JPS63300603A - Power distributer/synthesizer - Google Patents

Power distributer/synthesizer

Info

Publication number
JPS63300603A
JPS63300603A JP13678887A JP13678887A JPS63300603A JP S63300603 A JPS63300603 A JP S63300603A JP 13678887 A JP13678887 A JP 13678887A JP 13678887 A JP13678887 A JP 13678887A JP S63300603 A JPS63300603 A JP S63300603A
Authority
JP
Japan
Prior art keywords
cylindrical cavity
input
cavity resonator
terminal
resonators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13678887A
Other languages
Japanese (ja)
Inventor
Shiyuuji Kobayakawa
周磁 小早川
Hisafumi Okubo
大久保 尚史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13678887A priority Critical patent/JPS63300603A/en
Publication of JPS63300603A publication Critical patent/JPS63300603A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain broad band in the operating frequency band by providing a cylindrical cavity resonator for each input/output terminal and adopting a dual tuning circuit passing through two cylindrical cavity resonators to any input/output without fail. CONSTITUTION:Input/output terminals 2, 3 are coupled to independent cylindrical cavity resonators 4, 5 and placed at the center. Moreover, the dual tuning circuit passing through the two cylindrical cacity resonators 4, 5 without fail from the input terminal to the output terminal 3 is constituted. Thus, the cylindrical cavity resonator 4 provided with a common terminal for distribution/synthesizer is selected to have a large diameter, the cylindrical cavity resonator 5 for the outer terminal is formed to be small in the diameter and coupled with other cylindrical cavity resonator 5 within the large diameter of the cylindrical cavity resonator 4 and arranged therearound. Thus, the coupling to any of the input/ output terminals is maximized, the high frequency performance at load is minimized and the frequency band is maximized.

Description

【発明の詳細な説明】 〔概 要〕 本発明は高周波円筒空胴共振器型電力分配/合成器で、
入出力端子毎に1個の円筒空胴共振器を備えて、何れの
入出力間にも必ず2個の円筒空胴共振器を通る複同調回
路構成とさせたもので、これにより、使用周波数帯域の
広帯域化を図り、生産性の向上、装置の広帯域化等に寄
与するものである。
[Detailed Description of the Invention] [Summary] The present invention is a high frequency cylindrical cavity resonator type power divider/synthesizer,
One cylindrical cavity resonator is provided for each input/output terminal, creating a double-tuned circuit configuration that always passes through two cylindrical cavity resonators between any input and output terminals. It aims at widening the band, contributing to improved productivity, wider band of equipment, etc.

〔産業上の利用分野〕[Industrial application field]

本発明は高周波円筒空胴共振器型電力分配/合成器に係
り、使用周波数帯域の広帯域化を図った電力分配/合成
器に関す。
The present invention relates to a high frequency cylindrical cavity resonator type power divider/synthesizer, and more particularly, to a power divider/synthesizer capable of widening the usable frequency band.

無線通信方式はマイクロ波、ミリ波の周波数帯域までも
実用化されて来たか、用途により大出力送信が必要で、
従来は進行波管等に負うていた。
Wireless communication methods have been put into practical use even in the microwave and millimeter wave frequency bands, and depending on the application, high output power transmission is required.
Conventionally, this depended on traveling wave tubes, etc.

しかし、システムの高信頼化、長寿命化にとって、これ
を半導体部品等の固体部品にて置換することが強く要望
されている。
However, in order to make the system more reliable and have a longer service life, there is a strong demand for replacing it with solid parts such as semiconductor parts.

この全固体化高出力増幅器を実現させるのに、現況では
、固体部品による小出力のユニット増幅器の複数個を、
並列動作させて出力を合成して大出力を得る方法によっ
ており、入出力の分配/合成のキーポイントとなる電力
分配/合成器には、第一に低損失であることか要求され
る。
In order to realize this all-solid-state high-output amplifier, the current state of the art is to use multiple small-output unit amplifiers made of solid-state components.
The power divider/synthesizer, which is the key point in input/output distribution/synthesis, is required to have low loss first.

