JPS63303021A - Cu-nb powder metallurgy preform - Google Patents
Cu-nb powder metallurgy preformInfo
- Publication number
- JPS63303021A JPS63303021A JP13952587A JP13952587A JPS63303021A JP S63303021 A JPS63303021 A JP S63303021A JP 13952587 A JP13952587 A JP 13952587A JP 13952587 A JP13952587 A JP 13952587A JP S63303021 A JPS63303021 A JP S63303021A
- Authority
- JP
- Japan
- Prior art keywords
- powder metallurgy
- content
- powder
- superconducting
- preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004663 powder metallurgy Methods 0.000 title claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 12
- 239000002245 particle Substances 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052760 oxygen Inorganic materials 0.000 abstract description 9
- 239000001301 oxygen Substances 0.000 abstract description 9
- 230000001105 regulatory effect Effects 0.000 abstract 4
- 229910017932 Cu—Sb Inorganic materials 0.000 abstract 2
- 238000001513 hot isostatic pressing Methods 0.000 abstract 1
- 229910000657 niobium-tin Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 210000001787 dendrite Anatomy 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000005491 wire drawing Methods 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、Nb、Sn系超電導材の原料素材となるCu
−Nb粉末冶金成形体に関し、詳細には塑性加工性が良
好で且つ優れた超電導特性を与えるCu−Nb粉末冶金
成形体に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to Cu, which is a raw material for Nb and Sn-based superconducting materials.
The present invention relates to a -Nb powder metallurgy molded body, and specifically relates to a Cu-Nb powder metallurgy molded body that has good plastic workability and provides excellent superconducting properties.
[従来の技術]
A−15型化合物系超電導線材の1つであるN1gSn
系超電導線材は、高磁場の下で大きな臨界電流密度を有
することから高磁界発生超電導マグネット用線材として
注目を集めている。[Prior art] N1gSn, which is one of the A-15 type compound superconducting wires
BACKGROUND ART Superconducting wires have attracted attention as wires for superconducting magnets that generate high magnetic fields because they have a large critical current density under high magnetic fields.
Nb3Sn系超電導線材は、従来上としてブロンズ法で
製造されていたが、この方法は工程が煩雑な上に歪によ
る超電導特性の劣化が著しい等の欠点を有する。そこで
これらの欠点を克服する線材として、Cuマトリックス
中に極細超電導繊維が不連続に分散した、所謂In−5
itu超電導線材が開発され、ブロンズ法を峻ぐ超電導
特性を得ることに成功している。Nb3Sn-based superconducting wires have conventionally been manufactured by a bronze method, but this method has drawbacks such as complicated steps and significant deterioration of superconducting properties due to strain. Therefore, as a wire material that overcomes these drawbacks, a so-called In-5 wire material in which ultrafine superconducting fibers are dispersed discontinuously in a Cu matrix is proposed.
ITU superconducting wire has been developed and has succeeded in obtaining superconducting properties superior to those of the bronze method.
In−5itu法によるNb、Sn超電導線材の基本的
製造方法を説明すると、Nb含有量が10〜50%とな
る様に調製されたCu−Nb原料を、真空あるいは不活
性ガス中で溶解鋳造し、Cu−Nbインゴットを製造す
る。このCu−Nbインゴットは、NbがCuマトリッ
クス中に殆んど固溶しない為、Cuマトリックス中に樹
脂状にNbデンドライト結晶が析出した金属組織を呈す
る。To explain the basic manufacturing method of Nb and Sn superconducting wires using the In-5itu method, Cu-Nb raw materials prepared to have an Nb content of 10 to 50% are melted and cast in vacuum or inert gas. , producing a Cu-Nb ingot. This Cu-Nb ingot exhibits a metal structure in which Nb dendrite crystals are precipitated in a resin-like manner in the Cu matrix, since almost no Nb is solidly dissolved in the Cu matrix.
