JPS63299377A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63299377A
JPS63299377A JP13508487A JP13508487A JPS63299377A JP S63299377 A JPS63299377 A JP S63299377A JP 13508487 A JP13508487 A JP 13508487A JP 13508487 A JP13508487 A JP 13508487A JP S63299377 A JPS63299377 A JP S63299377A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
layer
point metal
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13508487A
Other languages
Japanese (ja)
Other versions
JP2738684B2 (en
Inventor
Takehito Yoshida
岳人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62135084A priority Critical patent/JP2738684B2/en
Publication of JPS63299377A publication Critical patent/JPS63299377A/en
Application granted granted Critical
Publication of JP2738684B2 publication Critical patent/JP2738684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To make a silicide layer diffused to a uniform depth, by previously coating the top face and the side walls of a gate electrode completely with an insulating film, adhering a highmelting point metal all over a silicon substrate and then forming an amorphous silicon layer. CONSTITUTION:After the top face and the side faces of a gate electrode 4 are previously coated completely with an insulating film 5, a high-melting point metal 12 is adhered on the whole surface of a silicon substrate 1. An amorphrous silicon layer 13 is then locally formed so as to cover the region extending from the top face of the gate electrode, through a source or drain region up to an insulating film 2 for isolating inter-elements. An MOSFET thus provided is allowed to have improved heat resistance principally because of reaction between the amorphrous silicon 13 and the high-melting point metal 12. The MOSFET is further allowed to have a silicide layer 6 and a silicified junction diffused to a uniform depth.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置、特に高集積度・高速の半導体集積
回路の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a semiconductor device, and particularly to a method for manufacturing a highly integrated and high speed semiconductor integrated circuit.

従来の技術 半導体集積回路の高密度化に伴って構成要素であるMO
SFET  も縮小されるが、かかる装置においては深
さ方向の縮小化も実施しなくては正常なFET 動作を
維持することはできない。このことは高速動作が可能で
かつ接合リーク電流の少ないMOSFETを構成するこ
とと相反する。
Conventional technologyAs the density of semiconductor integrated circuits increases, MO, which is a component
Although the SFET is also scaled down, normal FET operation cannot be maintained in such a device unless scaling in the depth direction is also performed. This contradicts the need to construct a MOSFET that is capable of high-speed operation and has low junction leakage current.

以上の問題を解決するために最近注目されているのがシ
リコンにおける不純物高濃度層よシ低抵抗な高融点金属
のシリサイド層を合金反応を用いて自己整合的に形成す
る技術(シリサイド化接合法)である。特に素子間分離
用酸化膜上においてアルミ配線とソース/ドレイン拡散
域とのコンタクI−t−形成するため、概略を第3図に
示すごとくポリシリコンゲート電極の側壁に絶縁物を被
着し、前記ポリシリコンゲート電極の上部ポリシリコン
とソース/ドレイン域のシリコン基板を露出させた状態
で高融点金属をシリコン基板全面に堆積する。この高融
点金属被膜上に局部的に非晶質シリコン層を形成する際
、後に形成される高融点金属シリサイドのうちゲート電
極上のものとノー膜上ドレイン域上のものが短絡するこ
とを防ぐため、非晶質シリコンのゲート電極側の端をゲ
ート電極から有限の距#に設定する方法が例えばアイ・
イー・ディー・エム84(1984年)第118頁から
第121頁(IEDM  84 (1984) pp1
18〜121)に発表されている。
In order to solve the above problems, a technology that has recently been attracting attention is the self-alignment formation of a silicide layer of a low-resistance, high-melting-point metal using an alloy reaction (silicide bonding method) rather than a high impurity concentration layer in silicon. ). In particular, in order to form a contact between the aluminum wiring and the source/drain diffusion region on the oxide film for isolation between elements, an insulating material is deposited on the side wall of the polysilicon gate electrode as schematically shown in FIG. A refractory metal is deposited on the entire surface of the silicon substrate with the upper polysilicon of the polysilicon gate electrode and the silicon substrate of the source/drain regions exposed. When forming an amorphous silicon layer locally on this high melting point metal film, it is possible to prevent a short circuit between the high melting point metal silicide formed later on the gate electrode and the non-film drain region. Therefore, for example, the method of setting the edge of amorphous silicon on the gate electrode side to a finite distance # from the gate electrode is
EDM 84 (1984) pp. 118-121 (IEDM 84 (1984) pp1
18-121).

