JPS6330049A - Msk demodulation circuit - Google Patents
Msk demodulation circuitInfo
- Publication number
- JPS6330049A JPS6330049A JP17151586A JP17151586A JPS6330049A JP S6330049 A JPS6330049 A JP S6330049A JP 17151586 A JP17151586 A JP 17151586A JP 17151586 A JP17151586 A JP 17151586A JP S6330049 A JPS6330049 A JP S6330049A
- Authority
- JP
- Japan
- Prior art keywords
- output
- signal
- multiplier
- demodulation circuit
- local oscillator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 6
- 238000001514 detection method Methods 0.000 abstract description 5
- 238000011084 recovery Methods 0.000 abstract description 3
- 230000001629 suppression Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000010356 wave oscillation Effects 0.000 description 1
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、搬送波抑圧両側波帯波信号の復調に際して安
定に中間周波を発生するようにしたMSK復調回路に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an MSK demodulation circuit that stably generates an intermediate frequency when demodulating a carrier-suppressed double-sided band signal.
位相連続FSX信号は、変調波の包絡線が一定で、出力
増幅器の飽和などによる抑圧に対して主スペクトルが影
響を受けないため、これら非線形系を含む伝送路におい
て有利な変調方式である。The phase-continuous FSX signal has a constant envelope of the modulated wave, and the main spectrum is not affected by suppression due to output amplifier saturation, etc., so it is an advantageous modulation method for transmission lines including these nonlinear systems.
特に変調指数0.5の位相連続FSK信号はM S K
(Minin+um 5hift Keying
)信号と呼ばれ。In particular, a phase continuous FSK signal with a modulation index of 0.5 is M S K
(Minin+um 5hift Keying
) is called a signal.
占有帯域幅が狭く効率のよい変調方式として注目されて
いる。It is attracting attention as an efficient modulation method with a narrow occupied bandwidth.
受信したMSK信号を復調するための同期検波方式を用
いた従来の復調回路は、基準信号である搬送波の再生方
法が重要であり、例えば特開昭55−73164号公報
では、搬送波再生回路として変形コスタスループを用い
、搬送波位相誤差信号を抽出し、電圧制御発振器を制御
して搬送波を得るようになっている。しかし、搬送波の
周波数変動が大きい場合には最良の状態で復調できず、
性能が劣化するという欠点があった。For conventional demodulation circuits that use a synchronous detection method to demodulate received MSK signals, the method of regenerating the carrier wave, which is the reference signal, is important. A Costas loop is used to extract a carrier wave phase error signal and control a voltage controlled oscillator to obtain a carrier wave. However, if the frequency fluctuation of the carrier wave is large, demodulation cannot be achieved in the best condition.
The drawback was that performance deteriorated.
上記従来技術は、搬送波の周波数変動の大きい伝送シス
テムにおいても搬送波再生回路内の電圧制御発振器(V
CO)等の設計を変動の大きさに対応して行なうことで
搬送波を再生でき、変調波を復調できる。しかし、ヘト
ロダイン受信機のように局部発振器のドリフトにともな
う中間周波数のドリフトに対して、固定の中間周波数通
過用バンドパスフィルタによる側帯波の過不足や搬送波
のT移相器の位相ずれについて配慮されておらず、再生
信号の誤り率が劣化する問題があった。The above conventional technology uses a voltage controlled oscillator (V
The carrier wave can be regenerated and the modulated wave can be demodulated by designing the carrier wave (CO) etc. in accordance with the magnitude of the fluctuation. However, with respect to the intermediate frequency drift caused by the drift of the local oscillator as in the case of a hetrodyne receiver, consideration must be given to the excess or deficiency of sidebands caused by the fixed bandpass filter for passing the intermediate frequency, and the phase shift of the T phase shifter of the carrier wave. However, there was a problem in that the error rate of the reproduced signal deteriorated.