次にCu−Nbインゴットを減面加工して長尺線材化す
ると、Nbデンドライト結晶が引き伸ばされ、Cuマト
リックス中に繊維状デンドライト結晶が不連続に分散さ
れた構造となる。次いで長尺線材の表面にSnめっ籾を
施した後、500〜750℃の温度で熱処理すると、S
nはCu中に拡散してNbと反応し、Nb、Sn系超電
導化合物が形成される。Next, when the Cu--Nb ingot is subjected to surface reduction processing to form a long wire rod, the Nb dendrite crystals are stretched, resulting in a structure in which fibrous dendrite crystals are discontinuously dispersed in the Cu matrix. Next, after applying Sn plating on the surface of the long wire rod, heat treatment at a temperature of 500 to 750°C results in S
n diffuses into Cu and reacts with Nb, forming a Nb, Sn-based superconducting compound.
しかるにIn−5itu法では、Cu−Nbインゴット
中におけるNbデンドライト結晶の形状及び大きさが溶
解鋳造時の冷却速度に敏感に左右され、インゴトの長さ
方向並びに半径方向にみて結晶の形状及び大きさが不均
一になり易い、モしてCu−Nbインゴット中のNbデ
ンドライト組織の分布が不均一であると最終的にはNb
3Sn系超電導化合物の分布も不均一となり、ひいては
超電導特性[臨界電流密度(Jc)特性]の均一性が失
われる。However, in the In-5itu method, the shape and size of Nb dendrite crystals in the Cu-Nb ingot are sensitively influenced by the cooling rate during melting and casting, and the shape and size of the crystals in the longitudinal and radial directions of the ingot are If the distribution of the Nb dendrite structure in the Cu-Nb ingot is uneven, the Nb
The distribution of the 3Sn-based superconducting compound also becomes non-uniform, and as a result, the uniformity of the superconducting properties [critical current density (Jc) properties] is lost.
一方上述の様なCu−Nbインゴット金属組織の不均一
性を解決する方法としてCu粉末とNb粉末を粉末冶金
の手法により成形する方法がある。この方法では、まず
Cu粉末とNb粉末を配合し、圧縮成形した後、焼成し
てCu−Nb粉末冶金成形体を製造する。得られた成形
体は、Nbが均一分散された焼結体であり、これを減面
加工に付して長尺線材化し、表面にSnをめフきした後
熱処理すると、SnがCu中に拡散してNb、Sn系超
電導化合物が生成する。この方法によれば原料粉末の粒
径の調整並びに粉末の混合を十分に行なうことによりほ
ぼ均一な組織のCu−Nb粉末冶金成形体を得ることが
できる。On the other hand, as a method for solving the above-mentioned non-uniformity of the Cu--Nb ingot metal structure, there is a method of forming Cu powder and Nb powder by a powder metallurgy technique. In this method, first, Cu powder and Nb powder are mixed, compression molded, and then fired to produce a Cu-Nb powder metallurgical compact. The obtained molded body is a sintered body in which Nb is uniformly dispersed, and when this is subjected to area reduction processing to form a long wire rod, the surface is polished with Sn, and then heat treated, Sn is mixed into Cu. Through diffusion, a Nb and Sn-based superconducting compound is generated. According to this method, a Cu--Nb powder metallurgical compact having a substantially uniform structure can be obtained by adjusting the particle size of the raw material powder and sufficiently mixing the powder.
しかるにCu−Nb粉末冶金成形体は、溶製材に比べて
塑性加工性が悪く、成形体を長尺線材化する際に割れが
発生することがしばしば経験された。またNbが均一分
散されているので超電導化合物の分布も均一となり、良
好な超電導特性が得られるはずであったが、実際問題と
しては特性面にばらつきがあり、所望の安定した超電導
特性が得られないという問題があった。However, Cu--Nb powder metallurgy compacts have poor plastic workability compared to cast materials, and cracks have often occurred when the compacts are made into long wire rods. In addition, because Nb is uniformly dispersed, the distribution of the superconducting compound is also uniform, and good superconducting properties should be obtained.However, in reality, there are variations in the properties, and the desired stable superconducting properties cannot be obtained. The problem was that there was no.
