JPS63302158A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JPS63302158A
JPS63302158A JP13880787A JP13880787A JPS63302158A JP S63302158 A JPS63302158 A JP S63302158A JP 13880787 A JP13880787 A JP 13880787A JP 13880787 A JP13880787 A JP 13880787A JP S63302158 A JPS63302158 A JP S63302158A
Authority
JP
Japan
Prior art keywords
fuel injection
injection amount
amount
deceleration
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13880787A
Other languages
Japanese (ja)
Inventor
Hatsuo Nagaishi
初雄 永石
Kuniaki Sawamoto
沢本 国章
Hiromichi Miwa
博通 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13880787A priority Critical patent/JPS63302158A/en
Publication of JPS63302158A publication Critical patent/JPS63302158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To restrain the fluctuation of an air-fuel ratio by operating a fuel injection amount through the correction of a basic fuel injection amount via a deceleration correction amount when an engine is in an deceleration condition, and limiting the fuel injection amount when the amount is equal to or less than the predetermined value and the basic fuel injection amount is equal to or larger than the predetermined value. CONSTITUTION:An operation condition detecting means (a) detects an engine operation condition and a basic fuel injection amount is operated by a basic injection amount operation means (c) on the basis of a detected value. On the other hand, a deceleration condition detecting means (b) detects an engine deceleration condition and on the basis of a detected value, a deceleration correction amount operation means (d) corrects the basic fuel injection amount. Also, a fuel injection amount operation means (e) operates a fuel injection amount on the basis of a correction amount via the means (d). Furthermore, a control means (f) limits the fuel injection amount to the predetermined value so that the amount will not be equal to or less than the predetermined value, when the amount is equal to or less than the predetermined value and a reference injection amount is equal to or over the predetermined value. And a control means (g) outputs an injection signal corresponding to the predetermined value limited with the means (f), and a fuel injection means (h) injects fuel corresponding to the injection signal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等内燃機関の燃料噴射制御装置、特に
減速時に基本噴射量を補正することによって最適な燃料
噴射量を決定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel injection control device for an internal combustion engine such as an automobile, and particularly to a device that determines an optimal fuel injection amount by correcting a basic injection amount during deceleration.

(従来の技術) 一般に、機関の加減速時における空燃比の目標空燃比か
らのずれは、はとんどが吸気系の吸気マニホールドや吸
気ポートに付着した付着燃料および浮遊燃料の量的変化
に起因するものであり、この付着、浮遊燃料量は機関の
運転状態に応じて大きく変化する。また、付着、浮遊燃
料量は運転状態の変化に対しである遅れをもって変化し
、この遅れの時定数も一定ではない。さらに、付着、浮
遊燃料量の変化は、運転状態の変化だけではなく、その
時点における量と平衡状a(定常状a)における量との
差の大きさによっても異なる。
(Prior art) In general, the deviation of the air-fuel ratio from the target air-fuel ratio during engine acceleration/deceleration is mostly due to quantitative changes in adhering fuel and floating fuel adhering to the intake manifold and intake ports of the intake system. The amount of adhering and floating fuel varies greatly depending on the operating condition of the engine. Furthermore, the amount of adhering and floating fuel changes with a certain delay in response to changes in operating conditions, and the time constant of this delay is also not constant. Further, changes in the amount of adhering and floating fuel vary not only depending on changes in operating conditions but also depending on the magnitude of the difference between the amount at that point in time and the amount in equilibrium state a (steady state a).

したがって、従来例として、例えば過渡時において、付
着、浮遊燃料の変化を吸気管内圧力、アクセル開度の変
化から近似的に求め、燃料噴射量の加速増量および減速
減量を行うとともにエンジンの暖機時において冷却水温
に応じた補正倍率で、加速増量および減速減量の補正係
数をさらに補正するようにしたもの等が提案されている
(特開昭58−144632号、同58−144634
号、同5B−144636号、同58−144637号
および5B−150033号、各公報、参照)。
Therefore, as a conventional example, changes in adhesion and floating fuel are approximately determined from changes in intake pipe pressure and accelerator opening during a transient period, and the amount of fuel injection is increased during acceleration and decreased during deceleration, and when the engine is warmed up. In JP-A-58-144632 and JP-A-58-144634, the correction coefficients for acceleration increase and deceleration decrease are further corrected using a correction factor according to the cooling water temperature.
No. 5B-144636, No. 58-144637, and No. 5B-150033, each publication).

ところで、本出願人は上述のような過渡時をも含む全て
の加減速条件下で精度よく制御でき、各種補正係数を更
に補正するような複雑な補正を最少銀にすることにより
マツチング時間を短縮できる装置を既に先願(特願昭6
0−243605号)により提出している。この先願で
は実際の噴射量(最終噴射量)Tiを算出する際に必要
な過渡補正量DMを吸気系の付着、浮遊燃料の平衡量に
相当する平衡IMφと今回の燃料噴射量の補正によりど
れだけ補うかの割合を示す補正係数DKとに基づいて演
算している。
By the way, the present applicant has developed a system that can be accurately controlled under all acceleration/deceleration conditions, including transient conditions as described above, and can reduce matching time by minimizing complex corrections such as further corrections of various correction coefficients. A device that can be used has already been applied for (patent application
No. 0-243605). In this prior application, the transient correction amount DM required when calculating the actual injection amount (final injection amount) Ti is determined by adjusting the equilibrium IMφ corresponding to the equilibrium amount of adhesion and floating fuel in the intake system and the current fuel injection amount. The calculation is based on the correction coefficient DK which indicates the ratio of compensation.