本発明はMSKなどの搬送波抑圧両側帯波信号を安定に
復調するヘトロダイン受信機の復調回路を提供すること
を目的とるする。SUMMARY OF THE INVENTION An object of the present invention is to provide a demodulation circuit for a hetrodyne receiver that stably demodulates carrier-suppressed double-side band signals such as MSK.
上記目的は、復調回路を次のように構成することにより
、達成される。すなわち、基準搬送波発振用として固定
の水晶発振器を用いて同相分搬送波を得、この同相分搬
送波をf移相器で位相をずらして直交分搬送波を得る。The above object is achieved by configuring the demodulation circuit as follows. That is, an in-phase carrier wave is obtained using a fixed crystal oscillator for reference carrier wave oscillation, and the phase of this in-phase carrier wave is shifted by an f phase shifter to obtain an orthogonal carrier wave.
中間周波数に変換された入力変調信号を同相搬送波及び
直交搬送波でそれぞれ同期検波し、同相成分出力と直交
成分出力を乗算しさらにデータ伝送周波数であるタイミ
ングクロックの2分周信号とを乗算し、この乗算信号の
直流成分を搬送波位相誤差信号としてループフィルタを
用いて抽出する。この搬送波位相誤差信号で、中間周波
数に変換する周波数変換回路内の局部発振器を制御して
一種のPLLを構成することで1周波数変換回路に入力
する変調信号の周波数変動分を吸収する。The input modulation signal converted to an intermediate frequency is synchronously detected using an in-phase carrier wave and a quadrature carrier wave, and the output of the in-phase component and the quadrature component are multiplied, and further multiplied by a half-divided signal of the timing clock, which is the data transmission frequency. The DC component of the multiplied signal is extracted as a carrier phase error signal using a loop filter. This carrier wave phase error signal controls a local oscillator in a frequency conversion circuit that converts to an intermediate frequency to form a type of PLL, thereby absorbing frequency fluctuations of a modulated signal input to one frequency conversion circuit.
上記構成により1周波数変動分をもった変調波は周波数
変換回路により周波数変動のない安定した中間周波数に
変換される。それによって、固定の中間周波数通過用バ
ンドパスフィルタによる側帯波の過不足がなく、また搬
送波のT移相器の位相ずれのない状態で復調ができるの
で、復調回路は最良の状態で動作し再生信号の誤り率は
劣化することがない。With the above configuration, a modulated wave with one frequency fluctuation is converted by the frequency conversion circuit into a stable intermediate frequency without frequency fluctuation. As a result, demodulation can be performed without excess or deficiency of sidebands due to the fixed intermediate frequency band pass filter, and without phase shift of the T phase shifter of the carrier wave, so the demodulation circuit operates in the best condition and reproduces. The signal error rate does not deteriorate.
以下1本発明の実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は本発明の第一の実施例を示すブロック図であっ
て、同図は中間周波数に2つの周波数をもつ二重ヘテロ
ダイン方式で搬送波周波数を下げ、MSK信号を復調す
る実施例である。FIG. 1 is a block diagram showing a first embodiment of the present invention, and this figure shows an embodiment in which the carrier frequency is lowered by a double heterodyne system having two intermediate frequencies and an MSK signal is demodulated. .
第1図において、1は入力端子、2は第1の局部発振器
、3は第1の混合器、4は第2の局部発振器、5は第2
の混合器、6はバンドパスフィルタ(BPF)、7は第
1の乗算器、8は第2の乗π
ン
のLPF、13は第1の判定回路、14は第2の判定回
路、15は反転回路、16はディジタル信号処理回路、
17は再生信号出力端子、18は第3の乗算器、19は
第4の乗算器、20はループフィルタ、21はクロック
再生回路である。In FIG. 1, 1 is an input terminal, 2 is a first local oscillator, 3 is a first mixer, 4 is a second local oscillator, and 5 is a second local oscillator.
