JPS6329931B2 - - Google Patents
Info
- Publication number
- JPS6329931B2 JPS6329931B2 JP247682A JP247682A JPS6329931B2 JP S6329931 B2 JPS6329931 B2 JP S6329931B2 JP 247682 A JP247682 A JP 247682A JP 247682 A JP247682 A JP 247682A JP S6329931 B2 JPS6329931 B2 JP S6329931B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- neon
- pressure
- lamp
- limiting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052754 neon Inorganic materials 0.000 claims description 21
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 21
- 239000007789 gas Substances 0.000 claims description 20
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 16
- 229910052786 argon Inorganic materials 0.000 claims description 8
- 238000007789 sealing Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 238000012015 optical character recognition Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/70—Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
- H01J61/72—Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury
Landscapes
- Discharge Lamp (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
Description
【発明の詳細な説明】
この発明はネオンの発光を利用する低圧希ガス
放電灯とその点灯装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low pressure rare gas discharge lamp that utilizes neon light emission and a lighting device thereof.
螢光ランプと同様に低圧ガスの陽光柱の発光を
利用する低圧希ガス放電灯は、螢光ランプに比べ
て寿命中の劣化が少ないこと、温度依存性が少な
いこと、始動後の光束の変化が少ないことなどの
特長を有している。中でもネオンの発光は赤色で
あるために赤色光源を使用するフアクシミリや光
学式文字読取機用光源として好適なものである。 Similar to fluorescent lamps, low-pressure rare gas discharge lamps utilize the light emitted from a positive column of low-pressure gas. Compared to fluorescent lamps, low-pressure rare gas discharge lamps have less deterioration during their lifetime, less temperature dependence, and changes in luminous flux after starting. It has the advantage of having a small amount of Among them, neon emits red light, so it is suitable as a light source for facsimiles and optical character readers that use red light sources.
一方、低圧希ガスの陽光柱には移動稿として知
られる発光のちらつきがある。移動稿の発生は電
流値に関係しており、移動稿の存在する下限電流
と上限電流がある。従つて移動稿のない安定した
放電を得るためには下限電流以下あるいは上限電
流以上で点灯すれば良い。しかし下限電流以下で
は電流値が小さいために大きな光出力を得られず
実用的でない。従つて上限電流以上で点灯する必
要がある。 On the other hand, the positive column of low-pressure rare gases has a flicker of luminescence known as moving light. The occurrence of a moving document is related to the current value, and there is a lower limit current and an upper limit current at which a moving document exists. Therefore, in order to obtain stable discharge without moving plates, it is sufficient to turn on the lamp at a current below the lower limit or above the upper limit. However, if the current is below the lower limit, the current value is too small to obtain a large optical output, making it impractical. Therefore, it is necessary to turn on the lamp at a current higher than the upper limit.
ところで、この上限電流はPuppの限界電流と
して知られており、限界電流をIcとするとIc=
C/Pで表わされる。この式を改善したものとし
てRutscherとWojaczekのIc=C/Pγがある。こ
こでCとγは希ガスによつて異なる定数であり、
Pは圧力(Torr)である。ネオンの場合はC=
7、γ=1である。 By the way, this upper limit current is known as Pupp's limit current, and if the limit current is I c , I c =
It is expressed as C/P. An improved version of this formula is Rutscher and Wojaczek's I c =C/Pγ. Here, C and γ are constants that differ depending on the noble gas,
P is pressure (Torr). For neon, C=
7, γ=1.
しかし以上は直流放電によつて得られた値であ
り、交流放電では様相が異なる。交流放電では電
流値が変化するために、ある瞬間に限界電流以上
であつても、別の瞬間には限界電流以下となる。
このために限界電流を決定することは困難であ
る。一方、高周波放電では両極性拡散時間に比べ
て電流の変化が速いために、イオン密度は電流に
追随せず一定となり、限界電流が設定できる。 However, the above values are obtained by direct current discharge, and the situation is different with alternating current discharge. In AC discharge, the current value changes, so even if the current is above the limit current at one moment, it will be below the limit current at another moment.
This makes it difficult to determine the limiting current. On the other hand, in high-frequency discharge, the current changes faster than the bipolar diffusion time, so the ion density does not follow the current and remains constant, allowing a limit current to be set.
また限界電流は圧力に依存するが、ランプの圧
力は発光効率や寿命の点を考慮して決定する必要
がある。一方、安定した放電をするためには限界
電流以上で点灯しなければならない。従つて限界
電流はランプの設計や点灯装置の設計およびラン
プの使用範囲を制約することになる。このような
不都合を改善するためには限界電流を低下させる
必要がある。 Furthermore, the limiting current depends on the pressure, and the pressure of the lamp must be determined in consideration of luminous efficiency and lifespan. On the other hand, in order to achieve stable discharge, the lamp must be lit at a current exceeding the limit. Therefore, the limiting current limits the design of the lamp, the design of the lighting device, and the range of use of the lamp. In order to improve such disadvantages, it is necessary to lower the limiting current.