[発明が解決しよ・)とする問題点]
本発明はこうした事情に着目してなされたものであって
、塑性加工性が良好で且つ優れた超電導特性を与える様
なCu−Nb粉末冶金成形体を提供することを目的とす
るものである。特に前記説明から明らかな様に溶製材で
は均質なNb分布組織を得ることができないので、たと
え塑製加工性が良好でも超電導特性の均一性を得ること
は理論的に困難であることから、基本的には粉末冶金成
形体を採用し、その長所である組織の均質性を生かしつ
つ、塑性加工性の改善を進めた結果完成するに至ったの
が本発明である。[Problems to be Solved by the Invention] The present invention has been made with attention to these circumstances, and it is a Cu-Nb powder metallurgy forming method that provides good plastic workability and excellent superconducting properties. The purpose is to provide the body. In particular, as is clear from the above explanation, it is not possible to obtain a homogeneous Nb distribution structure with ingot material, so even if the plastic workability is good, it is theoretically difficult to obtain uniform superconducting properties. Specifically, the present invention was completed as a result of adopting a powder metallurgy compact, taking advantage of its advantage of homogeneity of structure, and proceeding with the improvement of plastic workability.
[問題点を解決する為の手段]
しかして上記目的を達成した本発明は、Cu母材中にN
b粒子が分散したCu−Nb粉末冶金成形体であって、
Nb含有量が10〜50%(重量%の意味、以下同じ)
であると共に、0含有量が次式を満足する点に要旨を有
するものである。[Means for solving the problems] The present invention, which has achieved the above object, has N in the Cu base material.
A Cu-Nb powder metallurgy molded body in which b particles are dispersed,
Nb content is 10 to 50% (meaning of weight %, the same applies hereinafter)
In addition, the gist is that the 0 content satisfies the following formula.
[o]≦xs[Nb] ”−(1)
但し[O]は0含有量をppm単位で表わしたときの無
名数
[Nb]はNb含有量を%単位で表わしたときの無名数
[作用]
Cu−Nb粉末冶金成形体における塑性加工性阻害要因
について種々検討を重ねた結果、その原因がNb酸化物
の存在にあることを究明した。即ちNbは活性な金属で
あり酸素に汚染され易いことから、市販されているNb
原料粉末は一般に表面の酸化が進んでおり、酸素含有量
は1000〜SOOOppmにも達している。そしてこ
の様にNb原料粉末をそのままCu粉末に混合し、成形
・焼結して成形体を成形すると、Cu基中に分散するN
b粒子に酸素が固溶してNb粒子の硬度が大幅に上昇す
る。その結果該成形体を減面加工する際、Nb粒子が塑
性変形しにくい為にNb粒子を起点とする応力集中が生
じて割れをひき起こす。[o]≦xs[Nb] ”-(1) However, [O] is an anonymous number when the 0 content is expressed in ppm, and [Nb] is an anonymous number when the Nb content is expressed in %. ] As a result of various studies on the factors that inhibit plastic workability in Cu-Nb powder metallurgy compacts, it was determined that the cause lies in the presence of Nb oxide. That is, Nb is an active metal and is easily contaminated by oxygen. Therefore, commercially available Nb
Generally, the surface of the raw material powder is highly oxidized, and the oxygen content reaches 1000 to SOOO ppm. In this way, when the Nb raw material powder is directly mixed with the Cu powder, molded and sintered to form a compact, Nb is dispersed in the Cu base.
Oxygen is dissolved in solid solution in the b particles, and the hardness of the Nb particles increases significantly. As a result, when the molded body is subjected to surface reduction processing, since the Nb particles are difficult to plastically deform, stress concentration occurs starting from the Nb particles, causing cracks.
特にNb粒子の硬化は500℃以上の熱間加工を行なう
時に顕著となる。In particular, the hardening of Nb particles becomes remarkable when hot working is performed at 500°C or higher.