6 is a band pass filter (BPF), 7 is a first multiplier, 8 is a second multiplier LPF, 13 is a first judgment circuit, 14 is a second judgment circuit, 15 is a an inverting circuit; 16 is a digital signal processing circuit;
17 is a reproduction signal output terminal, 18 is a third multiplier, 19 is a fourth multiplier, 20 is a loop filter, and 21 is a clock recovery circuit.
同図において、入力端子1に与えられた信号と第1の局
部発振器2の出力とを第1の混合器3をを用いてビート
ダウンし第1の中間周波にする。In the figure, a signal applied to an input terminal 1 and the output of a first local oscillator 2 are beat down using a first mixer 3 to produce a first intermediate frequency.
その第1の中間周波と第2の局部発振器4の出力−とを
第2の混合器5とを用いてビートダウンし第2の中間周
波にする6次に、BPF6で不要な帯域外雑音、妨害な
どを削除するとともに伝送路の特性を最適とするように
波形等化を行なう。その出力を第1の乗算器7及び第2
の乗算器8に加え、基準発振器9の位相と、その出力を
T移相器1oを通して7位相のずれた信号でそれぞれ乗
算することで同期検波し、第1のLPFII及び第2の
LPF12を用いて不要な高周波成分を取り除き、それ
ぞれ0相7相のいわゆる工とQのベ一に判定され、2値
のディジタル信号として各々ディジタル信号処理回路1
6に入力される。一方、第1のBPFIIの出力と第2
のBPF12の出力を第3の乗算器18に加え、その出
力を第4の乗算器19の入力とし、クロック再生回路2
1により再生されたデータ伝送周波数の2分周したクロ
ック信号と乗算する。そして第4の乗算器19の出力を
ループフィルタ2oを介して第2の局部発振器4に帰還
する。すなわち第3の乗算器18゜第4の乗算器19.
ループフィルタ2o及びクロック再生回路21により再
生されたクロック信号で第1の乗算器7及び第2の乗算
器8の入力である第2の中間周波数と基準発振器9の出
力の位相差を検出し、第2の局部発振器4を制御して、
第2の中間周波と基準発振器9の出力の位相差をある一
定値にする負帰還ループを構成するものである。位相差
検出動作は、前記特開昭55−73164号公報に詳し
く述べられているためここでは省略する。本実施例によ
れば基準発振器9として水晶発振器など周波数安定度の
良い発振器を用いるので、上記負帰還ループで第2の中
間周波数の周波数が安定した値となり、第1の局部発振
器2の周波数が温度変動などによりドリフトしたとして
も、第2の中間周波の周波数が一定となり。The first intermediate frequency and the output of the second local oscillator 4 are beat down using a second mixer 5 to become a second intermediate frequency. Next, the BPF 6 eliminates unnecessary out-of-band noise. Waveform equalization is performed to remove interference and optimize the characteristics of the transmission path. The output is sent to the first multiplier 7 and the second
In addition to the multiplier 8, synchronous detection is performed by multiplying the phase of the reference oscillator 9 and its output by a signal with a 7-phase shift through the T phase shifter 1o, and using the first LPF II and the second LPF 12. The unnecessary high-frequency components are removed by the process, each of which is determined based on the so-called 0 phase and 7 phase, so-called mechanical and Q bases, and each is sent to the digital signal processing circuit 1 as a binary digital signal.
6 is input. On the other hand, the output of the first BPFII and the output of the second BPFII
The output of the BPF 12 is added to the third multiplier 18, the output is input to the fourth multiplier 19, and the clock recovery circuit 2
The data transmission frequency reproduced by 1 is multiplied by a clock signal obtained by dividing the frequency by 2. The output of the fourth multiplier 19 is then fed back to the second local oscillator 4 via the loop filter 2o. That is, the third multiplier 18, the fourth multiplier 19.