〔従来の技術〕[Conventional technology]

第2図に従来の一例の円筒空胴共振器型電力合成器の斜
視図、第3図ta+に円筒空胴の電磁界結合端子位置図
、同図(blの同結合係数特性を示す。
FIG. 2 is a perspective view of a conventional example of a cylindrical cavity resonator type power combiner, FIG.

低損失な電力分配/合成器には導波管等の立体回路を用
いた非共振器型があり、最も一般的な例はマジックT分
岐回路や導波管型3dBハイブリツトであるが、何れも
多数(4,8,16・・・)のユニット増幅器の出力を
合成する場合、その回路規模か大きくなり、実用上不都
合であった。
Low-loss power dividers/synthesizers include non-resonator types that use three-dimensional circuits such as waveguides, and the most common examples are magic T branch circuits and waveguide-type 3dB hybrids, but both When the outputs of a large number (4, 8, 16, etc.) of unit amplifiers are combined, the circuit size becomes large, which is inconvenient in practice.

また、共振器型で構成すれば、分配/合成数が8〜16
になったとしても回路規模は殆ど変わらずに、コンパク
トに固体回路装置を実現することが可能となる。しかし
、共振器を用いるので周波数帯域が狭くなる欠点を有す
る。
In addition, if configured as a resonator type, the number of distribution/synthesis is 8 to 16.
Even if the size of the solid-state circuit becomes smaller, the circuit scale remains almost the same, making it possible to realize a compact solid-state circuit device. However, since a resonator is used, the frequency band is narrow.

これを改善した一例として、14GHz帯域の8合成の
円筒空胴共振器型電力合成器11は、第2図の如(,2
個の円筒空胴共振器4L5)を結合さセ、複同調回路を
構成さ・υるごとにより帯域を広けるという方法を採っ
てきた。
As an example of improving this, a cylindrical cavity resonator type power combiner 11 with eight combinations in the 14 GHz band is shown in FIG.
A method has been adopted in which two cylindrical cavity resonators (4L5) are combined to form a double-tuned circuit, and the band is widened each time.

円筒空胴共振器4L5)が、上下に積み重ねられて電界
結合されており、下層の円筒空胴共振器5)の下面に円
形等間隔に配設した8個の入力端子21を備え、上層の
円筒空胴共振器41の上面中央に出力端子31を備えで
いる。
The cylindrical cavity resonators 4L5) are stacked one on top of the other and are electrically coupled, and are provided with eight input terminals 21 arranged at equal circular intervals on the bottom surface of the cylindrical cavity resonators 5) in the upper layer. An output terminal 31 is provided at the center of the upper surface of the cylindrical cavity resonator 41.

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

しかしながら、円筒空胴共振器5)へ結合させている8
個の入力端子21は、その結合を最大とさせる位置に各
々を設けることか出来ず、このため、周波数帯域に制限
を受ける、という不都合があった。 即ち、第3図(a
)の円筒空胴の端子位置に対する磁界結合係数βは次式
により与えられる。
However, the coupling to the cylindrical cavity resonator 5)
Each of the input terminals 21 cannot be provided at a position where the coupling is maximized, and as a result, there is a problem in that the frequency band is limited. That is, Fig. 3 (a
) is given by the following equation.

Qo;無負荷時のQ、 K;波数(2π/λ0、λOは自由空間波長)η;真空
の波動インピーダンス、 Zo ;特性インピーダンス、 h;円筒空胴高さ、 r;円筒空胴半径、 ρ;端子位置、 Jo、Jl ;0次、1次のヘソセル関数、χon (
n−■、2.・・・);0次ベッセル関数のn番目の根
(nは円筒空胴の共振モー ドであるTMonoモードのnに対応)、0式のρを変
数としてβを計算すれば、第3図(blの円筒空胴の結
合係数特性の如くなる。
Qo: Q at no load, K: Wave number (2π/λ0, λO is free space wavelength) η: Vacuum wave impedance, Zo: Characteristic impedance, h: Cylindrical cavity height, r: Cylindrical cavity radius, ρ ; Terminal position, Jo, Jl ; 0th and 1st order heso cell functions, χon (
n-■, 2. ); If we calculate β using the nth root of the 0th order Bessel function (n corresponds to n of the TMono mode, which is the resonance mode of the cylindrical cavity) and the ρ of the 0 equation as a variable, we get Figure 3 ( The coupling coefficient characteristics of the cylindrical cavity of bl are as follows.