こうした過渡補正が必要な理由は、吸気系の吸気マニホ
ールドや吸気ポートに付着した付着燃料や浮遊燃料が過
渡時において空燃比や機関性能に影響を及ぼすからであ
り、例えば、スロットルバルブが全開の時から急速に減
速運転になった場合にはスロットルバルブが全閉になる
前に全開時の壁流量が既に多量に存在していることがあ
り、空燃比が過渡にリッチ化してエンジン失火等の運転
性の低下やCO排出量の増大、燃費の悪化等を招くこと
がある。特に、S P I (Single Po1n
t Inje−ction)方式のエンジンでは単一の
インジェクタと各シリンダ間には相当の距離があるため
、このような付着、浮遊燃料の影響を大きく受けること
になる。
The reason why such transient correction is necessary is that adhered fuel or floating fuel that adheres to the intake manifold or intake port of the intake system affects the air-fuel ratio and engine performance during transient periods.For example, when the throttle valve is fully open, If the throttle valve is rapidly decelerated, there may already be a large amount of wall flow when the throttle valve is fully open, causing the air-fuel ratio to become rich transiently, resulting in engine misfires, etc. This may lead to a decrease in performance, an increase in CO emissions, and a worsening of fuel efficiency. In particular, S P I (Single Po1n
Since there is a considerable distance between a single injector and each cylinder in an engine of the t injection type, the engine is greatly affected by such adhering and floating fuel.

(発明が解決しようとする問題点) しかしながら、このような従来の内燃機関の燃料噴射制
御装置にあっては、減速運転時に減量補正を行う際にイ
ンジェクタの精度(特に、リニアティー)が悪化するよ
うな噴射パルス幅の小さい領域まで減速時の減量補正を
実行してしまう場合があったため、イン、ジェツタの精
度悪化によって空燃比が大幅にリーン化あるいはリッチ
化してしまうという問題点があった。すなわち、インジ
ェクタの精度が悪化するような領域(インジェクタNG
ゾーン)では第6図(C)の破線部に示すように空燃比
が大幅にリーン化あるいはリッチ化することがあり、大
幅なリーン化によって同図(d)の破線に示すようにエ
ンストを惹き起こしたり、逆に過度のリッチ化によりC
o、HCの排出量が増大するような不具合が生ずる。ま
た、インジェクタの流量特性を第7図に示すように噴射
パルス幅Tiが小さく(シたがって、インジェクタの流
量も少ない)領域(同図一点鎖線部参照)では空燃比が
変動しており、減速感も滑らかでなく安全性を欠いた状
態となることがある。
(Problems to be Solved by the Invention) However, in such a conventional fuel injection control device for an internal combustion engine, the accuracy of the injector (especially linearity) deteriorates when performing weight reduction correction during deceleration operation. In some cases, the reduction correction during deceleration is performed even in a region where the injection pulse width is small, which causes a problem in that the air-fuel ratio becomes significantly leaner or richer due to deterioration of the accuracy of the injector. In other words, areas where injector accuracy deteriorates (injector NG)
zone), the air-fuel ratio may become significantly leaner or richer, as shown by the broken line in Figure 6(C), and the significantly leaner ratio may cause engine stalling, as shown by the broken line in Figure 6(d). or, conversely, due to excessive enrichment
o. Problems such as an increase in the amount of HC discharged occur. In addition, as shown in Figure 7, the injector flow characteristics show that in the region where the injection pulse width Ti is small (and therefore the injector flow rate is also small) (see the dashed line in the figure), the air-fuel ratio fluctuates, causing deceleration. The feel may not be smooth, resulting in an unsafe condition.

(発明の目的) そこで本発明は、エンジンが所定の減速状態にあるとき
基本噴射量を減速補正量により補正して燃料噴射量を演
算するとともに、燃料噴射量が所定値以下でかつ基本噴
射量が該所定値以上のとき燃料噴射量が該所定値になら
ないように燃料の噴射量を該所定値に制限することによ
り、インジェクタの精度が悪化する所定のパルス幅以下
での噴射を回避して空燃比の変動を抑制し、エンストの
防止や排気エミッション特性および運転感覚の向上を図
ることを目的としている。
(Objective of the Invention) Therefore, the present invention calculates the fuel injection amount by correcting the basic injection amount by the deceleration correction amount when the engine is in a predetermined deceleration state, and also calculates the fuel injection amount when the fuel injection amount is equal to or less than the predetermined value and the basic injection amount By limiting the fuel injection amount to the predetermined value so that the fuel injection amount does not reach the predetermined value when The purpose is to suppress fluctuations in the air-fuel ratio, prevent engine stalling, and improve exhaust emission characteristics and driving sensation.