Detecting the phase difference between the second intermediate frequency, which is the input of the first multiplier 7 and the second multiplier 8, and the output of the reference oscillator 9 using the clock signal regenerated by the loop filter 2o and the clock regeneration circuit 21, controlling the second local oscillator 4,
This constitutes a negative feedback loop that makes the phase difference between the second intermediate frequency and the output of the reference oscillator 9 a certain constant value. The phase difference detection operation is described in detail in the above-mentioned Japanese Patent Laid-Open Publication No. 55-73164, so a description thereof will be omitted here. According to this embodiment, since an oscillator with good frequency stability such as a crystal oscillator is used as the reference oscillator 9, the frequency of the second intermediate frequency becomes a stable value in the negative feedback loop, and the frequency of the first local oscillator 2 becomes a stable value. Even if it drifts due to temperature fluctuations, the frequency of the second intermediate frequency remains constant.
BPF6の中心周波数とのずれが生ぜず、安定な特性を
得ることができる。There is no deviation from the center frequency of the BPF 6, and stable characteristics can be obtained.
第2図は本発明の第二の実施例を示すブロック図であっ
て、同図は、第1図の回路における負帰還ループが疑似
ロックした場合の対策を付加したものであり、第1図と
同一符号のものは同一機能を示し、22は符号誤り率測
定回路、23は低周波信号発生回路、24は加算回路で
ある。FIG. 2 is a block diagram showing a second embodiment of the present invention, and this diagram is a block diagram showing a second embodiment of the present invention, and this diagram is an addition of countermeasures when the negative feedback loop in the circuit of FIG. 1 becomes pseudo-locked. Components with the same symbols as 2 and 2 have the same functions, 22 is a bit error rate measuring circuit, 23 is a low frequency signal generating circuit, and 24 is an adding circuit.
同図において、電源投入時などで第2の局部発振器4の
周波数が安定していないときに、第1図の回路では基準
発振器9の周波数とは別の周波数で負帰還ループがかか
る、いわゆる、疑似ロックの状態になることがある。こ
の場合、ループフィルタ2oの出力は通常の値Ovとは
異なる電圧を出力する。今これを疑似ロック電圧Veと
おく。In the figure, when the frequency of the second local oscillator 4 is not stable, such as when the power is turned on, in the circuit of FIG. 1, a negative feedback loop is applied at a frequency different from the frequency of the reference oscillator 9. A pseudo-lock condition may occur. In this case, the output of the loop filter 2o outputs a voltage different from the normal value Ov. Let this be the pseudo lock voltage Ve.
疑似ロックの状態では、正常なデータは復調できないた
め再生信号出力端子17には、符号誤り率がほとんど全
エラーの信号が得られる。In the pseudo-lock state, normal data cannot be demodulated, so a signal with almost all errors is obtained at the reproduced signal output terminal 17.
符号誤り率測定回路はこの状態を測定し、低周波信号発
生回路23に信号を送る。低周波信号発生回路23はこ
れを受け、振幅が疑似ロック電圧Veより大きい低周波
を発生する。加算回路24は該低周波信号とループフィ
ルタ2oの出力を加算し第2の局部発振器4に入力する
。これにより負帰還ループは疑似ロック状態から脱し、
正常なロック状態となる。正常なロック状態では再生信
号出力端子の出力は符号誤り率の少ない状態となるため
、符号誤り率測定回路22はこれを受は低周波発生回路
23に信号を送り低周波の発生を停止する。このとき低
周波発生回路23はQvを出力する。なお、第2の局部
発振器4は入力電圧がovのとき基準発振器9と同じ中
間周波となる周波数で発振し、制御電圧はOvを中心と
した正及び負電圧で動作すると考える。The code error rate measuring circuit measures this state and sends a signal to the low frequency signal generating circuit 23. The low frequency signal generation circuit 23 receives this and generates a low frequency signal whose amplitude is larger than the pseudo lock voltage Ve. The adder circuit 24 adds the low frequency signal and the output of the loop filter 2o and inputs the result to the second local oscillator 4. This releases the negative feedback loop from the pseudo-lock state,
The lock becomes normal. In a normal lock state, the output of the reproduced signal output terminal has a low bit error rate, so the bit error rate measuring circuit 22 receives this and sends a signal to the low frequency generation circuit 23 to stop generating low frequencies. At this time, the low frequency generation circuit 23 outputs Qv. It is assumed that the second local oscillator 4 oscillates at the same intermediate frequency as the reference oscillator 9 when the input voltage is ov, and operates with positive and negative voltages centered on the control voltage Ov.