また酸素の固溶によって硬化したNb粒子を分散せしめ
たCu−Nb粉末冶金成形体では、たとえ最終形状ので
加工が達成されても、Snめっき後の熱処理においてS
nとNb粒子の反応性が低下してNb、Snの生成量及
び特性が低下し、所望の超電導特性を得ることができな
い。In addition, in a Cu-Nb powder metallurgy compact in which Nb particles hardened by solid solution of oxygen are dispersed, even if processing is achieved in the final shape, S
The reactivity of n and Nb particles decreases, resulting in a decrease in the amount and characteristics of Nb and Sn produced, making it impossible to obtain desired superconducting characteristics.
本発明者等はこうした事情に着目し、更に検討を重ねた
結果、前記構成に示される本発明を完成するに至った。The inventors of the present invention paid attention to these circumstances and, as a result of further studies, completed the present invention shown in the above configuration.
以下本発明の作用を研、究の経緯に沿って説明する。The effects of the present invention will be explained below along with the background of the research.
前記考察に従えばNb粒子中に酸素が固溶して硬化する
と塑性加工性が悪化し割れ等が発生することから、まず
種々の組成のCu−Nb粉末冶金成形体を作成してNb
粒子のビッカース硬度を夫々測定した後、常法に従い該
成形体を伸線加工し、Nb粒子硬度と伸線加工性の関係
を調べた。According to the above considerations, if oxygen solidly dissolves in Nb particles and hardens, plastic workability deteriorates and cracks occur, so first, Cu-Nb powder metallurgy compacts with various compositions are created
After measuring the Vickers hardness of each particle, the molded body was wire drawn according to a conventional method, and the relationship between Nb particle hardness and wire drawability was investigated.
尚伸線加工前のCu−Nb粉末冶金成形体について硬度
測定と同時にNb含有量及び0含有量の測定を行なった
。その結果Nb粒子硬度と伸線加工性との間には硬度が
一定値を超えると伸線加工性が急激に低下するという関
係が認められ、前記考察が正しいことを確認することが
できた。Note that the Nb content and 0 content were measured simultaneously with the hardness measurement of the Cu-Nb powder metallurgy compact before wire drawing. As a result, it was found that there is a relationship between Nb particle hardness and wire drawability in that when the hardness exceeds a certain value, wire drawability decreases rapidly, confirming that the above consideration is correct.
次いで伸線加工によりて得られた線材を常法に従い、S
nめっきした後熱処理して超電導線材を得、その臨界電
流Icを測定したところ、前記硬度と臨界電流1cの間
に相間々関係が認められ、硬度が一定値を超えるとIc
が大幅に低下することが分かった。これらの結果から硬
度を一定値以下となる様にCu−Nb粉末冶金成形体を
調製すれば、優れた塑性加工性、並びに臨界電流値Ic
を与えるCu−Nb粉末冶金成形体の得られることが確
認された。そこで硬度を一定値以下とする具体的構成に
ついて検討した結果、Cu−Nb粉末冶金成形体の硬度
とO含有量及びNb含有量の間は相間々関係認められ、
0含有量が前記(1)式を満足すれば硬度を所望の値以
下にすることができ、優れた塑性加工性及び超電導特性
を与えるCu−Nb粉末冶金成形体を得ることが分かフ
な。Next, the wire rod obtained by wire drawing is treated with S according to a conventional method.
When the critical current Ic of superconducting wire obtained by heat treatment after n plating was measured, it was found that there was a correlation between the hardness and the critical current 1c, and when the hardness exceeded a certain value, Ic
was found to be significantly reduced. From these results, if a Cu-Nb powder metallurgy compact is prepared so that the hardness is below a certain value, excellent plastic workability and critical current value Ic can be achieved.
It was confirmed that a Cu-Nb powder metallurgy compact giving the following properties could be obtained. Therefore, as a result of considering a specific structure to keep the hardness below a certain value, it was found that there is a correlation between the hardness of the Cu-Nb powder metallurgy compact and the O content and Nb content,
It is clear that if the 0 content satisfies the above formula (1), the hardness can be reduced to a desired value or less, and a Cu-Nb powder metallurgy compact can be obtained that provides excellent plastic workability and superconducting properties. .