発明が解決しようとする問題点 基板結晶シリコンに堆積被着した高融点金属の合金反応
により自己整合的に高融点金属シリサイドを形成する技
術においては、これを大規模集積回路に適用する限り、
高融点金属シリサイド膜形成後に為される熱処理(例え
ば注入不純物の活性化や層間絶縁膜のフローなど)を経
ても膜の均一性が維持されることが必要である。しかし
現在までのところ、特に前記アイ・イー・ディー・エム
84(1984年)第11頁から第121頁(IEDM
84 (1984)pp11s〜121)のように高融
点金属としてチタン金用いる場合、チタンシリサイド膜
形成時には均一性の良好な膜質が得られても、後の比較
的高温・長時間の熱処理(9oO℃以上、30分間以上
)の際にチタンシリサイド膜が凝集することによって表
面粗れが生じシリサイドの亀裂部ではシリコン基板が露
出するという問題があった。
Problems to be Solved by the Invention In the technology of forming a high melting point metal silicide in a self-aligned manner through an alloy reaction of a high melting point metal deposited on a substrate crystalline silicon, as long as this is applied to a large scale integrated circuit,
It is necessary that the uniformity of the film be maintained even after heat treatment (for example, activation of implanted impurities and flow of an interlayer insulating film) performed after the formation of the high melting point metal silicide film. However, up to now, especially the above-mentioned IEDM 84 (1984) pages 11 to 121 (IEDM
84 (1984) pp. 11s-121), when titanium gold is used as a high-melting point metal, even if a film with good uniformity is obtained during the formation of a titanium silicide film, the subsequent heat treatment at a relatively high temperature and long time (9oO There was a problem in that the titanium silicide film agglomerated during the heating process (for more than 30 minutes), causing surface roughness and exposing the silicon substrate at the cracks in the silicide.

また第3図に示した従来例の様式のごとく、整形された
非晶質シリコンの端がソース/ドレイン域の中間部にあ
る場合、非晶質シリコン下層のチタン層はその下層に基
板結晶シリコンが存在するにもかかわらず主に上層の非
晶質シリコンと反応することにより大部分はシリコン基
板表面よシ上側にチタンシリサイド層を形成する。これ
に対してソース/ドレイン膜上にあシかつ上層に非晶質
シリコン層のない領域のチタン層は基板結晶シリコンと
反応することにより犬部分はシリコン基板表面より下側
にチタンシリサイド層が埋設される。
Furthermore, when the edge of the shaped amorphous silicon is located in the middle of the source/drain region as in the conventional example shown in FIG. Despite the presence of titanium silicide, the titanium silicide layer is mostly formed on the upper side of the silicon substrate surface by reacting mainly with the upper layer of amorphous silicon. On the other hand, the titanium layer in the region where there is no amorphous silicon layer on the source/drain film reacts with the crystalline silicon of the substrate, and a titanium silicide layer is buried below the silicon substrate surface in the dog region. be done.