本実施例によれば疑似ロック状態を検出して局部発振器
の周波数を変化できるので安定な復調が得られる。According to this embodiment, since the frequency of the local oscillator can be changed by detecting a pseudo lock state, stable demodulation can be obtained.
第3図は本発明の第三の実施例を示すブロック図であっ
て、同図も疑似ロック対策の回路であり、疑似ロック状
態をループフィルタ20の出力で調べるようにしたもの
で第1、第2図と同一符号は同一部分を示し、25は基
準電圧発生器、26は比較器、27は加算回路である。FIG. 3 is a block diagram showing a third embodiment of the present invention, and this figure also shows a circuit for countermeasures against false locks, in which the false lock state is checked using the output of the loop filter 20. The same reference numerals as in FIG. 2 indicate the same parts, 25 is a reference voltage generator, 26 is a comparator, and 27 is an adder circuit.
同図において、疑似ロックした場合のループフィルタ2
0の出力である疑似ロック電圧Veは復調回路の定数を
変えなければ正常電圧であるOMを中心に決まった値と
なるため、疑似ロックの検出が可能である。比較器26
の入出力特性を第4図に示すように構成し、lVcoM
l<lVe lととり、O< l VOIJT I
I V e I <V(OM lを満たす適当な値をと
れば、加算器27の出力は常にOv付近となり正常なロ
ック状態になる。In the same figure, loop filter 2 when pseudo-locked
Since the pseudo-lock voltage Ve, which is the output of 0, has a fixed value centered on the normal voltage OM unless the constants of the demodulation circuit are changed, pseudo-lock can be detected. Comparator 26
The input/output characteristics of is configured as shown in Fig. 4, and lVcoM
l<lVe l, O<l VOIJT I
If an appropriate value satisfying I V e I <V (OM l is taken), the output of the adder 27 will always be around Ov, resulting in a normal lock state.
なお、比較器26の特性を±V CONのウィンドコン
パレータにし第2図の低周波発生回路23の入力として
もよい。Note that the comparator 26 may have a characteristic of ±V CON as a window comparator and may be used as an input to the low frequency generation circuit 23 shown in FIG.
第5図は本発明の第四の実施例を糸すブロック−図であ
って、同図も疑似ロック対策の一例で前記・\
実施例と同一符号は同一部分を示し、27は電圧リミッ
タであり第6図のような入出力特性を持つ。FIG. 5 is a block diagram illustrating the fourth embodiment of the present invention, and this figure is also an example of countermeasures against false locks, and the same reference numerals as in the above-mentioned embodiments indicate the same parts, and 27 is a voltage limiter. Yes, it has input/output characteristics as shown in Figure 6.
この場合電圧リミッタ27の出力は疑似ロック電圧Ve
まで達っしないため疑似ロック状態とならない。また、
第1図の構成で第2の局部発振器4の特性を第7図に示
す入出力特性にしても同様の効果がある。ただし、Δチ
eは第2の局部発振器の入力が疑似ロック電圧Veだけ
ずれたときの出力周波数偏移である。In this case, the output of the voltage limiter 27 is the pseudo lock voltage Ve.
Since it does not reach this point, a pseudo-lock state does not occur. Also,
Similar effects can be obtained even if the characteristics of the second local oscillator 4 in the configuration shown in FIG. 1 are changed to the input/output characteristics shown in FIG. However, Δchie is the output frequency deviation when the input of the second local oscillator is shifted by the pseudo lock voltage Ve.
