JPS6329929B2 - - Google Patents

Info

Publication number
JPS6329929B2
JPS6329929B2 JP21247981A JP21247981A JPS6329929B2 JP S6329929 B2 JPS6329929 B2 JP S6329929B2 JP 21247981 A JP21247981 A JP 21247981A JP 21247981 A JP21247981 A JP 21247981A JP S6329929 B2 JPS6329929 B2 JP S6329929B2
Authority
JP
Japan
Prior art keywords
current
torr
neon
lamp
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21247981A
Other languages
Japanese (ja)
Other versions
JPS58112236A (en
Inventor
Takeo Nishikatsu
Yoshinori Anzai
Toshiro Kajiwara
Goroku Kobayashi
Shunichi Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21247981A priority Critical patent/JPS58112236A/en
Priority to US06/451,230 priority patent/US4461981A/en
Priority to DE8282306972T priority patent/DE3275787D1/en
Priority to EP82306972A priority patent/EP0083241B1/en
Publication of JPS58112236A publication Critical patent/JPS58112236A/en
Publication of JPS6329929B2 publication Critical patent/JPS6329929B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr

Description

【発明の詳細な説明】 この発明は低圧ネオンガス放電灯およびネオン
を主成分とした低圧希ガス放電灯とその点灯装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low-pressure neon gas discharge lamp, a low-pressure rare gas discharge lamp mainly composed of neon, and a lighting device thereof.

陽光柱の発光を利用する低圧希ガス放電灯は、
螢光ランプに比べて、寿命中の光束の劣化が少な
いこと、温度依存性が少ないこと、始動後の光束
の変化が少ないことなどの特長を有している。中
でもネオンは赤色に発光するために赤色光源を使
用するフアクシミリや光学式文字読取機用光源と
して好適なものである。
A low-pressure rare gas discharge lamp that uses the light emitted from a positive column is
Compared to fluorescent lamps, it has features such as less deterioration of luminous flux during its life, less temperature dependence, and less change in luminous flux after startup. Among them, neon emits red light, so it is suitable as a light source for facsimiles and optical character readers that use red light sources.

一方、低圧希ガスの陽光柱には移動縞として知
られる発光のちらつきがある。移動縞の発生は電
流値に関係しており、下限電流と上限電流の範囲
内で発生する。
On the other hand, the positive column of low-pressure rare gases exhibits flickering luminescence known as moving stripes. The occurrence of moving stripes is related to the current value, and occurs within the range between the lower limit current and the upper limit current.

従つて移動縞の存在しない安定した発光を得る
ためには、下限電流以下あるいは上限電流以上で
点灯すれば良い。
Therefore, in order to obtain stable light emission without moving stripes, it is sufficient to turn on the lamp at a current lower than the lower limit or higher than the upper limit.

しかし下限電流以下では電流値が小さいため、
大きな光出力を得られず実用的でない。従つて上
限電流以上の電流値で点灯する必要がある。
However, below the lower limit current, the current value is small, so
It is not practical because it cannot obtain a large optical output. Therefore, it is necessary to turn on the light with a current value higher than the upper limit current.

ところで、この上限電流はPuppの限界電流と
して知られており、限界電流をIcとするとIc=
C/Pで表わされる。
By the way, this upper limit current is known as Pupp's limit current, and if the limit current is Ic, then Ic=
It is expressed as C/P.

ここでCは定数、Pは圧力(Torr)である。
さらにこの関係を改善したものにRutscherと
WojaczekのIc=C/P〓がある。ネオンの場合は
C=7、〓=1である。
Here, C is a constant and P is pressure (Torr).
Rutscher further improved this relationship.
There is Wojaczek's Ic=C/P〓. In the case of neon, C=7, ==1.

しかし以上は直流放電(DC放電)によつて得
られた値であり、交流放電(AC放電)の場合に
は様相が異なる。AC放電では電流値が変化する
ために、ある瞬間には限界電流以上であつても、
別の瞬間には限界電流以下となる。このために限
界電流を決定することは困難である。しかし高周
波放電においては、両極性拡散時間に比べて電流
の変化が速いためにイオン密度は電流に追随せず
一定となり、限界電流が設定できるものと推定さ
れる。本発明者らはこの点に着目して研究の結
果、高周波放電における限界電流を得て、移動縞
のない一様な発光を得られるランプと高周波点灯
装置を可能としたのである。
However, the above values are obtained by direct current discharge (DC discharge), and the situation is different in the case of alternating current discharge (AC discharge). In AC discharge, the current value changes, so even if the current is above the limit at a certain moment,
At another instant, the current is below the limit. This makes it difficult to determine the limiting current. However, in high-frequency discharge, since the current changes faster than the bipolar diffusion time, the ion density does not follow the current and remains constant, so it is presumed that a limit current can be set. The inventors of the present invention have focused on this point, and as a result of their research, they have achieved a lamp and a high-frequency lighting device that can obtain the limiting current in high-frequency discharge and provide uniform light emission without moving stripes.