この発明は上記の欠点にかんがみ、限界電流を
低下させたネオンの発光を利用する低圧希ガス放
電灯とその高周波点灯装置を得ることを目的とし
ている。 In view of the above-mentioned drawbacks, the present invention aims to provide a low-pressure rare gas discharge lamp that utilizes neon light emission with a reduced limiting current, and a high-frequency lighting device thereof.
さて限界電流は希ガスの種類によつて異なる
が、2種類の希ガスを混合した場合、限界電流は
中間の値を持つと予想される。ネオンより限界電
流の小さな希ガスとしてはアルゴン、クリプト
ン、キセノンがある。一方これらの希ガスはネオ
ンより電離電圧が低く、ネオンと混合した場合、
ネオンよりむしろこれらのガスが発光することに
なる。従つてネオンの発光を得ることを目的とし
たランプにそれらのガスを混合した場合、極めて
微小な限られた量しか混合できない。 Now, the limiting current differs depending on the type of rare gas, but when two types of rare gases are mixed, the limiting current is expected to have an intermediate value. Rare gases with smaller limiting currents than neon include argon, krypton, and xenon. On the other hand, these rare gases have a lower ionization voltage than neon, and when mixed with neon,
These gases, rather than neon, will emit light. Therefore, when these gases are mixed in a lamp intended to emit neon light, only a very small and limited amount can be mixed.
ネオンとアルゴンの混合ガスからなる低圧希ガ
ス放電灯において、主としてネオンが発光する条
件が、混合比と封入圧力の関係として特願昭56−
167502号において与えられており、封入圧力をP
(Torr)としたとき、アルゴンの混合比A(%)
はA≦5P-2で表わされる。 In a low-pressure rare gas discharge lamp consisting of a mixture of neon and argon, the conditions under which neon is emitted are determined by the relationship between the mixture ratio and the sealing pressure in a patent application published in 1983.
167502, and the sealing pressure is P
(Torr), argon mixing ratio A (%)
is expressed as A≦5P −2 .
この発明ではネオンにアルゴンを微小混合する
ことにより、主としてネオンの発光が得られるラ
ンプについて高周波点灯時の限界電流を得て、ネ
オン単独の場合より小電流で使用可能な低圧希ガ
ス放電灯装置を可能としたのである。 In this invention, by mixing a small amount of argon with neon, we can obtain a limiting current at high frequency operation for a lamp that mainly emits neon, and create a low-pressure rare gas discharge lamp device that can be used with a smaller current than when using neon alone. It made it possible.
以下実施例によりさらに詳細に説明する。 The present invention will be explained in more detail with reference to Examples below.
熱電子放射物質を担持したフイラメントコイル
電極を両端に封着した管外径26mm、長さ436mmの
ガラス管にアルゴンの混合比A(%)がA≦5P-2
であり、残部がネオンである混合ガスを1.5Torr
〜8Torr封入した多数のランプを製作した。この
ランプを点灯するために5KHz〜50KHzの高周波
電源を用いた。この電源と上記ランプとの間に適
当なインピーダンスを有する限流素子を介挿し
た。ここでは限流素子を兼ねて高周波電源に接続
したリーケージ形出力トランスを使用した。また
限界電流を定めるために電流値を変化させた場合
の発光波形をフオトダイオードで観察して、陽光
柱全域にわたつて一様な発光となり、完全に発光
波形が安定する電流値を求めた。 A glass tube with an outer diameter of 26 mm and a length of 436 mm, with filament coil electrodes carrying a thermionic emitter sealed at both ends, has an argon mixing ratio A (%) of A≦5P -2.
and the balance is neon at 1.5 Torr.
We have produced a large number of lamps with ~8Torr encapsulation. A high frequency power source of 5KHz to 50KHz was used to light this lamp. A current limiting element having an appropriate impedance was inserted between this power source and the lamp. Here, we used a leakage type output transformer that also served as a current limiting element and was connected to a high frequency power source. In addition, in order to determine the limiting current, we observed the light emission waveform with a photodiode when the current value was changed, and determined the current value at which the light emission was uniform over the entire positive column and the light emission waveform was completely stable.