第8図は本発明の第五の実施例を示すブロック図であっ
て、第1図と同一符号は同一部分を示し。FIG. 8 is a block diagram showing a fifth embodiment of the present invention, and the same reference numerals as in FIG. 1 indicate the same parts.
28はAac (オートゲインコントロール)回路であ
る。同図において、BPF6の出力のエンベロープをA
GC回路28で一定に保つことで第1の乗算器7、第2
の乗算器8、第3の乗算器18、第4の乗算器19の動
作は飽和状態をなくシ、直線性の良い状態で使用できる
。28 is an Aac (auto gain control) circuit. In the same figure, the envelope of the output of BPF6 is A
By keeping it constant with the GC circuit 28, the first multiplier 7 and the second
The operations of the multiplier 8, the third multiplier 18, and the fourth multiplier 19 are free from saturation and can be used with good linearity.
また、本実施例によれば負帰還ループのループ利得を一
定にすることができ、安定な動作を行なうことができる
。Further, according to this embodiment, the loop gain of the negative feedback loop can be made constant, and stable operation can be performed.
以上説明したように1本発明によれば、ヘテロダイン受
信機の中間周波の周波数を安定にできるので、固定の中
間周波数通過用バンドパスフィルタによる側帯波の過不
足を生じることがなく、また搬送波のT移相器の周波数
変化に対する位相ずれもなく安定な復調動作を可能とす
ることができ、上記従来技術の欠点を除いて優れた機能
のMSK復調回路を提供することができる。As explained above, according to the present invention, the frequency of the intermediate frequency of the heterodyne receiver can be stabilized, so that there is no excess or deficiency of sidebands caused by the fixed bandpass filter for passing the intermediate frequency, and the carrier wave is It is possible to perform stable demodulation operation without phase shift with respect to frequency changes of the T phase shifter, and it is possible to provide an MSK demodulation circuit with excellent functions by eliminating the drawbacks of the above-mentioned prior art.
第1図は本発明の一実施例を示すブロック図、第2図は
本発明の第二の実施例を示すブロック図、第3図は本発
明の第三の実施例を示すブロック図、第4図は第3図の
説明図、第5図は本発明の第四の実施例を示すブロック
図、第6図は第5図の説明図、第7図は第5図の説明図
、第8図は本発明の第五の実施例を示すブロック図であ
る。
2・・・第1の局部発振器、3・・・第1の混合器、4
・・・第2の局部発振器、5・・第2の混合器、6・・
・バンドパスフィルタ、7・・・第1の乗算器、8・・
・第2の乗算器、9・・・基準発振器、10・・・π/
2移相器。
11・・・第1のローパスフィルタ、12山第2のロー
パスフィルタ、13・・・第1の判定回路、14・・・
第2の判定回路、15・・・反転回路、16・・・ディ
ジタル信号処理回路、18・・・第3の乗算器、19・
・・第4の乗算器、20・・・ループフィルタ、21・
・・タロツク再生回路。FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a block diagram showing a second embodiment of the invention, FIG. 3 is a block diagram showing a third embodiment of the invention, and FIG. 4 is an explanatory diagram of FIG. 3, FIG. 5 is a block diagram showing a fourth embodiment of the present invention, FIG. 6 is an explanatory diagram of FIG. 5, and FIG. 7 is an explanatory diagram of FIG. FIG. 8 is a block diagram showing a fifth embodiment of the present invention. 2... First local oscillator, 3... First mixer, 4
...Second local oscillator, 5...Second mixer, 6...
-Band pass filter, 7...first multiplier, 8...
・Second multiplier, 9...Reference oscillator, 10...π/
2 phase shifter. DESCRIPTION OF SYMBOLS 11... First low-pass filter, 12-mount second low-pass filter, 13... First determination circuit, 14...