ここで、ρ−〇の時、即ち円筒空胴の中心位置において
結合は最大値となる。
Here, the coupling reaches its maximum value when ρ-0, that is, at the center position of the cylindrical cavity.

しかし、前述の従来例では中心位置に複数の端子は設け
られず、二番目以降の極大位置の円周−トに配設せざる
を得す、このため、最強の結合とは出来ない。
However, in the conventional example described above, a plurality of terminals are not provided at the center position, but must be provided at the circumference of the second and subsequent maximum positions, and therefore the strongest connection cannot be achieved.

一方、周波数帯域BWは次式にて与えられる。On the other hand, the frequency band BW is given by the following equation.

BW−αFO/QL  ・・・・・・・・・・・・・・
・・・・・・・■α;何dB落ちの帯域を定義するか?
、こより決まる定数、 Fo ;中心周波数、 Qし;負荷時のQ、 ■弐から、帯域はQLが小さくなればなるほど広がるこ
とがわかる。
BW-αFO/QL・・・・・・・・・・・・・・・
......■α; How many dB drop band should be defined?
, a constant determined from Fo; center frequency;

またQしとβとの関係は次の■式で与えられる。Also, the relationship between Q and β is given by the following equation (2).

QL =Qo / (1+β) ・・・・・・・・・・
・・・・・■これより、QLを最小とさせるには、βを
最大にしなければならない。
QL = Qo / (1+β) ・・・・・・・・・・・・
...■From this, in order to minimize QL, β must be maximized.

従って、前述の従来例の構造では最大の周波数帯域BW
は得られないと結論される。
Therefore, in the conventional structure described above, the maximum frequency band BW
It is concluded that this is not possible.

以上は、円筒空胴共振器に入出力端子が磁界結合を行わ
せた場合であったか、この端子結合を電界結合で行わせ
た場合の電界結合係数βは次式で与えられる。
The above is a case where the input/output terminals of the cylindrical cavity resonator perform magnetic field coupling, or when this terminal coupling is performed by electric field coupling, the electric field coupling coefficient β is given by the following equation.

G;結合棒挿入長、 0式は、ρを変数としてβ′を見れは、値は異なるがi
;j述の磁界結合係数βと同形式であり、従っr、第3
図(blのβ特性図と同様となり、β′の最大値も、ρ
−0即ち、円筒空胴の中心位置となり、周波数帯域BW
は、入出力端子が電界結合の場合であっても、磁界結合
の場合と同様に論しられ、やはり従来例の構造では不都
合を生しる。
G: Insertion length of connecting rod
; has the same form as the magnetic field coupling coefficient β described in j, so r, the third
It is similar to the β characteristic diagram in figure (bl), and the maximum value of β′ is also ρ
−0, that is, the center position of the cylindrical cavity, and the frequency band BW
Even if the input/output terminals are electrically coupled, the same discussion can be made as in the case of magnetic coupling, and the conventional structure still causes problems.

本発明は、かかる問題点に遁み、空胴共振型で周波数帯
域を最大とさせ、伝搬損失の少ない断電力分配/合底蓋
の提供を目的としている。
SUMMARY OF THE INVENTION The present invention addresses these problems and aims to provide a power cut-off power distribution/combination cover that is of a cavity resonance type, maximizes the frequency band, and has low propagation loss.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、第1図に示す如く、 高周波円空胴共振器型電力分配/合成器において、各々
の入出力用端子2,3に夫々1個宛の円筒空胴共振器4
,5を設け、且つ当該入出力用端子2゜3は、円筒空胴
共振器4,5の中心位置で電界結合或いは磁界結合し、
入力端子2から出力端子3に至るまでに、必ず2個の円
筒空胴共振器4,5を通り、複同調回路構成をなさせた
、本発明の電力分配/合成器1により解決される。
The above problem is as shown in FIG.
.
This problem is solved by the power divider/synthesizer 1 of the present invention, which always passes through two cylindrical cavity resonators 4 and 5 from the input terminal 2 to the output terminal 3, forming a double-tuned circuit configuration.