即ち本発明においては優れた塑性加工性及び超電導特性
を得る為に、[Oコを[Nb]の15倍以下とする必要
があり、[O]が[N b]の15倍を超えるとNb粒
子の硬度が高くなり過ぎて塑性加工性が悪化し、又超電
導特性も満足する値が得られない、又Nb含有量は必要
量の超電導物質(Nb3 Sn)を確保して良好な超電
導特性を得る為に10%以上とする必要がある。しかし
Nb含有量が50%を超えると、超電導特性が40%N
b含有量とほとんど変わらないにもかかわらず、加工が
著しく困難となる。That is, in the present invention, in order to obtain excellent plastic workability and superconducting properties, [O] needs to be 15 times or less than [Nb], and if [O] exceeds 15 times [Nb], Nb If the hardness of the particles becomes too high, plastic workability deteriorates, and a satisfactory value for superconducting properties cannot be obtained, and the Nb content must be adjusted to ensure the necessary amount of superconducting material (Nb3Sn) to obtain good superconducting properties. In order to obtain this, it is necessary to set it to 10% or more. However, when the Nb content exceeds 50%, the superconducting properties decrease by 40%N
Although the b content is almost the same, processing becomes extremely difficult.
[実施例]
105〜149μmのNbH粉末と種々の粒度の球状C
u粉末をCu−10〜45重量%Nbの組成となるよう
に配合し、V型混合器で15分間の混合を行なフた。得
られた混合粉末を、10.5”x 1.Ot(mm)の
脱気バイブを設けたHIPカプセル[50すx 60
’ x 2.5t(mm)]にタップ密度で充。[Example] NbH powder of 105 to 149 μm and spherical C of various particle sizes
U powder was blended to have a composition of Cu-10 to 45% by weight Nb, and mixed for 15 minutes using a V-type mixer. The obtained mixed powder was placed in a HIP capsule [50 x 60
' x 2.5t (mm)] with tap density.
填した。I filled it.
これを油拡散ポンプで排気しながら850℃に加熱した
ところ加熱途中よりH2が発生し、3時間経過後、加熱
前の真空度10−’torrに戻った。本カプセルを真
空封入し、HIPfi埋(600℃×1500にgf/
cm’ x 2hr)により加圧焼結を行ない、36す
x40’(av+)のCu−Nb超電導部材を得た。When this was heated to 850° C. while being evacuated by an oil diffusion pump, H2 was generated during heating, and after 3 hours, the vacuum level returned to 10-'torr before heating. This capsule was vacuum-sealed and HIPfi-embedded (600℃ x 1500gf/
cm' x 2 hr) to obtain a Cu-Nb superconducting member of 36 x 40' (av+).
得られたCu−Nb部材中のNb粒子のビッカース硬度
(荷!!50g)を測定した結果を第1表に示す、第1
表の結果をNb含有量[Nb] (重量%)と酸素濃
度[O] (ppm)についてまとめると第1図によ
うになる。また図中の各点には、Nb粒子のビッカース
硬度Hv (kg/nu11’)を付記した。尚第1図
において斜線で区画した部分が本発明の範囲である。The results of measuring the Vickers hardness (load!!50g) of the Nb particles in the obtained Cu-Nb member are shown in Table 1.
The results in the table are summarized in terms of Nb content [Nb] (wt%) and oxygen concentration [O] (ppm) as shown in Figure 1. Furthermore, the Vickers hardness Hv (kg/nu11') of the Nb particles is added to each point in the figure. Note that the area marked with diagonal lines in FIG. 1 is the scope of the present invention.
Cu−Nb部材中の【O]は、種々の[O]をもつCu
粉末を使用することによって刺整した。[O] in the Cu-Nb member is Cu with various [O]
Stinging was done by using powder.
即ちCu粉末が粗粒になれば[O]が低くなり、また一
部はCu粉末をH2還元することにより、さらに低くし
て使用した。That is, the coarser the Cu powder, the lower the [O], and some of the Cu powder was reduced to an even lower value by H2 reduction.