つま9ソース/ドレイン域上で事前に形成された非晶質
シリコン層の端近傍においてチタンシリサイド層に段差
が生じる。これに起因して、第1にソース/ドレイン膜
上のチタンシリサイドが段差部にて断線する可能性が高
くなる。チタン膜を3snm、非晶質シリコン膜を70
圓とじた場合、非晶質シリコン膜の下部のソース/ドレ
イン域では約95 nm、非晶質シリコンがないソース
/ドレインでは約86韓のチタンシリサイド膜が形成さ
れるが、この2領域の接続部のチタンシリサイド膜厚は
35nm程度となる。第2にソース/ドレイン域への不
純物注入をチタンシリサイド膜形成以前または以後に行
うにかかわらず基板結晶シリコンに段差が生じているた
め同一拡散層内において形成される拡散層の深さに不均
一性が生じる。
Toe 9 A step is created in the titanium silicide layer near the edge of the amorphous silicon layer previously formed on the source/drain region. Due to this, firstly, there is a high possibility that the titanium silicide on the source/drain film will be disconnected at the step portion. 3snm titanium film, 70snm amorphous silicon film
When condensed, a titanium silicide film with a thickness of about 95 nm is formed in the source/drain region below the amorphous silicon film, and a titanium silicide film with a thickness of about 86 nm is formed in the source/drain region where there is no amorphous silicon, but the connection between these two regions is The thickness of the titanium silicide film in this area is about 35 nm. Secondly, regardless of whether impurity implantation into the source/drain region is performed before or after the formation of the titanium silicide film, the depth of the diffusion layer formed within the same diffusion layer is uneven because there is a step in the substrate crystalline silicon. Gender arises.

このことはDRAMセル用スイッチングトランジスタな
どゲート長のみならずソース/ドレイン域も微細化する
必要のあるときデノ(イスの正常動作を維持する上で問
題となる。
This becomes a problem in maintaining normal operation of the device when not only the gate length but also the source/drain regions need to be miniaturized, such as in a switching transistor for a DRAM cell.

本発明はかかる点に鑑みてなされたもので、耐熱性が良
好であり、微細なソース/ドレイン域に均一なチタンシ
リサイド層と浅い拡散深さを有すMOS F E T 
を主体とした半導体装置を提供することを目的としてい
る。
The present invention has been made in view of these points, and is a MOS FET that has good heat resistance, a uniform titanium silicide layer in a fine source/drain region, and a shallow diffusion depth.
The purpose is to provide semiconductor devices based on

問題点を解決するための手段 本発明は上記問題点分解決するため、ゲート電極の上面
及び側壁を絶R膜により予め完全に被覆したのち高融点
金属をシリコン基板全面に被着した上で、ゲート電極の
上部からソース又はドレイン領域を経て素子間分離絶縁
膜上にかけて非晶質シリコン層を局部的に形成すること
により主にこの非晶質シリコンと高融点金属の反応によ
り耐熱性に優れ、ソース又はドレイン領域においてシリ
サイド層及び拡散深さが均一なシリサイド化接合をもつ
MOSFET Q形成するものである。
Means for Solving the Problems The present invention solves the above problems by completely covering the upper surface and side walls of the gate electrode with an absolute R film in advance, and then depositing a high melting point metal on the entire surface of the silicon substrate. By locally forming an amorphous silicon layer from the top of the gate electrode through the source or drain region to the element isolation insulating film, it has excellent heat resistance mainly due to the reaction between the amorphous silicon and the high melting point metal. A MOSFET Q is formed having a silicide layer and a silicided junction with uniform diffusion depth in the source or drain region.

作   用 本発明は上記した方法により、たとえば900℃、30
分間以上の熱処理に対する耐性に優れ、ソース又はドレ
イン拡散域においてシリサイドの嗅質、膜厚及び不純物
拡散深さが均一であシかつ基板結晶シリコン中に生ずる
欠陥が少なく微細に有利なチタンシリサイド化接合を有
すMOSFETを得ることができる。
Function The present invention can be carried out by the method described above, for example, at 900°C and 30°C.
Titanium silicide bonding has excellent resistance to heat treatment for more than a minute, has uniform silicide quality, film thickness, and impurity diffusion depth in the source or drain diffusion region, and has few defects in the substrate crystalline silicon, which is advantageous for fineness. It is possible to obtain a MOSFET having:

実施例 第1図は本発明の一実施例におけるチタンシリサイド化
接合を有すMOSFETの断面図であシ、第2図はこれ
を形成するための工程断面図である。
Embodiment FIG. 1 is a sectional view of a MOSFET having a titanium silicided junction in one embodiment of the present invention, and FIG. 2 is a sectional view of the process for forming the same.