(問題点を解決するための手段) 本発明による内燃機関の燃料噴射制御装置は上記目的達
成のため、その基本概念図を第1図に示すように、エン
ジンの運転状態を検出する運転状態検出手段aと、エン
ジンが所定の減速状態に移行したことを検出する減速状
態検出手段すと、エンジンの運転状態に基づいて基本噴
射量を演算する基本噴射量演算手段Cと、エンジンの減
速状態に基づいて燃料の基本噴射量を補正する減速補正
量を演算する減速補正量演算手段dと、エンジンが所定
の減速状態にあるとき燃料の基本噴射量を前記減速補正
量により補正して燃料噴射量を求める燃料噴射量演算手
段eと、前記燃料噴射量が所定値以下でかつ前記基本噴
射量が該所定値以上のとき前記燃料噴射量が該所定値以
下にならないように燃料の噴射量を該所定値に制限する
制限手段fと、燃料噴射量に対応する噴射信号を出力す
るとともに、燃料噴射量が前記所定値に制限されると前
記所定値に対応する噴射信号を出力する制御手段gと、
噴射信号に基づいて燃料を供給する燃料噴射手段りと、
を備えている。
(Means for Solving the Problems) In order to achieve the above object, the fuel injection control device for an internal combustion engine according to the present invention has an operating state detection system that detects the operating state of the engine, as shown in FIG. Means a, deceleration state detection means for detecting that the engine has transitioned to a predetermined deceleration state; basic injection amount calculation means C for calculating a basic injection amount based on the operating state of the engine; deceleration correction amount calculating means d for calculating a deceleration correction amount for correcting the basic fuel injection amount based on the deceleration correction amount; and a fuel injection amount that corrects the basic fuel injection amount by the deceleration correction amount when the engine is in a predetermined deceleration state. a fuel injection amount calculation means e for calculating the fuel injection amount; a limiting means f for limiting the fuel injection amount to a predetermined value; and a control means g for outputting an injection signal corresponding to the fuel injection amount and outputting an injection signal corresponding to the predetermined value when the fuel injection amount is limited to the predetermined value. ,
a fuel injection means for supplying fuel based on the injection signal;
It is equipped with

(作用) 本発明では、エンジンの減速状態に基づいて燃料の基本
噴射量を補正する減速補正量が演算され、エンジンが所
定の減速状態にあるとき、基本噴射量が減速補正量によ
り補正され燃料噴射量が演算される。そして、燃料噴射
量が所定値以下でかつ基本噴射量が該所定値以上のとき
燃料噴射量が該所定値にならないように燃料の噴射量が
該所定値に制限される。したがって、インジェクタの精
度が悪化する所定のパルス幅以下での噴射が回避され、
空燃比の変動が抑制されて、エンストの防止や排気エミ
ッション特性および運転感覚の向上が図られる。
(Function) In the present invention, a deceleration correction amount that corrects the basic injection amount of fuel is calculated based on the deceleration state of the engine, and when the engine is in a predetermined deceleration state, the basic injection amount is corrected by the deceleration correction amount and the fuel The injection amount is calculated. Then, when the fuel injection amount is less than a predetermined value and the basic injection amount is greater than or equal to the predetermined value, the fuel injection amount is limited to the predetermined value so that the fuel injection amount does not reach the predetermined value. Therefore, injection below a predetermined pulse width, which deteriorates the accuracy of the injector, is avoided,
Fluctuations in the air-fuel ratio are suppressed, preventing engine stalling and improving exhaust emission characteristics and driving sensation.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜7図は本発明の一実施例を示す図であり、本発明
をSPi方式のエンジンに適用した例である。
2 to 7 are diagrams showing one embodiment of the present invention, and are examples in which the present invention is applied to an SPi type engine.

まず、構成を説明する。第1図において、1はエンジン
であり、吸入空気はエアクリーナ2からスロットルチャ
ンバ3を経て、ヒータ制御信号S工により0N10FF
するPTCヒータ4で加熱された後、インテークマニホ
ールド5の各ブランチより各気筒に供給され、燃料は噴
射信号St+に基づき絞弁6の上流側に設けられた単一
のインジェクタ(燃料噴射手段)7により噴射される。
First, the configuration will be explained. In Fig. 1, 1 is an engine, and intake air passes from an air cleaner 2 to a throttle chamber 3, and then is turned 0N10FF by a heater control signal S.
After being heated by the PTC heater 4, the fuel is supplied to each cylinder from each branch of the intake manifold 5, and the fuel is supplied to a single injector (fuel injection means) 7 provided upstream of the throttle valve 6 based on the injection signal St+. is injected by.

各気筒には点火プラグ8が装着されており、点火プラグ
8にはディストリビュータ9を介して点火コイルIOか
らの高圧パルスPULSEが供給される。
An ignition plug 8 is attached to each cylinder, and a high-pressure pulse PULSE is supplied to the ignition plug 8 from an ignition coil IO via a distributor 9.