〔作 用] 即ち、どの入出力端子も円筒空胴共振器に対して最大結
合をなし、且つ複同調回路構成をなすので、帯域も最大
ならしめ目的か適えられる。
[Function] That is, since each input/output terminal has maximum coupling with the cylindrical cavity resonator and constitutes a double-tuned circuit configuration, the band can also be maximized.

全入出力端t2,3は1個ずつの独立した円筒空胴共振
器4,5に結合させて設けてあり、しかも中心に位置さ
せている。
All the input and output terminals t2, 3 are coupled to one independent cylindrical cavity resonator 4, 5, and are centrally located.

更に、入力端子2から出力端子3に至るまでに必ず2個
の円筒空胴共振器4,5を通る複同調回路構成とするた
め、分配/合成の共通部の端子を設けた円筒空胴共振器
4は大径のものとし、他の端子用の円筒空胴共振器5は
小径として、円筒空胴共振器4の大径内で他の円筒空胴
共振器5と結合させて、周りに配設させた構造としCあ
る。
Furthermore, in order to create a double-tuned circuit configuration that always passes through two cylindrical cavity resonators 4 and 5 from the input terminal 2 to the output terminal 3, a cylindrical cavity resonator is provided with a terminal for a common portion of distribution/synthesis. The cylindrical cavity resonator 5 for the other terminals is of a small diameter, and is coupled with another cylindrical cavity resonator 5 within the large diameter of the cylindrical cavity resonator 4. There is a structure C.

従って、どの入出力端子2,3もその結合(β或いはβ
′)は最大となり、故にQLは最小となり、周波数帯域
BWは最大となされる。
Therefore, any input/output terminals 2 and 3 have their combination (β or β
') is maximized, therefore QL is minimized, and frequency band BW is maximized.

か(して、空胴共振器型電力分配/合成器の使用周波数
帯域の広帯域化が図れ、生産性の向上。
(Thus, the frequency band used by the cavity resonator type power distributor/synthesizer can be expanded, improving productivity.

装置の広帯域化等に寄与することが出来る。It can contribute to widening the bandwidth of the device.

〔実施例〕〔Example〕

以下図面に示す実施例によって本発明を具体的に説明す
る。
The present invention will be specifically described below with reference to embodiments shown in the drawings.

全図を通し同一符合は同一対称物を示す。The same reference numerals indicate the same objects throughout the figures.

第1図(a)に本発明の一実施例の斜視図、同図(b)
に同断面図を示す。
FIG. 1(a) is a perspective view of an embodiment of the present invention, and FIG. 1(b) is a perspective view of an embodiment of the present invention.
A cross-sectional view of the same is shown.

実施例は前述の従来例と同しく、14 Gtlz帯域の
円筒空胴共振器型の8人力の電力合成器1である。
The embodiment is a cylindrical cavity resonator type power combiner 1 of 14 Gtlz band and powered by eight people, as in the conventional example described above.

8個の入力端子2は各々の小径の円筒空胴共振器5の中
心に、また出力端子3は大径の円筒空胴共振器4の中心
に、夫々電界結合にて設けである。
The eight input terminals 2 are provided at the center of each small-diameter cylindrical cavity resonator 5, and the output terminal 3 is provided at the center of the large-diameter cylindrical cavity 4 by electric field coupling.