Second determination circuit, 15... Inverting circuit, 16... Digital signal processing circuit, 18... Third multiplier, 19...
...Fourth multiplier, 20...Loop filter, 21.
...Tarotsuk playback circuit.
Claims (1)
のMSK復調回路において、中間周波数に相当する基準
発振器、π/2移相器、第1、第2の位相検波器、第1
、第2の乗算器、及びループフィルタを設け、該基準発
振器出力を該第1の位相検波器に加えるとともに該π/
2移相器を介して該第2の位相検波器に加え、該第1及
び第2の位相検波器出力を該第1乗算器に加え、該第1
乗算器の出力と伝送周波数のタイミングクロックの2分
周信号を該第2乗算器に加え、該第2乗算器出力を該ル
ープフィルタを介して該局部発振器に加えるように構成
したことを特徴とするMSK復調回路。 2、特許請求の範囲第1項記載のMSK復調回路におい
て、符号誤り率測定回路、発振器、加算器を設け、該符
号誤り率測定回路により疑似ロックを検出して該発振器
を制御し、該発振器出力と該ループフィルタの出力を該
加算器に加え、該加算器出力を該局部発振器に加えるよ
うに構成したことを特徴とするMSK復調回路。 3、特許請求の範囲第1項記載のMSK復調回路におい
て、基準電圧発生器、比較器、加算器を設け、該基準電
圧発生器と比較器を用いて該ループフィルタの電圧を調
べ疑似ロックを検出し、該比較器出力と該ループフィル
タの出力を該加算器に加え該加算器出力を該局部発振器
に加えるように構成したことを特徴とするMSK復調回
路。 4、特許請求の範囲第1項記載のMSK復調回路におい
て、電圧制限器を設け、該ループフィルタの出力を該電
圧制限器に入力し、該電圧制限器の出力を該局部発振器
に加えるように構成したことを特徴とするMSK復調回
路。 5、特許請求の範囲第1項記載のMSK復調回路におい
て、前記局部発振器の出力周波数範囲に制限を設けたこ
とを特徴とするMSK復調回路。 6、特許請求の範囲第1項記載のMSK復調回路におい
て、自動電圧利得制御器を設け、前記第1及び第2乗算
器の入力信号レベルを一定入力としたことを特徴とする
MSK復調回路。[Claims] 1. In an MSK demodulation circuit for a heterodyne receiver consisting of a mixer and a local oscillator, a reference oscillator corresponding to an intermediate frequency, a π/2 phase shifter, first and second phase detectors, a second 1
, a second multiplier, and a loop filter, which applies the reference oscillator output to the first phase detector and the π/
2 to the second phase detector via a phase shifter, the first and second phase detector outputs are added to the first multiplier, and the first
The output of the multiplier and a signal divided by two of the transmission frequency timing clock are applied to the second multiplier, and the output of the second multiplier is applied to the local oscillator via the loop filter. MSK demodulation circuit. 2. In the MSK demodulation circuit according to claim 1, a code error rate measuring circuit, an oscillator, and an adder are provided, the code error rate measuring circuit detects a pseudo lock and controls the oscillator, and the oscillator An MSK demodulation circuit characterized in that the output and the output of the loop filter are applied to the adder, and the adder output is applied to the local oscillator. 3. In the MSK demodulation circuit according to claim 1, a reference voltage generator, a comparator, and an adder are provided, and the voltage of the loop filter is checked using the reference voltage generator and the comparator to obtain a pseudo lock. MSK demodulation circuit, characterized in that it is configured to detect the comparator output and the output of the loop filter to the adder, and add the adder output to the local oscillator. 4. In the MSK demodulation circuit according to claim 1, a voltage limiter is provided, the output of the loop filter is input to the voltage limiter, and the output of the voltage limiter is applied to the local oscillator. An MSK demodulation circuit characterized by comprising: 5. The MSK demodulation circuit according to claim 1, characterized in that the output frequency range of the local oscillator is limited. 6. The MSK demodulation circuit according to claim 1, wherein an automatic voltage gain controller is provided, and input signal levels of the first and second multipliers are constant inputs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17151586A JPS6330049A (en) | 1986-07-23 | 1986-07-23 | Msk demodulation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17151586A JPS6330049A (en) | 1986-07-23 | 1986-07-23 | Msk demodulation circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6330049A true JPS6330049A (en) | 1988-02-08 |