図は上記の実験の結果得られた限界電流と封入
圧力の関係を示す図である。斜線で示された範囲
がこの実験で得られた限界電流値の存在する領域
である。この領域の上限はネオン単独を封入した
場合であつて、この領域だけネオン単独の封入よ
り使用できる電流範囲が増加したことになる。な
お限界電流として電流の尖頭値(0−peak電流)
を用いている。図から限界電流Ic(A)の低下した範
囲は、封入圧力をP(Torr)としたとき、1.5≦
P≦8の範囲で5.3/P≦Ic≦7/P1.1で表わされ
る。 The figure is a diagram showing the relationship between the limiting current and the sealing pressure obtained as a result of the above experiment. The shaded range is the region where the limiting current value obtained in this experiment exists. The upper limit of this region is when neon alone is encapsulated, and the usable current range is increased in this region compared to when neon alone is encapsulated. Note that the peak value of current (0-peak current) is the limiting current.
is used. From the figure, the range in which the limiting current I c (A) decreased is 1.5≦ when the sealing pressure is P (Torr).
It is expressed as 5.3/P≦I c ≦7/P 1.1 in the range of P≦8.
ところで点灯周波数が低い場合にはイオン密度
の変動が生じて限界電流は変化すると考えられ
る。この周波数の下限は明らかではないが少なく
とも発明者の実験範囲である5KHz以上では不変
であつた。 By the way, when the lighting frequency is low, it is thought that the ion density fluctuates and the limiting current changes. Although the lower limit of this frequency is not clear, it remains unchanged at least above the inventor's experimental range of 5KHz.
また限界電流が電流の尖頭値(0−peak電流)
で表わされているのは次の理由による。以下示し
た実験は全て正弦波の高周波によるものである
が、実験中に電極の損傷などにより電流の歪みを
生じることがあつた。しかしその場合においても
限界電流を電流の尖頭値で表示すると一定であつ
た。そこで発明者らは矩形波で実験を行つたが、
この場合も限界電流は正弦波の場合の尖頭値電流
とほぼ等しいことが判明した。これは電子密度が
電流の実効値よりむしろ尖頭値電流に影響を受け
るためと考えられる。従つて限界電流に尖頭値を
用いることにより、正弦波から弱干はずれた電流
波形でも使用可能となるのである。 Also, the limiting current is the peak value of the current (0-peak current)
The reason for this expression is as follows. All of the experiments shown below were performed using high frequency sinusoidal waves, but during the experiments, distortion of the current sometimes occurred due to damage to the electrodes. However, even in that case, the limiting current was constant when expressed as the peak value of the current. Therefore, the inventors conducted experiments using square waves, but
In this case as well, the limiting current was found to be approximately equal to the peak current in the case of a sine wave. This is thought to be because the electron density is affected by the peak current rather than the effective value of the current. Therefore, by using a peak value for the limiting current, it is possible to use a current waveform that slightly deviates from a sine wave.
なお封入圧力1.5Torr〜8Torrとしたのは次の
理由による。圧力が低いほど限界電流は大きくな
り、また長寿命化が困難となるために実用的でな
い。また8Torr以上と圧力が高くなると限界電流
はネオン単独封入の値に近くなり、また値が低下
するので、さらに限界電流を低下させる必要性が
小さくなるためである。 The reason why the sealing pressure was set at 1.5 Torr to 8 Torr is as follows. The lower the pressure, the larger the limiting current, and the more difficult it is to extend the lifespan, making it impractical. Further, as the pressure increases to 8 Torr or more, the limiting current becomes close to the value when neon is enclosed alone, and the value decreases, so there is less need to further reduce the limiting current.
以上説明したとうりこの発明によれば、アルゴ
ンを微量含むネオンとアルゴンの混合ガスを封入
した低圧希ガス放電灯をその封入圧力に対応した
高周波の限界電流以上で点灯することにより、ネ
オン単独を封入したランプに比べて小電流で移動
稿のない放電が可能な低圧希ガス放電灯装置を得
られるという効果がある。 As explained above, according to the present invention, by lighting a low-pressure rare gas discharge lamp filled with a mixed gas of neon and argon containing a small amount of argon at a high frequency limit current corresponding to the filling pressure or higher, neon alone can be produced. This has the effect of providing a low-pressure rare gas discharge lamp device that is capable of discharging at a smaller current and without moving plates than an enclosed lamp.
図はランプ封入圧力と限界電流との関係を示す
図である。
The figure is a diagram showing the relationship between lamp sealing pressure and limiting current.