気筒内の混合気は高圧パルスPULSEによる点火プラ
グ8の放電によって着火、爆発し、排気となって排気管
11を通して触媒コンバータ12で排気中の有害成分(
Co、HC,N0x)を三元触媒により清浄化してマフ
ラ13から排出される。
The air-fuel mixture in the cylinder is ignited and exploded by the discharge of the spark plug 8 by the high-pressure pulse PULSE, and becomes exhaust gas.
Co, HC, NOx) are purified by a three-way catalyst and discharged from the muffler 13.

ここで、吸入空気の流れはアクセルペダルに連動するス
ロットルチャンバ3内の絞弁6により制御され、アイド
リング時には絞弁6は殆ど閉じている。アイドリング時
の空気の流れはバイパス通路14を通り、開度信号5I
SCに基づいて作動する流量制御弁15により適宜必要
な空気が確保される。
Here, the flow of intake air is controlled by a throttle valve 6 in the throttle chamber 3 that is linked to the accelerator pedal, and the throttle valve 6 is almost closed during idling. The air flow during idling passes through the bypass passage 14, and the opening signal 5I
The flow rate control valve 15 operated based on SC ensures the appropriate amount of air.

また、各気筒の吸気ボート近傍にはスワールコントロー
ル弁16が配設されており、スワールコントロール弁1
6はロッド17を介してサーボダイヤフラム18に連結
される。サーボダイヤフラム18には電磁弁19から所
定の制御負圧が轟かれており、電磁弁19はディーティ
値D scwを有するスワール制御信号s scvに基
づいてインテークマニホールド5から供給される負圧を
大気に漏出(リーク)することによって、サーボダイヤ
フラム18に導入する制御負圧を連続的に変える。サー
ボダイヤフラム18は制御負圧に応動し、ロッド17を
介してスワールコントロール弁16の開度を調整する。
Further, a swirl control valve 16 is disposed near the intake boat of each cylinder.
6 is connected to a servo diaphragm 18 via a rod 17. A predetermined control negative pressure is applied to the servo diaphragm 18 from a solenoid valve 19, and the solenoid valve 19 converts the negative pressure supplied from the intake manifold 5 to the atmosphere based on the swirl control signal sscv having a duty value Dscw. By leaking, the controlled negative pressure introduced into the servo diaphragm 18 is continuously varied. The servo diaphragm 18 responds to the control negative pressure and adjusts the opening degree of the swirl control valve 16 via the rod 17.

絞弁6の開度αは絞弁開度センサ21により検出され、
冷却水の温度Twは水温センサ22により検出される。
The opening degree α of the throttle valve 6 is detected by the throttle valve opening sensor 21,
The temperature Tw of the cooling water is detected by the water temperature sensor 22.

また、吸入空気の温度TAはスロットルチャンバ3内の
吸気温センサ23により検出され、エンジンのクランク
角Caはディストリビュータ9に内蔵されたクランク角
センサ24により検出される。なお、クランク角Caを
表すパルスを計数することにより、エンジン回転数Nを
知ることができる。排気管11には酸素センサ25が取
り付けられており、酸素センサ25は空燃比検出回路2
6に接続される。空燃比検出回路26は酸素センサ25
にポンプ電流を供給し、このポンプ電流の値から排気中
の酸素濃度がリッチからリーンまで広範囲に亘って検出
される。変速機の操作位置は位置センサ27により検出
され、車両の速度s vspは車速センサ28により検
出される。また、エアコンデッショナの作動はエアコン
スイッチ29により検出され、パワーステアリングの作
動はパワステ検出スイッチ30により検出される。さら
に、リアデフォツガ−等の作動は電気負荷検出スイッチ
31により検出され、バッテリ電圧Vsは電圧センサ3
2により検出される。
Further, the intake air temperature TA is detected by an intake air temperature sensor 23 in the throttle chamber 3, and the engine crank angle Ca is detected by a crank angle sensor 24 built into the distributor 9. Note that the engine rotation speed N can be determined by counting pulses representing the crank angle Ca. An oxygen sensor 25 is attached to the exhaust pipe 11, and the oxygen sensor 25 is connected to the air-fuel ratio detection circuit 2.
Connected to 6. The air-fuel ratio detection circuit 26 is an oxygen sensor 25
A pump current is supplied to the exhaust gas, and the oxygen concentration in the exhaust gas is detected over a wide range from rich to lean based on the value of this pump current. The operating position of the transmission is detected by a position sensor 27, and the speed svsp of the vehicle is detected by a vehicle speed sensor 28. Furthermore, the operation of the air conditioner is detected by the air conditioner switch 29, and the operation of the power steering is detected by the power steering detection switch 30. Furthermore, the operation of the rear defogger etc. is detected by the electric load detection switch 31, and the battery voltage Vs is detected by the voltage sensor 3.
Detected by 2.