以下実施例によりさらに詳細に説明する。 The present invention will be explained in more detail with reference to Examples below.

熱電子放射物質を担持したフイラメントコイル
電極を両端に封着した管外径26mm、長さ436mmの
ガラス管にネオンガス1.5Torr〜15Torr封入した
ランプを多数製作した。上記ランプを駆動するた
めに5KHz〜50KHzの高周波電源を用いた。この
電源と上記ランプとの間に適当なインピーダンス
を有する限流素子を介挿した。ここでは限流素子
を兼ねて高周波電源に接続したリーケージ形出力
トランスを使用した。また限界電流を定めるため
に電流値を変化させた場合の発光波形をフオトダ
イオードで観察して陽光柱全域にわたつて一様な
発光となり完全に発光波形が安定する電流値を求
めた。
We fabricated a number of lamps in which 1.5 to 15 Torr of neon gas was filled in a glass tube with an outer diameter of 26 mm and a length of 436 mm, with filament coil electrodes carrying a thermionic emitter sealed at both ends. A high frequency power source of 5KHz to 50KHz was used to drive the above lamp. A current limiting element having an appropriate impedance was inserted between this power source and the lamp. Here, we used a leakage type output transformer that also served as a current limiting element and was connected to a high frequency power source. Furthermore, in order to determine the limiting current, we observed the light emission waveform with a photodiode when the current value was changed, and determined the current value at which the light emission was uniform over the entire positive column and the light emission waveform was completely stable.

図は上記の実験の結果得られた限界電流と封入
圧力の関係を示す図である。実験値はO印で示し
てあり、実線で表わされる。なお限界電流として
電流の尖頭値(O−Peak電流)を用いている。
The figure is a diagram showing the relationship between the limiting current and the sealing pressure obtained as a result of the above experiment. Experimental values are marked with an O and are represented by a solid line. Note that the peak value of current (O-Peak current) is used as the limiting current.

図から封入圧力P(Torr)が8Torr以下では、
限界電流Ic(A)はIc=7/P1.1で表わされ、8Torr
以上ではIc=69/P2.2で表わされる。
From the figure, when the sealing pressure P (Torr) is 8 Torr or less,
The limiting current Ic(A) is expressed as Ic=7/P 1.1 , and is 8Torr.
In the above, it is expressed as Ic=69/P 2.2 .

RuctscherとWojaczekのネオンのDC放電に関
する限界電流IcはIc=7/Pであつて、図に点線
で示してある。図から低圧ではDC放電の点線と
高周波放電の実線は比較的近いが、圧力の高い領
域では差が大きくなることがわかる。この理由は
明らかではないが、高周波とDCの違いおよび
RuctscherとWojaczekの式はおもに低圧での実
験をもとにしているため圧力が高くなると精度が
悪くなるためと考えられる。
The limiting current Ic for the DC discharge of Ructscher and Wojaczek neon is Ic = 7/P and is shown in the figure as a dotted line. The figure shows that the dotted line for DC discharge and the solid line for high-frequency discharge are relatively close at low pressures, but the difference becomes larger in high pressure areas. The reason for this is not clear, but the difference between high frequency and DC and
This is thought to be because the Ructscher and Wojaczek equation is mainly based on experiments at low pressure, so the accuracy decreases as the pressure increases.