第2図Aにおいて、1はp−型基板結晶シリコン(10
0)で比抵抗は1〜1.5Ω・Cm  とする。2は素
子間分離用に形成された酸化膜である。極く薄いゲート
酸化膜4(例えば10nm程度)を介してn 拡散の施
されたポリシリコン8と物理的雰囲気あるいは化学的雰
囲気で堆積場れたタングステンシリサイド7により構成
されたポリサイドゲート電極の上部を電気的に絶縁する
ためにゲート電極被覆酸化膜5を化学的雰囲気堆積によ
り約20 nm形成しておく。このゲート電極をマスク
としてnチャンネルMOS F E T のLD贈域(
n−拡散層11)を形成するためリンイオン注入を行う
。次にゲート電極の側壁′t−電気的に絶縁するためと
LDD構造のnチャンネルMO5FET ff:構成す
るために通常の方法で約20 nmの酸化膜サイドウオ
ールを形成するがこれはゲート電極上部の酸化膜と合わ
せてゲート電極被覆酸化膜6を形成する(第2図B)。
In FIG. 2A, 1 is p-type substrate crystalline silicon (10
0) and the specific resistance is 1 to 1.5 Ω·Cm. 2 is an oxide film formed for isolation between elements. The upper part of the polycide gate electrode is made up of polysilicon 8 subjected to n-diffusion and tungsten silicide 7 deposited in a physical or chemical atmosphere through an extremely thin gate oxide film 4 (for example, about 10 nm). In order to electrically insulate the gate electrode, an oxide film 5 covering the gate electrode is formed to a thickness of about 20 nm by chemical atmosphere deposition. Using this gate electrode as a mask, the LD region of the n-channel MOS FET (
Phosphorus ion implantation is performed to form an n-diffusion layer 11). Next, in order to electrically insulate the sidewalls of the gate electrode and to configure the LDD structure n-channel MO5FET, an oxide film sidewall with a thickness of about 20 nm is formed using the usual method. Together with the oxide film, a gate electrode covering oxide film 6 is formed (FIG. 2B).

基板結晶シリコン1表面ソース/ドレイン域の自然酸化
膜を除去するとともにシリコンの活性面を露出させるた
め、アルゴンイオンによる逆スパツタリングを行った。
In order to remove the natural oxide film in the source/drain region of the surface of the crystalline silicon 1 of the substrate and to expose the active surface of the silicon, reverse sputtering was performed using argon ions.

この直後同一真空槽内において基板結晶シリコン1の全
面に、金属チ〉ン層12をDCマグネトロンスパッタ法
により35圓堆積し、さらに真空中における連続蒸着に
より非晶質シリコン層13を全面にRFマグネトロンス
パッタ法によp73nm堆積した(第2図C)。
Immediately after this, 35 circles of a metal silicon layer 12 is deposited on the entire surface of the substrate crystalline silicon 1 in the same vacuum chamber by DC magnetron sputtering, and then an amorphous silicon layer 13 is deposited on the entire surface by RF magnetron sputtering by continuous vapor deposition in vacuum. It was deposited to a thickness of 73 nm by sputtering (FIG. 2C).

この後通常のホトレジストのパターンニングとドライエ
ツチングの方法により金属チタン層12上で非晶質シリ
コン層13の整形を行う。このときのドライエツチング
条件としては非晶質シリコン13の金属チタン12に対
する選択比が充分高いものとし、かつ非晶質シリコン層
13のパターンがゲート電極被覆酸化膜5の上部からそ
の側壁、ソース/ドレイン域を経て素子間分離用酸化膜
2の上部までに及び、ひとつのソース/ドレイン域全面
を覆うものとする(第2図D)。
Thereafter, the amorphous silicon layer 13 is shaped on the metal titanium layer 12 by conventional photoresist patterning and dry etching methods. The dry etching conditions at this time are such that the selectivity of the amorphous silicon 13 to the metal titanium 12 is sufficiently high, and the pattern of the amorphous silicon layer 13 is formed from the top of the gate electrode covering oxide film 5 to its sidewalls, source/ It extends through the drain region to the upper part of the element isolation oxide film 2, and covers the entire surface of one source/drain region (FIG. 2D).