上記各センサ21.22.23.24.25.27.2
8.29.30.31.32からの信号はコントロール
ユニット41に入力されており、コントロールユニット
41はこれらのセンサ情報に基づいてエンジンの燃焼制
御(点火時期制御、燃料噴射制御等)を行う、すなわち
、コントロールユニット41は基本噴射量演算手段、減
速補正量演算手段、燃料噴射量演算手段、制限手段およ
び制御手段としての機能を有し、CPU42、ROM4
3、RAM44およびI10ポート45により構成され
る。CPtJ42はROM43に書き込まれているプロ
グラムに従ってI10ボート45より必要とする外部デ
ータを取り込んだり、RAM44との間でデータの授受
を行ったりしながら燃料供給制御やアイドル回転数制御
に必要な処理値を演算し、必要に応じて処理したデータ
を!10ポート45へ出力する。I10ボート45には
上記各センサ21.22.23.24.25.27.2
8.29.30.31゜32からの信号が入力されると
もに、I10ボート45からは前各信号5t=s S 
+sイS IGN% S sew、S、が出力される。
Each of the above sensors 21.22.23.24.25.27.2
The signals from 8.29.30.31.32 are input to the control unit 41, and the control unit 41 performs engine combustion control (ignition timing control, fuel injection control, etc.) based on these sensor information. That is, the control unit 41 has functions as a basic injection amount calculation means, a deceleration correction amount calculation means, a fuel injection amount calculation means, a restriction means, and a control means, and has the functions of a CPU 42, a ROM 4
3, RAM 44 and I10 port 45. The CPtJ42 imports necessary external data from the I10 boat 45 according to the program written in the ROM43, and while exchanging data with the RAM44, generates processing values necessary for fuel supply control and idle speed control. Calculate and process data as necessary! 10 output to port 45. Each of the above sensors 21.22.23.24.25.27.2 is installed on the I10 boat 45.
8.29.30.31 The signals from 32 are input, and each previous signal 5t=s S is input from the I10 boat 45.
+s I S IGN% S sew, S, is output.

ROM43はCPU42における演算プログラムを格納
しており、RAM44は演算に使用するデータをマツプ
等の形で記憶している。
The ROM 43 stores calculation programs for the CPU 42, and the RAM 44 stores data used in calculations in the form of a map or the like.

なお、RAM44の一部は不揮発性メモリからなり、エ
ンジン1停止後もその記憶内容が保持される。
Note that a part of the RAM 44 is made up of a nonvolatile memory, and its stored contents are retained even after the engine 1 is stopped.

次に、作用を説明する。Next, the effect will be explained.

第3図は燃料噴射制御のプログラムを示すフローチャー
トであり、本プログラムは所定期間毎に一度実行される
。まず、P、で次式■に従って基本噴射1tTpを演算
し、P2でエンジンの運転状態に基づいて過渡補正量K
ATHO3を演算する(第4図(a)〜(c)参照。但
し、実線は減速の程度が比較的小さいときを示し、破線
は減速の程度が比較的大きいときを示す、(d)、(e
)も同様)、ここに、この過渡補正量KATHO3は吸
気系への燃料付着、浮遊燃料等の影響によるシリンダ流
入燃料の遅れに相当する遅れ補正量である。なお、過渡
補正量KATHOSの算出については後述する第5図に
示すプログラムで詳述する。
FIG. 3 is a flowchart showing a fuel injection control program, and this program is executed once every predetermined period. First, P calculates the basic injection 1tTp according to the following formula (■), and P2 calculates the transient correction amount K based on the engine operating condition.
Calculate ATHO3 (see Figure 4 (a) to (c). However, the solid line indicates when the degree of deceleration is relatively small, and the broken line indicates when the degree of deceleration is relatively large. (d), ( e
), where this transient correction amount KATHO3 is a delay correction amount corresponding to a delay in fuel flowing into the cylinder due to the influence of fuel adhesion to the intake system, floating fuel, etc. Note that the calculation of the transient correction amount KATHOS will be explained in detail in the program shown in FIG. 5, which will be described later.

へ 但し、K:定数 Qa:吸入空気量 N:エンジン回転数 次いで、P、で基本噴射量’rpに過渡補正量KATH
O3を加えた値が第7図に示すようなインジェクタNG
レベルLINJNGより大きいか(Tp+KATHO3
>L INJNGか)否かを判別する。Tp+KATH
O3>LINJNGのとぎはインジェクタの精度(リニ
アティ)が悪化するような比較的小さなパルス幅ではな
いと判断してP4で次式〇に従って燃料噴射量TpFを
演算し、通常の加速時増量あるいは減速時減量補正を行
う。
However, K: constant Qa: intake air amount N: engine rotational speed Then, P, the transient correction amount KATH is added to the basic injection amount 'rp.
Injector NG whose value including O3 is as shown in Figure 7
Is it greater than the level LINJNG (Tp+KATHO3
>L INJNG) or not. Tp+KATH
Judging that the pulse width of O3>LINJNG is not a relatively small pulse width that would deteriorate the accuracy (linearity) of the injector, the fuel injection amount TpF is calculated according to the following formula in P4, and the amount is increased during normal acceleration or during deceleration. Perform weight loss correction.

