JPH0311055B2 - - Google Patents
Info
- Publication number
- JPH0311055B2 JPH0311055B2 JP56167502A JP16750281A JPH0311055B2 JP H0311055 B2 JPH0311055 B2 JP H0311055B2 JP 56167502 A JP56167502 A JP 56167502A JP 16750281 A JP16750281 A JP 16750281A JP H0311055 B2 JPH0311055 B2 JP H0311055B2
- Authority
- JP
- Japan
- Prior art keywords
- neon
- argon
- pressure
- discharge
- torr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 64
- 229910052754 neon Inorganic materials 0.000 claims description 35
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 35
- 229910052786 argon Inorganic materials 0.000 claims description 32
- 239000007789 gas Substances 0.000 claims description 16
- 239000011521 glass Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052756 noble gas Inorganic materials 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 229910052743 krypton Inorganic materials 0.000 description 4
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012015 optical character recognition Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/12—Selection of substances for gas fillings; Specified operating pressure or temperature
Landscapes
- Discharge Lamp (AREA)
- Gas-Filled Discharge Tubes (AREA)
Description
【発明の詳細な説明】
この発明はネオンの発光を利用する低圧希ガス
放電灯に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low pressure rare gas discharge lamp that utilizes neon light emission.
低圧ネオン放電灯は螢光ランプに比べ寿命中の
光束の劣化が少ないこと、温度依存性が少ないこ
と、始動後の光束の時間的変化が少ないことなど
の特長を有しており、赤色光源を使用するフアク
シミリや光学式文字読取機用の光源として好適な
ものである。 Compared to fluorescent lamps, low-pressure neon discharge lamps have features such as less deterioration of luminous flux during their lifetime, less temperature dependence, and less change in luminous flux over time after startup. It is suitable as a light source for facsimile machines and optical character readers.
低圧ネオン放電灯の従来例としてはネオンサイ
ンがあるが、これは冷陰極を使用しているために
放電開始電圧は螢光ランプに比較してはるかに高
い。放電開始電圧の低下が使用上有利であること
はいうまでもないが、放電開始電圧を低下させる
方法として、一つは電極の改良であり、予熱形陰
極を使用することにより大巾な放電開始電圧の低
下が図れる。その他に顕著な効果を期待できる方
法としてペニング効果を利用することが考えられ
る。ネオンに関しては微量のアルゴンあるいはク
リプトンを加えることにより大巾に放電開始電圧
が下がることが知られている。一方、二種類の希
ガスからなる混合ガスの陽光柱では、電離電圧の
低い希ガスの発光が得られることが概知である。
すなわち一般にはネオンとアルゴンの混合ガスの
場合にはアルゴンのみが発光し、ネオンとクリプ
トンの混合ガスの場合にはクリプトンのみが発光
する。このためにネオンの発光を利用する低圧ネ
オン放電灯にアルゴンあるいはクリプトンを使用
することは困難であつた。 A conventional example of a low-pressure neon discharge lamp is a neon sign, but because it uses a cold cathode, its firing voltage is much higher than that of a fluorescent lamp. It goes without saying that lowering the discharge starting voltage is advantageous in use, but one way to lower the discharge starting voltage is to improve the electrodes, and by using a preheated cathode, it is possible to achieve a wide discharge start. The voltage can be lowered. Another method that can be expected to have a significant effect is to use the Penning effect. For neon, it is known that adding a small amount of argon or krypton can significantly lower the firing voltage. On the other hand, it is generally known that in a positive column of a mixed gas consisting of two types of rare gases, emission of rare gases with a low ionization voltage can be obtained.
That is, in general, in the case of a mixed gas of neon and argon, only argon will emit light, and in the case of a mixed gas of neon and krypton, only krypton will emit light. For this reason, it has been difficult to use argon or krypton in low-pressure neon discharge lamps that utilize neon light emission.
この発明は上記の欠点にかんがみ、微量のアル
ゴンを含み、主としてネオンの発光が得られる低
圧ネオン放電灯を得ることを目的としている。 In view of the above-mentioned drawbacks, the present invention aims to provide a low-pressure neon discharge lamp that contains a trace amount of argon and emits mainly neon light.