また発明者らはペニング効果を利用して放電開
始電圧を下げたランプの場合についても検討し
た。ネオンに関してはアルゴン、クリプトン、キ
セノンを微小含む場合にペニング効果を生じるこ
とが知られている。一方アルゴン、クリプトン、
キセノンそれぞれの限界電流はネオンと異なつて
いる。このためにネオンにこれらのガスを混合す
ると限界電流が変化する。また混合量が大きいほ
ど変化も大きくなる。一方ペニング効果は一般に
容積比0.1%〜1%含む場合に最大となるので、
アルゴン、クリプトン、キセノン混合比は最大1
%あれば十分である。そこで前記のネオンランプ
と同じ放電灯用ガラス管に、ネオン99容積%で、
残り1%がアルゴン、クリプトン、キセノンのい
ずれかである混合ガスを1.5Torr〜15Torr封入し
たランプを製作して限界電流を調べた。この結果
ネオン単体に比べていずれも限界電流は低下する
ことが明らかとなつた。従つてペニング効果を利
用する場合、ネオン単体の限界電流以上で点灯す
れば移動縞のない安定した放電が可能であること
が判明した。
The inventors also studied the case of a lamp in which the discharge starting voltage was lowered by utilizing the Penning effect. Regarding neon, it is known that the Penning effect occurs when it contains minute amounts of argon, krypton, and xenon. On the other hand, argon, krypton,
The limiting current of each xenon is different from that of neon. For this reason, when these gases are mixed with neon, the limiting current changes. Also, the larger the mixing amount, the larger the change. On the other hand, the Penning effect is generally maximum when it contains 0.1% to 1% by volume, so
Maximum mixing ratio of argon, krypton, and xenon is 1
% is sufficient. Therefore, we added 99% neon by volume to the same discharge lamp glass tube as the neon lamp mentioned above.
A lamp was manufactured in which the remaining 1% was filled with a mixed gas of 1.5 Torr to 15 Torr of either argon, krypton, or xenon, and the limiting current was investigated. As a result, it became clear that the limiting current was lower than that of neon alone. Therefore, it has been found that when using the Penning effect, stable discharge without moving stripes is possible if the neon is lit at a current higher than the limit current of a single neon.

ところで点灯周波数が低い場合には電子密度の
変動が生じ限界電流は変化すると考えられる。こ
の周波数の下限は明らかではないが、少なくとも
発明者らの実験範囲である5KHz以上では限界電
流は不変であつた。
By the way, when the lighting frequency is low, it is thought that the electron density fluctuates and the limiting current changes. Although the lower limit of this frequency is not clear, the limiting current remains unchanged at least above 5 KHz, which is the experimental range of the inventors.

また限界電流が電流の尖頭値(0−Peak電流)
で表わされているのは次の理由による。以上示し
た実験は全て正弦波の高周波によるものである
が、実験中に電極の損傷などにより電流の歪みが
生じる場合があつた。しかしその場合においても
限界電流を尖頭値で表示すると一定であつた。そ
こで発明者らは矩形波で実験を行つたが、この場
合も限界電流は正弦波の場合の尖頭値電流とほぼ
等しいことが判明した。これは電子密度が電流の
実効値よりむしろ尖頭値電流に影響を受けるため
と考えられる。従つて限界電流に電流の尖頭値を
用いることにより正弦波から弱干はずれた電流波
形でも使用可能となるのである。
Also, the limiting current is the peak value of the current (0-Peak current)
The reason for this expression is as follows. All of the experiments described above were conducted using high-frequency sinusoidal waves, but during the experiments there were cases in which distortion of the current occurred due to damage to the electrodes. However, even in that case, the limiting current remained constant when expressed as a peak value. Therefore, the inventors conducted an experiment using a rectangular wave, and found that the limiting current was almost equal to the peak value current in the case of a sine wave. This is thought to be because the electron density is affected by the peak current rather than the effective value of the current. Therefore, by using the peak value of the current as the limiting current, it is possible to use a current waveform that slightly deviates from a sine wave.

なお封入圧力を1.5Torr〜15Torrとしたのは
1.5Torr以下では限界電流が大きすぎ、かつ、ラ
ンプ寿命が大幅に低下して実用的でないためであ
り、また圧力が高くなると発光効率が低下するた
めに15Torr以上は実用的でないためである。
The sealing pressure was set to 1.5 Torr to 15 Torr.
This is because a limit current of 1.5 Torr or less is too large and the lamp life is significantly reduced, making it impractical. A value of 15 Torr or more is not practical, as the luminous efficiency decreases as the pressure increases.

以上説明したとうりこの発明によれば、ネオン
を主成分としたランプをその封入圧力に対応した
高周波の限界電流以上で点灯することにより、移
動縞の影響のない安定した点灯ができるという効
果がある。
As explained above, according to the present invention, by lighting a neon-based lamp at a high-frequency limit current corresponding to the sealing pressure or higher, stable lighting without the influence of moving stripes can be achieved. be.

【図面の簡単な説明】[Brief explanation of drawings]

図はランプ封入圧力と限界電流の関係図であ
る。
The figure is a diagram showing the relationship between lamp sealing pressure and limiting current.