TpF=Tp+KATHO3・・・・・・■Tp+KA
THO35L INJNGのときはインジェクタの精度
が悪化する領域で減速時減量を行う可能性があると判断
してP、で基本噴射量TpがインジェクタNGレベルL
INJNGより大きいか(Tp>LINJNGか)否か
を判別する。Tp>LINJNGのときはインジェクタ
の精度の悪化によって空燃比が変動するのを防止するた
め第4図(a)の実線に示すようにP、で燃料噴射量T
pFをインジェクタNGレベルLINJNGに制限(T
pF=L INJNG)する。一方、TpfaLINJ
NGのときはI’?で過渡補正量KATHO3が正(K
ATHO3≧O)であるか負であるかを判別し、KAT
HO3が正のときは加速時増量であると判断してP4で
通常の補正を行い、負のときは減速時減量であっても第
4図(a)の破線に示すようにP3でTpF=Tpとし
て補正は加えない0次いで、P、で次式■に従って噴射
パルス幅(最終噴射量)Tiを演算して、今回の処理を
終了する。
TpF=Tp+KATHO3・・・・・・■Tp+KA
When THO35L INJNG, it is determined that there is a possibility of reducing the amount during deceleration in a region where the accuracy of the injector deteriorates, and the basic injection amount Tp is set to the injector NG level L at P.
It is determined whether Tp is larger than INJNG (Tp>LINJNG). When Tp > LINJNG, to prevent the air-fuel ratio from fluctuating due to deterioration of injector accuracy, the fuel injection amount T is set at P, as shown by the solid line in Fig. 4(a).
Limit pF to injector NG level LINJNG (T
pF=LINJNG). On the other hand, TpfaLINJ
I' when it's NG? , the transient correction amount KATHO3 is positive (K
ATHO3≧O) or negative, and KAT
When HO3 is positive, it is determined that the amount is increased during acceleration and the normal correction is made at P4, and when it is negative, even if it is decreased during deceleration, TpF = TpF = As Tp, no correction is applied. Next, the injection pulse width (final injection amount) Ti is calculated according to the following equation (2) using P, and the current process ends.

Ti=TpFXαXC0EFXTs  ・−・−・−■
但し、α:空燃比フィードバック補正係数C0EF :
各種補正係数 TS:無効パルス幅 ここで、上記各空燃比フィードバンク補正係数α、各種
補正係数C0EFおよび電圧補正分子sは燃料噴射量を
補正する各補正係数であるが、本発明と関係が薄いので
詳しい説明は省略する。なお、最終噴射量TiはI10
ボート45の出力レジスタに所定のデユーティ値を有す
る電圧パルス幅としてストアされ、所定クランク角度で
このTiに対応する噴射信号Sttをインジェクタフに
出力する。
Ti=TpFXαXC0EFXTs ・−・−・−■
However, α: Air-fuel ratio feedback correction coefficient C0EF:
Various correction coefficients TS: Invalid pulse width Here, each of the air-fuel ratio feedbank correction coefficients α, various correction coefficients C0EF, and voltage correction numerator s are correction coefficients for correcting the fuel injection amount, but they have little relation to the present invention. Therefore, detailed explanation will be omitted. Note that the final injection amount Ti is I10
It is stored in the output register of the boat 45 as a voltage pulse width having a predetermined duty value, and an injection signal Stt corresponding to this Ti is output to the injector at a predetermined crank angle.

第5図は過渡補正量KATHO3を演算するプログラム
を示すフローチャートであり、このKATHO3は第3
図で述べたステップP、に相当する。まず、pHで平衡
付着量MFH(MFH=func (Tw、Qa、N)
を演算する。この平衡付着fiMFHはTw、Qaおよ
びNを関数とする付着燃料の壁流骨の量を示すもので、
スロットル開度が全開に近づくに従って急激にその値が
増加する傾向を示す。次いで、pHzで分量割合KMF
 (KMF=func (Tw、Qa、N)を演算する
。この分量割合KMFは上述のMFHと同様にTw、Q
aおよびNを関数として演算されるもので、付着燃料の
壁流骨の蒸発速度に相当する。pHsでは次式■に従っ
て付着速度VMFを演算しく但し、スタートSWが0の
ときはVMF=0) 、P+aで次式■に従って今回の
付着量MFを演算する。
FIG. 5 is a flowchart showing a program for calculating the transient correction amount KATHO3.
This corresponds to step P described in the figure. First, the equilibrium adhesion amount MFH (MFH=func (Tw, Qa, N)
Calculate. This equilibrium adhesion fiMFH indicates the amount of wall flow bone of adhering fuel as a function of Tw, Qa and N.
The value tends to increase rapidly as the throttle opening approaches full opening. Then, the proportion KMF in pH
(KMF=func (Tw, Qa, N) is calculated. This quantity ratio KMF is Tw, Q as in the above-mentioned MFH.
It is calculated as a function of a and N, and corresponds to the evaporation rate of the wall flow bone of attached fuel. At pHs, the adhesion speed VMF is calculated according to the following equation (2); however, when the start SW is 0, VMF=0), and at P+a, the current adhesion amount MF is calculated according to the following equation (2).