円筒空胴共振器4の大径の片面に、8個の円筒空胴共振
器5が円形に配設、密着して、互いの密着面を貫通して
結合棒6が所定位置に設けられて、共振器間を磁界結合
させている。
On one side of the large diameter of the cylindrical cavity resonator 4, eight cylindrical cavity resonators 5 are disposed in a circular shape and in close contact with each other, and a coupling rod 6 is provided at a predetermined position passing through the mutual contact surface. , magnetic field coupling is established between the resonators.

かくして、何れの入力端子2からも出力端子3に至るま
では、円筒空胴共振器5と円筒空胴共振器4と2個の共
振器を通り、複同調回路構成かなされている。
Thus, from any input terminal 2 to the output terminal 3, two resonators, cylindrical cavity resonator 5 and cylindrical cavity resonator 4, are passed through, forming a double-tuned circuit configuration.

本実施例では、前述の従来例のものに比へて、周波数帯
域は約2倍に広げられた。
In this embodiment, the frequency band is approximately twice as wide as that of the conventional example described above.

上記実施例は電力合成器1を示したか、分配器でも伝搬
方向か逆になるのみで、全く同様である。
Although the above embodiment shows the power combiner 1, it is completely the same in the case of the distributor, except that the propagation direction is reversed.

また、入出力端子2,3の円筒空胴共振器4,5に対す
る結合、および円筒空胴共振器4,5間の結合は、電界
結合、磁界結合の何れを用いてもよく、またそれらの組
合せも可であり、用途や寸法により選択される。
Further, the coupling between the input/output terminals 2 and 3 to the cylindrical cavity resonators 4 and 5 and the coupling between the cylindrical cavity resonators 4 and 5 may be achieved by using either electric field coupling or magnetic field coupling. Combinations are also possible and are selected depending on the purpose and dimensions.

更に、出力端子3用の大径の円筒空胴共振器4の片面の
みに、入力端子2用の円筒空胴共振器5を配設させたが
、配設面は両面とするも可である。
Further, although the cylindrical cavity resonator 5 for the input terminal 2 is disposed only on one side of the large diameter cylindrical cavity resonator 4 for the output terminal 3, the cylindrical cavity resonator 5 for the input terminal 2 may be disposed on both sides. .

勿論、使用周波数帯および分配/合成回路数は上記に限
定するものではない。
Of course, the frequency band used and the number of distribution/synthesizing circuits are not limited to the above.

〔発明の効果〕〔Effect of the invention〕

以上の如く、円筒空胴共振器型電力分配/合成器を本発
明の構造とすることにより、従来例に比べて理論的には
最大2.5倍(但し円筒空胴共振器4.5の結合が理想
的になされた場合)に広帯域化可能となる。
As described above, by using the structure of the cylindrical cavity resonator type power distributor/synthesizer of the present invention, it is theoretically up to 2.5 times that of the conventional example (however, the cylindrical cavity resonator type power distributor/synthesizer is 4.5 times (If the coupling is ideal), it becomes possible to widen the band.

これにより、製造上の精度誤差許容度を拡大させ、温度
特性の安定化、回路装置の広帯域化等を図ることか出来
、その効果は大なるものがある。
This makes it possible to expand the tolerance for manufacturing precision errors, stabilize temperature characteristics, widen the band of the circuit device, etc., and has great effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例、 第2図は従来の一例の円筒空胴共振器型電力合成器の斜
視図、 第3図は円筒空胴の端子位置と結合状態である。 図において、 ■、11は円筒空胴共振型電力分配/合成器、2.21
は入力端子、 3.31は出力端子、 4.5,4L5)は円筒空胴共振器、 6は結合棒である。
FIG. 1 is an embodiment of the present invention, FIG. 2 is a perspective view of a conventional example of a cylindrical cavity resonator type power combiner, and FIG. 3 is a diagram showing the terminal positions of the cylindrical cavity and the connected state. In the figure, ■, 11 is a cylindrical cavity resonant power divider/synthesizer, 2.21
is an input terminal, 3.31 is an output terminal, 4.5, 4L5) is a cylindrical cavity resonator, and 6 is a coupling rod.