第 1 表
第1表の試料のうち試料No、4.5,6,7゜8.9
.10を外径42mmX内径361nIIlのCu管に
挿入後、真空封入して押出ビレットとし、600℃の熱
間静水圧押出により8す(I!1IB)まで減面後横ロ
ールで1.0 + (mm)まで加工した。続いて線引
きダイスにより0.25す(I11!I)まで伸線加工
を行ない、伸線加工性を評価した(結果を第1表に併記
した)。伸線加工性は0.25mmまで焼鈍なしで行な
えたものには◎を記し、その他については焼鈍の回数を
記した。得られた長尺線の長さはいずれも約1.1km
であった。この長尺線に約6〜9μmのSnをめっきし
、真空中で450℃x5hrの前段熱処理を行なった後
、700℃x60hrの拡散熱処理を行ない、Nb、S
n超電導線を得た。Table 1 Among the samples in Table 1, sample No. 4.5, 6, 7°8.9
.. 10 was inserted into a Cu tube with an outer diameter of 42 mm and an inner diameter of 361 nIIl, vacuum-sealed to form an extruded billet, and after reducing the area to 8 (I! 1 IB) by hot isostatic extrusion at 600°C, it was rolled to 1.0 + ( mm). Subsequently, the wire was drawn to a diameter of 0.25 mm (I11!I) using a wire drawing die, and the wire drawability was evaluated (the results are also listed in Table 1). For wire drawability, wires that could be drawn up to 0.25 mm without annealing were marked with ◎, and for others, the number of times of annealing was written. The length of each long line obtained is approximately 1.1 km.
Met. This long wire is plated with approximately 6 to 9 μm of Sn, and after a preliminary heat treatment of 450°C x 5 hr in vacuum, a diffusion heat treatment of 700°C x 60 hr is performed.
An n-superconducting wire was obtained.
本試料(No、4〜10)を8Tの磁場中で臨界電流1
cの測定を行なった結果を第1表に併記する。これをN
b粒子のビッカース硬度Hvと関連づけたものが第2図
である。本発明範囲内にある試料は、範囲外試料の2〜
4倍の値が得られていることがわかった。この超電導特
性の差の原因調査のために押出後のNb粒子のHv測測
定No。This sample (No. 4 to 10) was heated at a critical current of 1 in a magnetic field of 8 T.
The results of the measurement of c are also listed in Table 1. This is N
FIG. 2 shows the relationship between the Vickers hardness Hv of the b particles. Samples within the scope of the present invention are 2 to 2 of the samples outside the range.
It was found that 4 times the value was obtained. In order to investigate the cause of this difference in superconducting properties, we measured the Hv measurement number of Nb particles after extrusion.
9.10の試料について行なったところ、それぞれ21
0 kg/ll1m2. 161 kg/am2であり
熱間加工中にNo、8試料に[O]固溶が著しかったこ
とが推察された。9. When conducted on 10 samples, each yielded 21
0 kg/ll1m2. 161 kg/am2, indicating that there was significant solid solution of [O] in sample No. 8 during hot working.
[発明の効果]
本発明は以上の様に構成されており、本発明によれば塑
性加工性に優れ、かつ優れた超電導特性を有する超電導
線材を与えるCu−Nb粉末冶金成形体を確実に得るこ
とができる。[Effects of the Invention] The present invention is configured as described above, and according to the present invention, it is possible to reliably obtain a Cu-Nb powder metallurgy compact that provides a superconducting wire having excellent plastic workability and excellent superconducting properties. be able to.
第1図はCu−Nb粉末冶金成形体における酸素濃度及
びNb含有量とNb粒子硬度の関係を示すグラフ、第2
図はNb粒子硬度と臨界電流1cの関係を示すグラフで
ある。Figure 1 is a graph showing the relationship between oxygen concentration and Nb content and Nb particle hardness in a Cu-Nb powder metallurgy compact;
The figure is a graph showing the relationship between Nb particle hardness and critical current 1c.