VMF= (MFH−MF)XKMF  ・・・・・・
■但し、MF:前回の付着量 M F = M F −1+ V M F  ・・・・
・・■但し、M F−1:前回の付着量 VMF :第0式で算出した値 次いで、PI5で次式■に従って補正率G I(Fを演
算し、PI&で次式〇に従うて過渡補正量KATHO3
を演算して今回の処理を終了する。
VMF= (MFH-MF)XKMF ・・・・・・
■However, MF: Previous adhesion amount MF = MF -1+ V MF...
...■ However, MF-1: Previous adhesion amount VMF: Value calculated using the 0th formula. Next, PI5 calculates the correction factor GI (F) according to the following formula (■), and PI& performs transient correction according to the following formula Quantity KATHO3
is calculated and the current process ends.

G HF = G HF Q A CY L x G 
HF F B Y A・・・・・・■ 但し、GHFQACYL :減速補正率GHFFBYA
:空燃比補正率 K A T HOS = V M F x G HF 
 −−−・・−■但し、VMF:PI3で得られた値 したがって、アイドリングまでの減速時の各信号の波形
を第6図に示すようにアクセルが閉じられエンジンが所
定の減速状態になると(同図(a)参照)、エンジンの
運転状態に基づいて過渡補正量K A T HOSが演
算される。そして、基本噴射量’rpに過渡補正量KA
THO3を加えた値(すなわち、TpF)がインジェク
タNGレベルLINJNG以下でかつ’rpがLINJ
NGより大きいとき同図(b)の実線に示すようにTp
FがLINJNGに制限される。したがって、同図(C
)の実線に示すようにインジェクタ7の精度が悪化する
インジェクタNGゾーンでの噴射が回避され、空燃比の
変動が抑制されてエンストの発生が防止される(第6図
(a)実線部あるいは第4図(e)参照)。また、過渡
補正量K A T 110Sが負のときはTpF=Tp
として減速補正を行わないようにしているので、第6図
(d)に示すように減速中の失火や不安定さを無くすこ
とができ、滑らかな減速感を得ることができる。
G HF = G HF Q A CY L x G
HF F B Y A・・・・・・■ However, GHFQACYL: Deceleration correction factor GHFFBYA
: Air-fuel ratio correction factor K A T HOS = V M F x G HF
---...-■ However, the value obtained by VMF: PI3 Therefore, when the accelerator is closed and the engine reaches a predetermined deceleration state, the waveforms of each signal during deceleration up to idling are as shown in Figure 6. (see (a) in the same figure), the transient correction amount KAT HOS is calculated based on the operating state of the engine. Then, the transient correction amount KA is added to the basic injection amount 'rp.
The value added THO3 (i.e. TpF) is below the injector NG level LINJNG and 'rp is LINJ
When Tp is larger than NG, as shown by the solid line in the same figure (b),
F is restricted to LINJNG. Therefore, the same figure (C
), injection in the injector NG zone where the accuracy of the injector 7 deteriorates is avoided, and fluctuations in the air-fuel ratio are suppressed to prevent engine stalling (see the solid line in Figure 6(a) or the injector NG zone). (See Figure 4(e)). Furthermore, when the transient correction amount K A T 110S is negative, TpF=Tp
Since deceleration correction is not performed as shown in FIG. 6(d), misfires and instability during deceleration can be eliminated, and a smooth feeling of deceleration can be obtained.

(効果) 本発明によれば、エンジンが所定の減速状態にあるとき
、基本噴射量を減速補正量により補正して燃料噴射量を
演算するとともに、燃料噴射量が所定値以下でかつ基本
噴射量が該所定値以上のとき燃料噴射量が該所定値にな
らないように燃料の噴射量を該所定値に制限しているの
で、インジェクタの精度が悪化する所定のパルス幅以下
での噴射を回避して空燃比の変動を抑制し、エンストの
防止や排気エミッション特性および運転感覚の向上を図
ることができる。
(Effects) According to the present invention, when the engine is in a predetermined deceleration state, the basic injection amount is corrected by the deceleration correction amount to calculate the fuel injection amount, and when the fuel injection amount is below the predetermined value and the basic injection amount is Since the fuel injection amount is limited to the predetermined value so that the fuel injection amount does not reach the predetermined value when It is possible to suppress fluctuations in the air-fuel ratio, prevent engine stalling, and improve exhaust emission characteristics and driving sensation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本概念図、第2〜7図は本発明の一
実施例を示す図であり、第2図はその全体構成図、第3
図はその燃料噴射制御のプログラムを示すフローチャー
ト、第4図はその減速時の各信号の波形を示す波形図、
第5図はその過渡補正量を演算するプログラムを示すフ
ローチャート、第6図はその効果を説明するための減速
時の各信号の波形を示す波形図、第7図はそのインジェ
クタの流量特性を示す特性図である。 1・・・・・・エンジン、 7・・・・・・インジェクタ(噴射手段)、41・・・
・・・コントロールユニット(基本噴射量演算手段、減
速補正量演算手段、燃料噴 射量演算手段、制限手段、制御手段)。
Fig. 1 is a basic conceptual diagram of the present invention, Figs. 2 to 7 are diagrams showing an embodiment of the present invention, Fig. 2 is an overall configuration diagram thereof, and Fig. 3 is a diagram showing an embodiment of the present invention.
The figure is a flowchart showing the fuel injection control program, and Figure 4 is a waveform diagram showing the waveforms of each signal during deceleration.
Figure 5 is a flowchart showing the program that calculates the amount of transient correction, Figure 6 is a waveform diagram showing the waveform of each signal during deceleration to explain its effect, and Figure 7 shows the flow rate characteristics of the injector. It is a characteristic diagram. 1...Engine, 7...Injector (injection means), 41...
...Control unit (basic injection amount calculation means, deceleration correction amount calculation means, fuel injection amount calculation means, restriction means, control means).