次に残留ガスの影響が少なく窒素ガスの導入が可能なラ
ンプアニーラ−により熱処理し、非晶質シリコン層13
の下部の金属チタン層12のシリサイド化を行う。酸化
膜上の金属チタン層12のうち上層に非晶質シリコン層
13がない領域では窒化チタンが形成されるかあるいは
未反応の金属チタンが残ルカコれらはNH4oH+H2
o2+H2゜液によりチタ/シリサイドに対して選択的
に除去することができる。こうして第2図Eにおけるご
とくチタンシリサイド層6が形成される。この状態で浅
いn+接合を形成するため高ドーズ量のヒ素イオン注入
を行うがこのときの注入エネルギーは約80 keVと
し、形成された約80nmのチタンシリサイド層6の上
層部2分の1に飛程が収まるようにする。化学的雰囲気
堆積法によυ層間絶縁膜3を形成した後、注入不純物の
活性化と眉間絶縁膜3の稠密化のため電気炉により90
0’C。
Next, the amorphous silicon layer 13 is heat-treated using a lamp annealer that is less affected by residual gas and can introduce nitrogen gas.
The metal titanium layer 12 below is silicided. In the areas of the metallic titanium layer 12 on the oxide film where the amorphous silicon layer 13 is not located above, titanium nitride is formed or unreacted metallic titanium remains.
Titanium/silicide can be selectively removed using O2+H2° solution. In this way, a titanium silicide layer 6 is formed as shown in FIG. 2E. In this state, arsenic ions are implanted at a high dose to form a shallow n+ junction, and the implantation energy at this time is approximately 80 keV. Make sure it's in order. After forming the υ interlayer insulating film 3 by chemical atmosphere deposition, it is deposited in an electric furnace for 90 minutes to activate the implanted impurities and to densify the glabellar insulating film 3.
0'C.

30分間の熱処理を行う。次に素子間分離用酸化膜2の
領域のチタンシリサイド層6の上部にコンタクトホール
を開孔した直後、アルミ薄膜をスパッタリング法により
堆積し、パターンニングすることによりアルミ配線9を
形成する(第2図F)。
Heat treatment is performed for 30 minutes. Immediately after opening a contact hole in the upper part of the titanium silicide layer 6 in the region of the oxide film 2 for element isolation, an aluminum thin film is deposited by sputtering and patterned to form an aluminum wiring 9 (second Figure F).

必要に応じて水素ガス混入の窒素雰囲気中で450℃程
度の熱処理を行うことによりコンタクトホール開孔時の
ドライエツチングによるダメージが回復し、良好な電気
特性をもつチタンシリサイド化接合MOSFETが得ら
れj;またスパッタ堆積により形成した非晶質シリコン
13と金属チタン12の反応により形成されたチタンシ
リサイド6は基板結晶シリコンとの反応により形成され
たものよシ耐熱性に優れ、900℃・3o分間程度の熱
処理を経てもチタンシリサイドの凝集による表面粗れが
何ら生じない。
If necessary, by performing heat treatment at approximately 450°C in a nitrogen atmosphere mixed with hydrogen gas, damage caused by dry etching during contact hole opening can be recovered, and a titanium silicide junction MOSFET with good electrical characteristics can be obtained. Also, the titanium silicide 6 formed by the reaction between the amorphous silicon 13 formed by sputter deposition and the metal titanium 12 has better heat resistance than the one formed by the reaction with the substrate crystalline silicon, and is heated at 900° C. for about 30 minutes. Even after the heat treatment, no surface roughness due to agglomeration of titanium silicide occurs.

なお本実施例においては高融点金属としてチタンを用い
たが、他の材質としてタングステン・モリブテン・り/
タル・コバルト・クロム・ニツケル・ジルコニウムを用
いることも可能である。さらにチタンシリサイド層6を
素子間分離用酸化膜2上、ゲート電極被覆酸化膜6上に
配線することによりゲート電極・アルミ配線に次ぐ第3
の配線として使用することも可能である。この配線のシ
ート抵抗は前記のチタンシリサイド層の厚さ約80画と
した場合で約3Ω/口となる。
In this example, titanium was used as the high melting point metal, but other materials such as tungsten, molybdenum, and
It is also possible to use tal, cobalt, chromium, nickel, and zirconium. Furthermore, by wiring the titanium silicide layer 6 on the oxide film 2 for element isolation and on the gate electrode covering oxide film 6, the titanium silicide layer 6 becomes the third
It can also be used as wiring. The sheet resistance of this wiring is about 3 Ω/hole when the thickness of the titanium silicide layer is about 80 mm.