Claims (1)

【特許請求の範囲】 1 一対の電極を有する放電灯用バルブにネオン
ガスまたはネオンガスを99容積%以上含み、残部
がアルゴン、クリプトン、キセノンのいずれかで
ある混合希ガスを1.5Torr〜15Torr封入してなる
ランプと、5KHz以上の高周波でかつ電流の尖頭
値Ipp(A)(0−Peak電流)がこのランプの封入圧
力P Torrに対して 1.5≦P≦8TorrのときIpp≧7/p1.1 8<P≦15TorrのときIpp≧69/p2.2 である高周波点灯装置とにより構成されたことを
特徴とする低圧希ガス放電灯装置。
[Claims] 1. A bulb for a discharge lamp having a pair of electrodes is filled with 1.5 Torr to 15 Torr of neon gas or a mixed rare gas containing 99% by volume or more of neon gas and the remainder being either argon, krypton, or xenon. When the current peak value Ipp (A) (0-Peak current) is 1.5≦P≦8Torr with respect to the sealing pressure P Torr of this lamp, I pp ≧7/p at a high frequency of 5KHz or more. 1.1 A low-pressure rare gas discharge lamp device comprising: a high-frequency lighting device that satisfies I pp ≧69/p 2.2 when 8<P≦15Torr.
JP21247981A 1981-12-26 1981-12-26 Low pressure rare gas discharge lamp device Granted JPS58112236A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21247981A JPS58112236A (en) 1981-12-26 1981-12-26 Low pressure rare gas discharge lamp device
US06/451,230 US4461981A (en) 1981-12-26 1982-12-20 Low pressure inert gas discharge device
DE8282306972T DE3275787D1 (en) 1981-12-26 1982-12-24 A low pressure inert gas discharge lamp
EP82306972A EP0083241B1 (en) 1981-12-26 1982-12-24 A low pressure inert gas discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21247981A JPS58112236A (en) 1981-12-26 1981-12-26 Low pressure rare gas discharge lamp device

Publications (2)

Publication Number Publication Date
JPS58112236A JPS58112236A (en) 1983-07-04
JPS6329929B2 true JPS6329929B2 (en) 1988-06-15

Family

ID=16623321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21247981A Granted JPS58112236A (en) 1981-12-26 1981-12-26 Low pressure rare gas discharge lamp device

Country Status (1)

Country Link
JP (1) JPS58112236A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059666A (en) * 2010-09-13 2012-03-22 Stanley Electric Co Ltd Fluorescent lamp

Also Published As

Publication number Publication date
JPS58112236A (en) 1983-07-04

Similar Documents

Publication Publication Date Title
KR100356960B1 (en) High-brightness electrodeless low pressure light source and how to operate it
JP4375775B2 (en) Low wattage fluorescent lamp
JPH0624116B2 (en) Hot cathode low pressure rare gas discharge fluorescent lamp
US4308483A (en) High brightness, low wattage, high pressure, metal vapor discharge lamp
JPS6329931B2 (en)
US4745335A (en) Magnesium vapor discharge lamp
JPS6329929B2 (en)
EP0079969B1 (en) Low pressure mercury vapor discharge lamp unit
JPS58119152A (en) Low pressure rare gas discharge lamp device
US4099089A (en) Fluorescent lamp utilizing terbium-activated rare earth oxyhalide phosphor material
US7417377B2 (en) Blended light lamp
JPS58169862A (en) Low pressure rare gas discharge lamp device
JPS58169863A (en) Low pressure rare gas discharge lamp device
US3821577A (en) High pressure mercury chromium iodide discharge lamp with phosphor coating
JPS58169861A (en) Low pressure rare gas discharge lamp device
JP2613688B2 (en) Light emitting electron tube lighting device
JPH0311055B2 (en)
KR930003837B1 (en) Hot cathode type low pressure rare gas discharge fluorescent lamp
JPS5838447A (en) Neon gas discharge lamp for optical device
JPH02174097A (en) Rare gas discharge fluorescent lamp lighting system
JPH08190890A (en) Fluorescent lamp, its lighting device, and light source device and liquid crystal display device using the same
JPH06283137A (en) Pulse lighting type rare gas discharge lamp device
JPH0393196A (en) Rare gas discharge fluorescent lamp device
JP2613687B2 (en) Light emitting electron tube lighting device
JPH1050251A (en) Fluorescent lamp, fluorescent lamp device, and lighting system