Claims (1)

【特許請求の範囲】 a)エンジンの運転状態を検出する運転状態検出手段と
、 b)エンジンが所定の減速状態に移行したことを検出す
る減速状態検出手段と、 c)エンジンの運転状態に基づいて基本噴射量を演算す
る基本噴射量演算手段と、 d)エンジンの減速状態に基づいて燃料の基本噴射量を
補正する減速補正量を演算する減速補正量演算手段と、 e)エンジンが所定の減速状態にあるとき燃料の基本噴
射量を前記減速補正量により補正して燃料噴射量を求め
る燃料噴射量演算手段と、 f)前記燃料噴射量が所定値以下でかつ前記基本噴射量
が該所定値以上のとき前記燃料噴射量が該所定値以下に
ならないように燃料の噴射量を該所定値に制限する制限
手段と、 g)燃料噴射量に対応する噴射信号を出力するとともに
、燃料噴射量が前記所定値に制限されると前記所定値に
対応する噴射信号を出力する制御手段と、 h)噴射信号に基づいて燃料を供給する燃料噴射手段と
、 を備えたことを特徴とする内燃機関の燃料噴射制御装置
[Scope of Claims] a) Operating state detection means for detecting the operating state of the engine; b) Deceleration state detection means for detecting that the engine has transitioned to a predetermined deceleration state; c) Based on the operating state of the engine. d) deceleration correction amount calculation means for calculating a deceleration correction amount to correct the basic injection amount of fuel based on the deceleration state of the engine; e) deceleration correction amount calculation means for calculating a basic injection amount based on the deceleration state of the engine; a fuel injection amount calculating means for calculating a fuel injection amount by correcting a basic injection amount of fuel by the deceleration correction amount when in a deceleration state; g) limiting means for limiting the fuel injection amount to the predetermined value so that the fuel injection amount does not become less than the predetermined value when the fuel injection amount is greater than or equal to the predetermined value; g) outputting an injection signal corresponding to the fuel injection amount; an internal combustion engine, comprising: a control unit that outputs an injection signal corresponding to the predetermined value when fuel injection control device.
JP13880787A 1987-06-01 1987-06-01 Fuel injection control device for internal combustion engine Pending JPS63302158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13880787A JPS63302158A (en) 1987-06-01 1987-06-01 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13880787A JPS63302158A (en) 1987-06-01 1987-06-01 Fuel injection control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63302158A true JPS63302158A (en) 1988-12-09

Family

ID=15230697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13880787A Pending JPS63302158A (en) 1987-06-01 1987-06-01 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63302158A (en)

Similar Documents

Publication Publication Date Title
JPS63176643A (en) Air-fuel ratio controller
JP2002332884A (en) Controller of internal combustion engine
JP3768780B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6231179B2 (en)
JPH057548B2 (en)
JPH0331545A (en) Air-fuel ratio controller for internal combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0932537A (en) Control device of internal combustion engine
JPS63302158A (en) Fuel injection control device for internal combustion engine
JP2515300B2 (en) Ignition timing control device for internal combustion engine
JPH0512538B2 (en)
JP2590823B2 (en) Air-fuel ratio control device for internal combustion engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JPH0372824B2 (en)
JP2605691B2 (en) Idle speed control device
JP3453830B2 (en) Engine air-fuel ratio control device
JP2561248B2 (en) Fuel cut control device for internal combustion engine
JP2609126B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPS6321339A (en) Fuel feeding control device for internal combustion engine
JPH0531242Y2 (en)
JPH07116968B2 (en) Air-fuel ratio controller for internal combustion engine
JPS6312860A (en) Ignition timing controller for internal combustion engine
JPS6338655A (en) Air-fuel ratio control device
JPH0830460B2 (en) Ignition timing control device for internal combustion engine
JP2002047987A (en) Evaporation purge controller for internal combustion engine