本発明者らは、放電の陽光柱においてアルゴン
の発光が主となる条件として、一定量あるいは一
定混合比以上のアルゴンが混入することを想定
し、混合ガスの圧力および混合比と発光の関係を
研究の結果、放電の陽光柱において主としてネオ
ンが発光する混合ガスの圧力の混合比の関係を見
い出した。 The present inventors assumed that a certain amount or a certain mixing ratio or more of argon is mixed in as a condition where argon light emission is the main one in the positive column of the discharge, and calculated the relationship between the pressure and mixing ratio of the mixed gas and the light emission. As a result of research, we found a relationship between the pressure and the mixing ratio of the mixed gas that causes neon to emit mainly in the positive column of the discharge.
以下実施例によりさらに詳細に説明する。 The present invention will be explained in more detail with reference to Examples below.
管外径26mm、長さ436mmのガラス管の両端に、
熱電子放電物質を担持したフイラメントコイル電
極を封着し、アルゴンを0.01%〜10%含み、残部
がネオンである混合ガスを1Torr〜2Torr封入し
た多数のランプを製作してその分光分布を測定し
た。実験はチヨークコイルを安定器として商用電
源によつて行つた。放電電極は0.2A〜1.2Aであ
り、電極には3.6Vを印加した。この実験の結果、
分光分布は電流にほとんど依存せず、封入圧力お
よび混合比に依存することが判明した。たとえば
封入混合ガスの圧力を5Torrとした場合、アルゴ
ンの混合比が1%のときにアルゴンの発光が主と
なり、0.5%ではアルゴンとネオンの発光が共存
し、0.1%ではネオンの発光が主となる。またア
ルゴンの混合比を0.5%とした場合、圧力3Torr
ではネオンの発光が主であり、7Torrrではアル
ゴンの発光が主となるのである。第1図はネオン
のみを封入したランプの分光分布であり、本発明
の目的はネオンとアルゴンの混合ガスにより第1
図に近い発光を得ることがである。第2図はアル
ゴンのみを封入したランプの分光分布である。第
1図のネオンでは640nmに最大のスペクトルが
あり、第2図のアルゴンでは810nmに最大のス
ペクトルがある。本発明の目的の達成される領域
を明らかにするために、アルゴンの810nmのス
ペクトル強度がネオンの640nmのスペクトル強
度の25%以下であるとき、ネオンの発光が主であ
ると定義する。なおこの強度比が25%以下である
とき、ネオンのみを同じ圧力封入したランプに比
べて、ネオンの発光の減少する割合は20%以下で
あつた。第3図はスペクトル強度比約20%となる
本発明の一実施例の分光分図を示す。このランプ
は圧力7Torr、アルゴンの混合比0.1%の場合で
ある。第4図は封入圧力とアルゴンの混合比を示
す図であり、上記定義に従い○印はネオンの発光
が主であるランプを示し、×印はアルゴンの発光
が顕著であつたランプを示す。第4図から封入圧
力をP(Torr)、アルゴンの分圧をPA(Torr)と
すると、ネオンの発光が主となるアルゴンの混合
比
A=(PA/P)×100(%)は
A≦5P-2(%)
で表わさせる。これをアルゴンの分圧について書
き直すと
pA≦0.05P-1(Torr)
である。 At both ends of a glass tube with an outer diameter of 26 mm and a length of 436 mm,
We fabricated a large number of lamps in which a filament coil electrode supporting a thermionic discharge material was sealed and filled with a mixed gas of 1 Torr to 2 Torr containing 0.01% to 10% argon and the remainder neon, and measured their spectral distribution. . The experiment was conducted using a commercial power supply using a chiyoke coil as a ballast. The discharge electrode was 0.2A to 1.2A, and 3.6V was applied to the electrode. As a result of this experiment,
It was found that the spectral distribution was almost independent of the current, but dependent on the sealing pressure and the mixing ratio. For example, when the pressure of the sealed mixed gas is 5 Torr, when the argon mixture ratio is 1%, argon light emission becomes the main one, at 0.5%, argon and neon light emission coexist, and at 0.1%, neon light emission becomes the main light emission. Become. Also, when the mixing ratio of argon is 0.5%, the pressure is 3 Torr.
At 7 Torrr, the main emission is neon, and at 7 Torrr, the main emission is argon. Figure 1 shows the spectral distribution of a lamp filled only with neon, and the purpose of the present invention is to
The goal is to obtain light emission close to that shown in the figure. FIG. 2 shows the spectral distribution of a lamp filled only with argon. The neon shown in Figure 1 has a maximum spectrum at 640 nm, and the argon shown in Figure 2 has a maximum spectrum at 810 nm. In order to clarify the range in which the object of the present invention is achieved, it is defined that neon light emission is dominant when the spectral intensity of argon at 810 nm is 25% or less of the spectral intensity of neon at 640 nm. When this intensity ratio was 25% or less, the rate of decrease in neon emission was 20% or less compared to a lamp in which only neon was sealed at the same pressure. FIG. 3 shows a spectroscopic diagram of an embodiment of the present invention with a spectral intensity ratio of about 20%. This lamp has a pressure of 7 Torr and an argon mixing ratio of 0.1%. FIG. 4 is a diagram showing the filling pressure and the mixing ratio of argon, and according to the above definition, the circle mark indicates a lamp in which neon light emission is the main one, and the cross mark indicates a lamp in which argon light emission is prominent. From Figure 4, if the sealing pressure is P (Torr) and the partial pressure of argon is P A (Torr), the mixing ratio of argon, which mainly produces neon light, is A = (P A /P) x 100 (%). Express it as A≦5P -2 (%). If we rewrite this in terms of the partial pressure of argon, we get p A ≦0.05P -1 (Torr).
次に管径の影響を調べるために、外径20mmと30
mmのバルブに第4図の境界条件付近の圧力
3Torr、アルゴンの混合比0.5%と、圧力7Torr、
アルゴンの混合比0.1%のガスを封入したランプ
を製作した結果、いずれもネオンの発光が主とな
ることがわかつた。 Next, in order to investigate the effect of pipe diameter,
Pressure near the boundary condition in Figure 4 for a valve of mm
3Torr, argon mixing ratio 0.5%, pressure 7Torr,
As a result of producing lamps filled with gas with a mixing ratio of 0.1% argon, it was found that neon light was the main source of light in each lamp.
なお以上の実験において封入圧力を1Torr〜
20Torrの範囲で行つたのは、低圧では電極の寿
命が短かく、圧力が高くなると効率の低下する傾
向があるために、比較的実用性の高いと思われる
範囲を選んだためである。 In addition, in the above experiments, the sealing pressure was 1 Torr ~
The range of 20 Torr was chosen because the life of the electrode is short at low pressures, and the efficiency tends to decrease as the pressure increases, so we chose a range that was considered to be relatively practical.
ところでこの発明によればアルゴンとネオンの
混合ガスを使用するのでペニング効果による放電
開始電圧の低下が可能である。例えば圧力5Torr
の場合、ネオン単体を封入したランプの放電開始
電圧は約135Vであつたが、本発明の一実施例で
あるアルゴン混合比0.1%のランプの放電開始電
圧は約105Vであつた。 However, according to the present invention, since a mixed gas of argon and neon is used, it is possible to lower the discharge starting voltage due to the Penning effect. For example pressure 5Torr
In this case, the discharge starting voltage of the lamp filled with neon alone was about 135V, but the discharge starting voltage of the lamp with an argon mixing ratio of 0.1%, which is an example of the present invention, was about 105V.
以上説明したとおり、この発明はネオンにアル
ゴンを加えた混合ガスを放電灯のガラス管に封入
し、その封入圧力とアルゴンの混合比とが所定関
係を満足するように構成したので、放電開始電圧
化の低電圧がなされ、かつ混合ガス封入圧力を実
用的な1〜20(Torr)の範囲内で任意の値に選ん
でも放電の陽光柱において主としてネオンの発光
が確実に得られる低圧希ガス放電灯を提供するも
のである。 As explained above, in this invention, a gas mixture of neon and argon is sealed in a glass tube of a discharge lamp, and the charging pressure and the mixing ratio of argon are configured to satisfy a predetermined relationship. This is a low-pressure rare gas discharge system that provides a low voltage for oxidation and ensures that mainly neon light is emitted in the positive column of the discharge even if the mixed gas filling pressure is selected at any value within the practical range of 1 to 20 (Torr). It provides electric light.
第1図はネオンの分光分布図、第2図はアルゴ
ンの分光分布図、第3図は一実施例の分光分布
図、第4図は封入圧力とアルゴンとの混合比の関
係図である。
FIG. 1 is a spectral distribution diagram of neon, FIG. 2 is a spectral distribution diagram of argon, FIG. 3 is a spectral distribution diagram of one embodiment, and FIG. 4 is a diagram of the relationship between the sealing pressure and the mixing ratio of argon.
Claims (1)
ラス管内に封入したネオンの、陽光柱における発
光を得る放電灯において、上記ガラス管内には、
ネオンとこのネオンに加えることにより放電開始
電圧を低下させるアルゴンとの混合ガスをその封
入圧が1〜20(Torr)の範囲となるように封入
し、かつその封入圧力をP(Torr)、上記ネオン
に対する上記アルゴンの混合比をA(%)とした
とき、 A≦5P-2(%) なる関係を満足するようにしてガラス管内の放電
時にネオンの発光を得るようにしたことを特徴と
する低圧希ガス放電灯。[Scope of Claims] 1. A discharge lamp having a pair of electrodes at both ends of a glass tube and emitting neon sealed in the glass tube in a positive column, in which:
A gas mixture of neon and argon, which is added to the neon to lower the discharge starting voltage, is sealed so that the charging pressure is in the range of 1 to 20 (Torr), and the charging pressure is P (Torr), as described above. When the mixing ratio of argon to neon is A (%), the following relationship is satisfied: A≦5P -2 (%), so that neon light is emitted during discharge in the glass tube. Low pressure noble gas discharge lamp.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56167502A JPS5868862A (en) | 1981-10-20 | 1981-10-20 | Low pressure rare gas discharge lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56167502A JPS5868862A (en) | 1981-10-20 | 1981-10-20 | Low pressure rare gas discharge lamp |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5868862A JPS5868862A (en) | 1983-04-23 |
JPH0311055B2 true JPH0311055B2 (en) | 1991-02-15 |
Family
ID=15850867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56167502A Granted JPS5868862A (en) | 1981-10-20 | 1981-10-20 | Low pressure rare gas discharge lamp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5868862A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2226444B (en) * | 1988-12-22 | 1993-05-12 | Matsushita Electric Works Ltd | Electrodeless discharge lamp |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5250051B2 (en) * | 1974-02-05 | 1977-12-21 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5250051U (en) * | 1975-10-06 | 1977-04-09 |
-
1981
- 1981-10-20 JP JP56167502A patent/JPS5868862A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5250051B2 (en) * | 1974-02-05 | 1977-12-21 |
Also Published As
Publication number | Publication date |
---|---|
JPS5868862A (en) | 1983-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2931819B2 (en) | Lamps with sulfur or selenium | |
JP2002124211A (en) | Low pressure gas-discharge lamp | |
US4142125A (en) | Fluorescent discharge lamp with inner hollow tube offset from envelope axis | |
JPH10255723A (en) | Neon gas discharge lamp generating white light | |
JP2002093367A5 (en) | ||
JPH0311055B2 (en) | ||
JPS6329931B2 (en) | ||
US4929868A (en) | Glow discharge lamp containing nitrogen | |
US4099089A (en) | Fluorescent lamp utilizing terbium-activated rare earth oxyhalide phosphor material | |
US5637965A (en) | Low pressure sodium-mercury lamp yielding substantially white light | |
JPH0311056B2 (en) | ||
JP3460365B2 (en) | Discharge lamps and lighting devices | |
US7583030B2 (en) | Dopant-free tungsten electrodes in metal halide lamps | |
US6087784A (en) | Glow discharge lamp | |
JP2596019B2 (en) | Metal vapor discharge lamp | |
JPH05144412A (en) | Fluorescent lamp | |
WO1993011555A1 (en) | Negative glow discharge lamp having wire anode | |
JPH1050251A (en) | Fluorescent lamp, fluorescent lamp device, and lighting system | |
JPH06283137A (en) | Pulse lighting type rare gas discharge lamp device | |
JPH05190138A (en) | Negative glow discharge lamp in which stability of color tone and lengthening of lifetime are improved | |
CA1229127A (en) | D.c. lamp discharge gas pumping control | |
JPS6329929B2 (en) | ||
JPS58169863A (en) | Low pressure rare gas discharge lamp device | |
JPS5838447A (en) | Neon gas discharge lamp for optical device | |
JPH05217559A (en) | External electrode discharge lamp |