Claims (1)
形体であって、Nb含有量が10〜50%(重量%の意
味、以下同じ)であると共に、O含有量が次式を満足す
ることを特徴とする超電導部材製造用Cu−Nb粉末冶
金成形体。 [O]≦15[Nb]・・・(1) 但し[O]はO含有量をppm単位で表わしたときの無
名数 [Nb]はNb含有量を%単位で表わしたときの無名数[Scope of Claims] A Cu-Nb powder metallurgy molded body in which Nb particles are dispersed in a Cu base material, the Nb content being 10 to 50% (meaning % by weight, hereinafter the same), and containing O. A Cu-Nb powder metallurgical compact for manufacturing a superconducting member, characterized in that the amount thereof satisfies the following formula. [O]≦15[Nb]...(1) However, [O] is an anonymous number when the O content is expressed in ppm units [Nb] is an anonymous number when the Nb content is expressed in % units.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13952587A JPS63303021A (en) | 1987-06-03 | 1987-06-03 | Cu-nb powder metallurgy preform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13952587A JPS63303021A (en) | 1987-06-03 | 1987-06-03 | Cu-nb powder metallurgy preform |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63303021A true JPS63303021A (en) | 1988-12-09 |
Family
ID=15247316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13952587A Pending JPS63303021A (en) | 1987-06-03 | 1987-06-03 | Cu-nb powder metallurgy preform |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63303021A (en) |
-
1987
- 1987-06-03 JP JP13952587A patent/JPS63303021A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4728024B2 (en) | Powder method Nb3Sn superconducting wire manufacturing method | |
JP4523861B2 (en) | Method for producing Nb3Sn superconducting wire | |
JP4034802B2 (en) | Nb or Nb-based alloy rod for production of superconducting wire and method for producing Nb3Sn superconducting wire | |
JPS6260847A (en) | Manufacture of multiple wire superconductive wire material | |
US7459031B2 (en) | Method for producing Nb3Sn superconductive wire material using powder process | |
JP2004035940A (en) | BRONZE MATERIAL FOR NB3Sn BASED SUPERCONDUCTING WIRE ROD, COMPOSITE MATERIAL FOR SUPERCONDUCTING WIRE ROD USING THE MATERIAL, AND SUPERCONDUCTING WIRE ROD | |
WO2007102517A1 (en) | PRECURSOR OF POWDER-METHOD Nb3Sn SUPERCONDUCTING WIRE ROD, AND POWDER-METHOD Nb3Sn SUPERCONDUCTING WIRE ROD | |
KR100596998B1 (en) | Sn based alloy for the precursor of Nb3Sn superconducting wire, and the manufacturing method of the same | |
JPS63303021A (en) | Cu-nb powder metallurgy preform | |
JP4652938B2 (en) | Powder method Nb3Sn superconducting wire manufacturing method | |
Pourrahimi et al. | Powder metallurgy processed Nb/sub 3/Sn (Ta) wire for high field NMR magnets | |
JP3866969B2 (en) | Manufacturing method of Nb (3) Sn superconducting wire | |
JP4193194B2 (en) | Method for producing Nb3Sn superconducting wire | |
JPS63285155A (en) | Oxide type superconductive material and production thereof | |
JP3780332B2 (en) | Compounding method of Nb and Al eutectic alloy | |
JPS62252014A (en) | Manufacture of superconducting member | |
JPS60143512A (en) | Method of producing superconductive member | |
JPH0528860A (en) | Manufacture of superconductive wire of nb3sn type | |
JPH06176635A (en) | Manufacture of oxide superconductive wire | |
JP3997298B2 (en) | Method for producing composite wire of Nb and Al alloy | |
JP2006185861A (en) | Nb3Sn SUPERCONDUCTING WIRE ROD AND ITS MANUFACTURING METHOD | |
JPH04315710A (en) | Manufacture of nb3sn superconductive wire rod | |
JPS61266528A (en) | Manufacture of high performance compound superconductive material by powder metallurgy | |
JPH08339726A (en) | Manufacture of nb3sn system superconductive wire | |
JPH04315709A (en) | Manufacture of v3ga superconductive wire rod |