発明の効果 以上のように本発明は半導体装置の高集積化・高速化に
伴い、MOSFETのソース/ドレインなど接合深さが
浅くかつ均一な拡散層上に耐熱性が高く、段差・不均一
性のない高融点金属シリサイド層を裏打ちするとともに
、この延長を素子間分離酸化膜及びゲート電極被覆酸化
膜上の配線としての機能をもたすことを可能にするもの
であり・、超微細な半導体装置の製造に大きく寄与する
ものである。
Effects of the Invention As described above, the present invention has been developed to provide high heat resistance on a uniform diffusion layer with a shallow junction depth, such as the source/drain of a MOSFET, and to eliminate steps and non-uniformity. In addition to lining the high-melting-point metal silicide layer that does not have any cracks, this extension can function as an inter-element isolation oxide film and a wiring on the gate electrode coating oxide film. This greatly contributes to the manufacturing of devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における半導体装置の断面図
、第2図はこれの製造方法を説明するための断面図、第
3図はこの形式における従来の半導体装置の断面図であ
る。 1・・・・・・P−型基板結晶シリコン、2・・・・・
・素子間分離酸化膜、3・・・・・・層間絶縁膜、4・
・・・・・ゲート酸化膜、5・・・・・・ゲート電極被
覆酸化膜、6・・・・・・チタンシリサイド層、7・・
・・・・タングステンシリサイド層、8・・・・・・n
+型ポリシコン、9・・・・・・アルミ配線、10・・
・・・・n+拡散層、11・・・・・・n+拡散層、1
2・・・・・・金属チタン層、13・・・・・・非晶質
シリコン層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1 
°−f’=v球1台轟シリコン 2−i−+閣分酵設置t、R買 δ−・−ntiIホ0ソシリコン q−°−了Iし1乙碧艷 1O−nf”4欺1 1f−−−n−11
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention, FIG. 2 is a sectional view for explaining a manufacturing method thereof, and FIG. 3 is a sectional view of a conventional semiconductor device of this type. 1...P-type substrate crystal silicon, 2...
・Inter-element isolation oxide film, 3...Interlayer insulating film, 4.
...Gate oxide film, 5...Gate electrode covering oxide film, 6...Titanium silicide layer, 7...
...Tungsten silicide layer, 8...n
+ type polycon, 9...aluminum wiring, 10...
...n+diffusion layer, 11...n+diffusion layer, 1
2...Metal titanium layer, 13...Amorphous silicon layer. Name of agent: Patent attorney Toshio Nakao and 1 other person1
°-f' = 1 v ball Todoroki silicon 2-i- + cabinet fermentation installation t, R purchase δ-・-ntiI ho0so silicon q-°-reI 1 Obi 1 O-nf" 4 deception 1 1f---n-11

Claims (1)