Family
ID=15924550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17151586A Pending JPS6330049A (en) | 1986-07-23 | 1986-07-23 | Msk demodulation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6330049A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0417434A (en) * | 1990-05-11 | 1992-01-22 | Nec Corp | Demodulator |
JPH0548659A (en) * | 1991-08-08 | 1993-02-26 | Matsushita Electric Ind Co Ltd | Fsk signal receiver |
US5260671A (en) * | 1991-05-17 | 1993-11-09 | Hitachi, Ltd. | Receiving circuit for demodulating an angle modulated signal |
US5326256A (en) * | 1990-11-30 | 1994-07-05 | Tokai Corporation | Igniting device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60119156A (en) * | 1983-12-01 | 1985-06-26 | Fujitsu Ltd | Msk rectangular synchronization detecting circuit |
JPS6188636A (en) * | 1984-10-05 | 1986-05-06 | Hitachi Ltd | Demodulation circuit |
-
1986
- 1986-07-23 JP JP17151586A patent/JPS6330049A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60119156A (en) * | 1983-12-01 | 1985-06-26 | Fujitsu Ltd | Msk rectangular synchronization detecting circuit |
JPS6188636A (en) * | 1984-10-05 | 1986-05-06 | Hitachi Ltd | Demodulation circuit |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0417434A (en) * | 1990-05-11 | 1992-01-22 | Nec Corp | Demodulator |
US5326256A (en) * | 1990-11-30 | 1994-07-05 | Tokai Corporation | Igniting device |
US5260671A (en) * | 1991-05-17 | 1993-11-09 | Hitachi, Ltd. | Receiving circuit for demodulating an angle modulated signal |
JPH0548659A (en) * | 1991-08-08 | 1993-02-26 | Matsushita Electric Ind Co Ltd | Fsk signal receiver |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5610946A (en) | Radio communication apparatus | |
US3993956A (en) | Digital detection system for differential phase shift keyed signals | |
JP2003018230A (en) | Demodulator, broadcasting system and semiconductor device | |
EP0484914B1 (en) | Demodulator and method for demodulating digital signals modulated by a minimum shift keying | |
JPS6330049A (en) | Msk demodulation circuit | |
JPS60203045A (en) | Phase locking detection demodulator | |
JPH06237277A (en) | Psk carrier signal regenerating device | |
JPS5835429B2 (en) | Carrier regeneration circuit | |
JP2842349B2 (en) | Demodulator | |
JP3399059B2 (en) | Switching type demodulation circuit | |
JPH0467382B2 (en) | ||
JPS60182205A (en) | Tracking type band-pass filter | |
JP4394599B2 (en) | QPSK modulation wave signal carrier wave synchronization determination circuit | |
JP3315723B2 (en) | Data demodulator | |
JPS61224763A (en) | Demodulating circuit for four-phase dpsk wave | |
JPS61179642A (en) | Psk demodulaton circuit | |
JPH04220043A (en) | Pi/4 shift qpsk demodulation system | |
JPH0229263B2 (en) | ||
JPH0723037A (en) | Clock synchronizing circuit | |
JPS6173458A (en) | Delay testing circuit device of dpsk signal | |
JPH03133236A (en) | Demodulator | |
JPH0591150A (en) | Msk signal demodulation circuit | |
JPS61107848A (en) | Demodulation circuit | |
JPH03104455A (en) | Synchronizing detection circuit | |
JPH0229262B2 (en) |