Claims (1)

【特許請求の範囲】 高周波円筒空胴共振器型電力分配/合成器において、 各々の入出力用端子(2)(3)に夫々1個宛の円筒空
胴共振器(4)(5)を設け、且つ当該入出力用端子(
2)(3)は、該円筒空胴共振器(4)(5)の中心位
置で電界結合或いは磁界結合し、 該入力端子(2)から該出力端子(3)に至るまでに、
必ず2個の該円筒空胴共振器(4)(5)を通り、複同
調回路構成をなさせたことを特徴とする電力分配/合成
器。
[Claims] In a high frequency cylindrical cavity resonator type power distribution/synthesizer, one cylindrical cavity resonator (4) (5) is connected to each input/output terminal (2) (3). and the relevant input/output terminals (
2) and (3) are electrically coupled or magnetically coupled at the center positions of the cylindrical cavity resonators (4) and (5), and from the input terminal (2) to the output terminal (3),
A power distribution/synthesizer characterized in that power always passes through the two cylindrical cavity resonators (4) and (5) to form a double-tuned circuit configuration.
JP13678887A 1987-05-29 1987-05-29 Power distributer/synthesizer Pending JPS63300603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13678887A JPS63300603A (en) 1987-05-29 1987-05-29 Power distributer/synthesizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13678887A JPS63300603A (en) 1987-05-29 1987-05-29 Power distributer/synthesizer

Publications (1)

Publication Number Publication Date
JPS63300603A true JPS63300603A (en) 1988-12-07

Family

ID=15183532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13678887A Pending JPS63300603A (en) 1987-05-29 1987-05-29 Power distributer/synthesizer

Country Status (1)

Country Link
JP (1) JPS63300603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235618A (en) * 1991-05-06 1993-09-10 Hughes Aircraft Co High-frequency powder divider for flat void
JP2016507191A (en) * 2013-02-01 2016-03-07 シーメンス リサーチ センター リミテッド ライアビリティ カンパニーSiemens Research Center Limited Liability Company Radio frequency power combiner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235618A (en) * 1991-05-06 1993-09-10 Hughes Aircraft Co High-frequency powder divider for flat void
JP2016507191A (en) * 2013-02-01 2016-03-07 シーメンス リサーチ センター リミテッド ライアビリティ カンパニーSiemens Research Center Limited Liability Company Radio frequency power combiner

Similar Documents

Publication Publication Date Title
US6781487B2 (en) Multimode dielectric resonator device, dielectric filter, composite dielectric filter, synthesizer, distributor, and communication device
D'Orazio et al. Substrate-integrated-waveguide circulators suitable for millimeter-wave integration
US6281769B1 (en) Electromagnetic transmission line elements having a boundary between materials of high and low dielectric constants
US4477785A (en) Generalized dielectric resonator filter
CA2434614C (en) Canonical general response bandpass microwave filter
WO1995035584A1 (en) High-frequency circuit element
CN101185193A (en) Microwave filter including an end-wall coupled coaxial resonator
KR20020047141A (en) High-frequency band pass filter assembly, comprising attenuation poles
WO1997040546A1 (en) High performance microwave filter with cavity and conducting or superconducting loading element
WO1999067848A1 (en) Broad band quad ridged polarizer
US4647869A (en) Microwave solid-state amplifier
JPH02113601A (en) Coaxial waveguide phase shifter
JPH0637504A (en) Strip line dual mode filter
JP2004336605A (en) Band pass filter
JPS63300603A (en) Power distributer/synthesizer
JP2014236362A (en) Dual band resonator and dual band pass filter using the same
JPH0846413A (en) Resonator and high frequency circuit element using the same
JP3316962B2 (en) filter
JPH029204A (en) Waveguide type power diveder
US20020000899A1 (en) Dielectric filter,transmission/reception sharing device, and communication device
JP3020312B2 (en) Stripline microwave module
JP2699704B2 (en) Band stop filter
CN115295991B (en) Dual-passband filtering power divider based on multimode resonator
JPH11330803A (en) High frequency filter device, shared device and communication equipment
JPH0296402A (en) Spiral resonator