〕

以上詳述した様に、本発明の炭化けい素−金属けい素系
複合材料は、破壊靭性が小さいという、従来の粒状炭化
けい素−金属けい素系複合材料の欠点を改良し、加えて
、強度のバラツキが小さく構造材としての信頼性を高め
た。
As detailed above, the silicon carbide-metal silicon composite material of the present invention improves the drawback of the conventional granular silicon carbide-metal silicon composite material, which is low fracture toughness, and in addition, The variation in strength is small, increasing reliability as a structural material.

耐熱構造材としての本発明に係る上記複合材料の用途は
広く、産業上の効果は大といえる。
The composite material according to the present invention as a heat-resistant structural material has a wide range of uses, and can be said to have great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図 は、本発明に係る複合材料において繊維(ウィ
スカー)によって亀裂が止められでいることを示してい
る模式図である。 第2図 は、脆性材料において亀裂が急速に伝播して、
材料が破壊する寸前にあることを示しでいる模式図であ
る。 特許出願人  東海高熱工業株式会社 第1図 ■ 複合材料 第2図 ↓ 脆性材料
FIG. 1 is a schematic diagram showing that cracks are stopped by fibers (whiskers) in the composite material according to the present invention. Figure 2 shows the rapid propagation of cracks in brittle materials.
FIG. 2 is a schematic diagram showing that the material is on the verge of destruction. Patent applicant: Tokai Konetsu Kogyo Co., Ltd. Figure 1 ■ Composite material Figure 2 ↓ Brittle material

Claims (1)

【特許請求の範囲】 1、粒状炭化けい素及び炭化けい素ウィスカーを骨材と
して該炭化けい素どうしは結合させず、粒間に金属けい
素を充填させたことを特徴とする炭化けい素−金属けい
素系複合材料。 2、粒状炭化けい素と炭化けい素ウィスカーの構成重量
比が、9:1から7:3の間にある特許請求範囲第1項
記載の炭化けい素−金属けい素系複合材料。
[Claims] 1. Silicon carbide, characterized in that granular silicon carbide and silicon carbide whiskers are used as aggregates, the silicon carbide is not bonded to each other, and metallic silicon is filled between the grains. Metal-silicon composite material. 2. The silicon carbide-metal silicon composite material according to claim 1, wherein the constituent weight ratio of granular silicon carbide to silicon carbide whiskers is between 9:1 and 7:3.
JP61173546A 1986-07-25 1986-07-25 Silicon carbide-silicon metal base composite material Pending JPS6330367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61173546A JPS6330367A (en) 1986-07-25 1986-07-25 Silicon carbide-silicon metal base composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61173546A JPS6330367A (en) 1986-07-25 1986-07-25 Silicon carbide-silicon metal base composite material

Publications (1)

Publication Number Publication Date
JPS6330367A true JPS6330367A (en) 1988-02-09

Family

ID=15962535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61173546A Pending JPS6330367A (en) 1986-07-25 1986-07-25 Silicon carbide-silicon metal base composite material

Country Status (1)

Country Link
JP (1) JPS6330367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517227A (en) * 1991-07-02 1993-01-26 Agency Of Ind Science & Technol Silicon carbide/metallic silicon composite body and its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692181A (en) * 1979-12-05 1981-07-25 Gen Electric Manufacture of formed silicon*carbide*silicon* matrix composite substance and product formed thereby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692181A (en) * 1979-12-05 1981-07-25 Gen Electric Manufacture of formed silicon*carbide*silicon* matrix composite substance and product formed thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517227A (en) * 1991-07-02 1993-01-26 Agency Of Ind Science & Technol Silicon carbide/metallic silicon composite body and its production

Similar Documents

Publication Publication Date Title
SU665793A3 (en) Method of producing composite material
JPH0317884B2 (en)
JPS6330367A (en) Silicon carbide-silicon metal base composite material
JPS5891061A (en) Silicon carbide ceramics
JPS60171274A (en) Ceramic bonding method
US3287478A (en) Method of sintering aluminum nitride refractories
JPH0565470B1 (en)
JP3151205B2 (en) Packing material for refractories
JPH08501266A (en) Ceramic composites used especially at temperatures above 1400 ° C
JPS61101465A (en) Manufacture of silicon nitride bonded silicon carbide sintered body
JPS59223272A (en) Ceramics structure and manufacture
JPH0617271B2 (en) Cutting tool and its manufacturing method
JPH11172347A (en) Metal-ceramics composite and its production
JPS59156972A (en) Ceramics composite material
JPS63388B2 (en)
JPS6351993B2 (en)
JPS63129078A (en) Method of joining non-oxide ceramics
JPH03150275A (en) Porous silicon nitride structure
JP2002212690A (en) Method for producing metal-ceramics composite material having thickness part
JPS63185861A (en) Composite sintered body
SU1139719A1 (en) High-temperature ceramic material
JPH09268079A (en) Ceramic-based fiber composite material and its production
JPS62223065A (en) Composite ceramic sintered body
JPH0780815A (en) Fiber molded piece for reinforced metal and production thereof
JPH028823B2 (en)