Claims (1)
封入しこれを放電するようにしたものにおいて、
上記混合ガスの封入圧力をP(Torr)、アルゴン
の混合比をA(%)としたとき1.5≦P≦8の範囲
でA≦5P-2(%)である低圧希ガス放電灯と、こ
の放電灯を5KHz以上の周波数で電流の尖頭値Ipp
(A)(0−peak電流)が5.3/P≦Ipp<7/P1.1で
ある高周波点灯装置によつて構成された低圧希ガ
ス放電灯装置。1 In a device in which a mixed gas of neon and argon is sealed in a discharge container and discharged,
A low-pressure rare gas discharge lamp in which A≦5P -2 (%) in the range of 1.5≦P≦8 and this Peak current I pp at a frequency of 5KHz or higher
(A) A low-pressure rare gas discharge lamp device configured with a high-frequency lighting device in which (0-peak current) satisfies 5.3/P≦I pp <7/P1.1.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP247682A JPS58119151A (en) | 1982-01-11 | 1982-01-11 | Low pressure rare gas discharge lamp device |
US06/451,230 US4461981A (en) | 1981-12-26 | 1982-12-20 | Low pressure inert gas discharge device |
EP82306972A EP0083241B1 (en) | 1981-12-26 | 1982-12-24 | A low pressure inert gas discharge lamp |
DE8282306972T DE3275787D1 (en) | 1981-12-26 | 1982-12-24 | A low pressure inert gas discharge lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP247682A JPS58119151A (en) | 1982-01-11 | 1982-01-11 | Low pressure rare gas discharge lamp device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58119151A JPS58119151A (en) | 1983-07-15 |
JPS6329931B2 true JPS6329931B2 (en) | 1988-06-15 |
Family
ID=11530382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP247682A Granted JPS58119151A (en) | 1981-12-26 | 1982-01-11 | Low pressure rare gas discharge lamp device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58119151A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03139832A (en) * | 1989-10-25 | 1991-06-14 | Ebara Corp | Jet scrubber |
EP0779767A1 (en) | 1990-06-06 | 1997-06-18 | Mitsubishi Denki Kabushiki Kaisha | A rare gas discharge fluorescent lamp device |
US10713724B2 (en) | 2008-04-21 | 2020-07-14 | Bgc Partners, Inc. | Trading orders with decaying reserves |
US11288745B2 (en) | 2008-04-21 | 2022-03-29 | Bgc Partners, Inc. | Trading orders with decaying reserves |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62117299A (en) * | 1985-11-15 | 1987-05-28 | 株式会社ト−オ−電子 | Burning of neon glow lamp |
EP0331738B1 (en) * | 1987-08-10 | 1996-11-27 | Mitsubishi Denki Kabushiki Kaisha | Green light emitting rare gas discharge lamp |
-
1982
- 1982-01-11 JP JP247682A patent/JPS58119151A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03139832A (en) * | 1989-10-25 | 1991-06-14 | Ebara Corp | Jet scrubber |
EP0779767A1 (en) | 1990-06-06 | 1997-06-18 | Mitsubishi Denki Kabushiki Kaisha | A rare gas discharge fluorescent lamp device |
US10713724B2 (en) | 2008-04-21 | 2020-07-14 | Bgc Partners, Inc. | Trading orders with decaying reserves |
US11288745B2 (en) | 2008-04-21 | 2022-03-29 | Bgc Partners, Inc. | Trading orders with decaying reserves |
Also Published As
Publication number | Publication date |
---|---|
JPS58119151A (en) | 1983-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100356960B1 (en) | High-brightness electrodeless low pressure light source and how to operate it | |
JPH0679472B2 (en) | High efficiency electrodeless high brightness discharge lamp | |
JPH06132018A (en) | Electrodeless lamp device | |
JP2002124211A (en) | Low pressure gas-discharge lamp | |
US3452238A (en) | Metal vapor discharge lamp | |
JPS6329931B2 (en) | ||
US4745335A (en) | Magnesium vapor discharge lamp | |
US3832591A (en) | High luminous efficacy white appearing lamp | |
US3821576A (en) | High pressure mercury titanium iodine discharge lamp with phosphor coating | |
JPS58119152A (en) | Low pressure rare gas discharge lamp device | |
US4099089A (en) | Fluorescent lamp utilizing terbium-activated rare earth oxyhalide phosphor material | |
US2176151A (en) | Electric lamp | |
US3821577A (en) | High pressure mercury chromium iodide discharge lamp with phosphor coating | |
JPS6329929B2 (en) | ||
US7417377B2 (en) | Blended light lamp | |
US5760547A (en) | Multiple-discharge electrodeless fluorescent lamp | |
US3989972A (en) | High pressure mercury vapor discharge lamp containing bismuth iodide | |
CA2006279A1 (en) | Glow discharge lamp containing nitrogen | |
US3252028A (en) | High-output fluorescent lamp having means for maintaining a predetermined mercury vapor pressure during operation | |
JPS58169861A (en) | Low pressure rare gas discharge lamp device | |
JPS58169862A (en) | Low pressure rare gas discharge lamp device | |
JPS58169863A (en) | Low pressure rare gas discharge lamp device | |
JPH0311055B2 (en) | ||
KR930003837B1 (en) | Hot cathode type low pressure rare gas discharge fluorescent lamp | |
JPH053704B2 (en) |