【特許請求の範囲】[Claims] ソース又はドレイン領域が高融点金属シリサイドにより
裏打ちされたMOSFETをシリコン基板上に形成する
に際し、ゲート電極の上面及び側壁を絶縁膜により予め
完全に被覆しておいた上で高融点金属を前記シリコン基
板全面に被着し、次に前記ゲート電極の上面から前記ソ
ース又はドレイン領域を経て素子間分離絶縁膜上にかけ
て非晶質シリコン層を局部的に形成した上で熱処理によ
り高融点金属のシリサイド化反応を起し、その後湿式選
択エッチにより前記高融点金属のシリサイドを残したま
ま未反応の高融点金属及び高融点金属のシリサイド以外
の化合物を除去することにより、前記ゲート電極の上面
からソース又はドレイン領域を経て素子間分離絶縁膜ま
で一様に主に非晶質シリコンとの反応により生成された
高融点金属シリサイドの被覆を局部的に形成するように
した半導体装置の製造方法。
When forming a MOSFET whose source or drain region is lined with high-melting metal silicide on a silicon substrate, the upper surface and side walls of the gate electrode are completely covered with an insulating film in advance, and then the high-melting metal is coated on the silicon substrate. After depositing on the entire surface, an amorphous silicon layer is locally formed from the upper surface of the gate electrode through the source or drain region and on the element isolation insulating film, and then heat treatment is performed to cause a silicidation reaction of the high melting point metal. The source or drain region is removed from the upper surface of the gate electrode by removing the unreacted refractory metal and compounds other than the refractory metal silicide by wet selective etching while leaving the refractory metal silicide. A method of manufacturing a semiconductor device in which a coating of high-melting point metal silicide, which is mainly produced by reaction with amorphous silicon, is uniformly formed locally on the element isolation insulating film through the process.
JP62135084A 1987-05-29 1987-05-29 Method for manufacturing semiconductor device Expired - Fee Related JP2738684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135084A JP2738684B2 (en) 1987-05-29 1987-05-29 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135084A JP2738684B2 (en) 1987-05-29 1987-05-29 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63299377A true JPS63299377A (en) 1988-12-06
JP2738684B2 JP2738684B2 (en) 1998-04-08

Family

ID=15143455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135084A Expired - Fee Related JP2738684B2 (en) 1987-05-29 1987-05-29 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2738684B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152633A (en) * 1990-10-17 1992-05-26 Sharp Corp Manufacture of semiconductor device
JPH04290224A (en) * 1991-03-19 1992-10-14 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
DE19742120B4 (en) * 1996-09-25 2005-12-22 LG Semicon Co., Ltd., Cheongju Method for producing a wiring for a semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627165A (en) * 1985-07-03 1987-01-14 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627165A (en) * 1985-07-03 1987-01-14 Hitachi Ltd Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152633A (en) * 1990-10-17 1992-05-26 Sharp Corp Manufacture of semiconductor device
JPH04290224A (en) * 1991-03-19 1992-10-14 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
DE19742120B4 (en) * 1996-09-25 2005-12-22 LG Semicon Co., Ltd., Cheongju Method for producing a wiring for a semiconductor device

Also Published As

Publication number Publication date
JP2738684B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US20050130380A1 (en) Semiconductor device structures including metal silicide interconnects and dielectric layers at substantially the same fabrication level
JPH0613403A (en) Self-aligned cobalt silicide on mos integrated circuit
JPH0373533A (en) Selective silicified formation using titanium nitride protective layer
EP0603360A1 (en) Methods of forming a local interconnect and a high resistor polysilicon load
JPH0878361A (en) Manufacture of semiconductor device
US8034715B2 (en) Method of fabricating semiconductor integrated circuit device
JPH0837164A (en) Manufacture of semiconductor device
JPH09320988A (en) Semiconductor device and its manufacture
US5869397A (en) Method of manufacturing semiconductor device
US6693001B2 (en) Process for producing semiconductor integrated circuit device
JP3129867B2 (en) Method for manufacturing semiconductor device
JP2738684B2 (en) Method for manufacturing semiconductor device
JP3420104B2 (en) Manufacturing method of resistance element
JPH08204188A (en) Semiconductor device and its manufacture
JPH10209291A (en) Manufacture of mos type semiconductor device
JPH11195619A (en) Manufacture of semiconductor device
JPH0831598B2 (en) Method for manufacturing semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JPH0529343A (en) Manufacture of fine semiconductor device
JP3639745B2 (en) Manufacturing method of semiconductor device
JPH09186113A (en) Silicide film forming method and manufacturing method of semiconductor device having the silicide film
KR20030013882A (en) Method for manufacturing a silicide layer of semiconductor device
KR100334866B1 (en) Transistor Formation Method of Semiconductor Device
JPH1050636A (en) Manufacture of semiconductor device
JPH047094B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees