JPS63298106A - Sharing interference-fringe analyzing method - Google Patents

Sharing interference-fringe analyzing method

Info

Publication number
JPS63298106A
JPS63298106A JP62135239A JP13523987A JPS63298106A JP S63298106 A JPS63298106 A JP S63298106A JP 62135239 A JP62135239 A JP 62135239A JP 13523987 A JP13523987 A JP 13523987A JP S63298106 A JPS63298106 A JP S63298106A
Authority
JP
Japan
Prior art keywords
interference
phase
wavefront
half mirror
photoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62135239A
Other languages
Japanese (ja)
Inventor
Shoichi Kawabata
河端 章一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62135239A priority Critical patent/JPS63298106A/en
Publication of JPS63298106A publication Critical patent/JPS63298106A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure the shape of a wave front, whose phase change is large in a space, by scanning interference fringes with a photoelectric element in a two-dimensional pattern, and freely increasing the number of samples in the space. CONSTITUTION:Laser light 1a, which is emitted from a laser light source 11, is reflected with a material to be measured 15 through a beam expander 12, a half mirror 13a and a reference lens 14. The light undergoes phase modulation. The path of the light is changed at a half mirror 13a. The light is inputted into a sharing interferometer. Luminous flux 1b is split with a half mirror 13b and relatively deviated with corner cubes 16a and 16b. The luminous flux 1b passes the half mirror 13b again and undergoes sharing interference. Then a wave front 10c is obtained. The intensity of interference fringes is converted into an electric signal through a photoelectric element 19. The interference fringes 10c are scanned with the photoelectric element 19 in the directions shown by X and Y in a two-dimensional pattern. Thus the phase of the entire body of the interference fringes 10c is obtained. In this way, the shape of the wave front of the luminous flux 1b is determined.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レンズ、ミラー等の平面1球面又は非球面の
形状を精密に測定する測定方法に関し、詳しくはシェア
リング干渉縞解析方法に関するも2ヘー/゛ のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a measuring method for precisely measuring the shape of a flat 1 spherical or aspherical surface of a lens, mirror, etc., and more specifically to a shearing interference fringe analysis method. /゛'s.

従来の技術 従来、縞走査型シェアリング干渉計において、シェア量
は測定波面の位相の空間的変化に依存し、又干渉縞強度
の空間的サンプル数の制限を受ける。
BACKGROUND OF THE INVENTION Conventionally, in fringe scanning type shearing interferometers, the amount of shearing depends on the spatial variation of the phase of the measured wavefront, and is also limited by the number of spatial samples of interference fringe intensity.

以下、第6図を用いて従来技術について説明する。レー
ザ光源61から出射したレーザ光6aは、ビームエキス
パンダ62.ハーフミラ−632L。
The prior art will be explained below using FIG. 6. Laser light 6a emitted from laser light source 61 is transmitted to beam expander 62. Half mirror 632L.

基準レンズ64を介し測定物65で反射し空間的に位相
変調され、ハーフミラ−63aで光路を変え、シェアリ
ング干渉計へ入射する。
The light is reflected by the measurement object 65 through the reference lens 64, spatially phase modulated, changes its optical path by the half mirror 63a, and enters the shearing interferometer.

光束6bは、ハーフミラ−esbで光束6C。The light beam 6b is a half mirror ESB and is a light beam 6C.

6dに分割され、コーナーキューブeea、esbによ
シ相対的に横ずらしを受け、再びノ・−フミン−63b
を介し干渉縞6eが生〜じる。ここで、レーザの波長を
λ、nを任意の自然数とするとき、コーナーキューブ6
62Lを電歪素子67を用い矢λ 作方向ヘーずつ移動させ波面6dの位相をシソn トし、各々の位相において、干渉縞60の強度I(x、
y)を撮像装置69でサンプリングし、3へ一−ノ゛ フレームメモリ610に取シ込む。ここで、X方向の横
ずらし量をΔX、光束6bの波面の位相をh(x、y)
とすると、差分Δh(x、 y)= h(x+Δx、y
)−h(x、y)は、次式で与えられる。
It is divided into 6d, is relatively shifted laterally by the corner cubes eea and esb, and is again divided into no-fumin-63b.
Interference fringes 6e are generated through the. Here, when the wavelength of the laser is λ and n is an arbitrary natural number, the corner cube 6
62L is moved in the direction of arrow λ using the electrostrictive element 67 to change the phase of the wavefront 6d, and at each phase, the intensity I(x,
y) is sampled by the imaging device 69 and inputted into the one-node frame memory 610. Here, the amount of lateral shift in the X direction is ΔX, and the phase of the wavefront of the light beam 6b is h(x, y).
Then, the difference Δh(x, y) = h(x+Δx, y
)−h(x,y) is given by the following equation.

従って(1)式に基すいて、X方向、X方向の差分を求
め、それぞれX方向、X方向に積分し、合成することで
光束6bの波面の位相h(x、y)が求められる。ここ
で、横ずらし量ΔXは、次式を満足する必要がある。
Therefore, based on equation (1), the phase h(x, y) of the wavefront of the light beam 6b is determined by determining the difference in the X direction and the X direction, integrating in the X direction and the X direction, respectively, and combining. Here, the lateral shift amount ΔX needs to satisfy the following equation.

I  h(x、  y)−h(X+Δx、y)l ≦π
=ノ=・  (2)又、撮像装置69によるX方向のサ
ンプル数mは、光束6bの直径をDとすると、次式を満
足する必要がある。
I h(x, y)-h(X+Δx, y)l ≦π
=no=・ (2) Furthermore, the number m of samples in the X direction by the imaging device 69 needs to satisfy the following equation, where D is the diameter of the light beam 6b.

一≦m ・・・・・・・・・(3) ム 発明が解決しようとする問題点 上記従来の方法では、光束6bの波面の位相が空間的に
大きく変化していると、(2)式よりΔXを小さくする
必要があシ、従って(3)式よpmが大きくなりフレー
ムメモリ610の容量の増大、計算時間が遅くなる等の
欠点があった。又、サンプル数mは撮像装置69の性能
で制約され、無制限に大きくできなかった。これらの理
由により、非球面量の大きい非球面レンズ等は測定でき
なかった。
1≦m (3) Problems to be solved by the invention In the above conventional method, if the phase of the wavefront of the light beam 6b changes spatially, (2) According to equation (3), it is necessary to make ΔX smaller, and therefore pm becomes larger than in equation (3), resulting in disadvantages such as an increase in the capacity of the frame memory 610 and a slow calculation time. Further, the number of samples m is limited by the performance of the imaging device 69, and cannot be increased without limit. For these reasons, aspherical lenses with a large amount of aspherical surface could not be measured.

問題点を解決するだめの手段 上記問題点を解決するために、本発明のシェアリング干
渉縞解析方法では、横ずらしした波面の位相と他方の波
面の位相を相対的に正弦波的に変調し、シェアリング干
渉で生じる干渉縞の、ある一点における干渉縞強度を光
電素子で検出し、その光電素子の出力信号を少なくとも
半周期以上にわたってアナログ処理することにより干渉
波面のその点での位相を求め、この操作を干渉縞全体に
わたって2次元的に行い干渉波面全体の位相分布を求め
、その情報に基すき元の波面を再生するものである。
Means for Solving the Problems In order to solve the above problems, the shearing interference fringe analysis method of the present invention modulates the phase of the laterally shifted wavefront and the phase of the other wavefront relatively sinusoidally. , the intensity of interference fringes generated by shearing interference at a certain point is detected by a photoelectric element, and the output signal of the photoelectric element is subjected to analog processing over at least half a period to determine the phase of the interference wavefront at that point. This operation is performed two-dimensionally over the entire interference fringe to obtain the phase distribution of the entire interference wavefront, and the original wavefront is reproduced based on this information.

作用 上記方法によれば、位相が空間的に大きく変化5へ一/
゛ している波面のシェアリング干渉縞においても、干渉縞
強度の空間的サンプル数を多くすることで、シェアリン
グ量を小さくし干渉縞解析を可能とし、波面の再生が可
能となるものである。
Effect: According to the above method, the phase changes significantly spatially from 5 to 1/2.
Even in the case of shearing interference fringes on a wavefront that is distorted, by increasing the number of spatial samples of interference fringe intensity, the amount of shearing can be reduced and interference fringe analysis can be performed, making it possible to reconstruct the wavefront. .

実施例 以下、本発明の実施例を第1図〜第6図に基すいて説明
する。第1図において、レーザ光源11から出射したレ
ーザ光1aは、ビームエキスパンダ12.ハーフミラ−
13a、基準レンズ14を介し測定物15で反射し位相
変調され、ハーフミラ−13aで光路を変え・、シェア
リング干渉計へ入射する。光束1bは、ハーフミラ−1
3bで分割され、コーナキューブ16a、16bによっ
て相対的に横ずらしを受け、再びハーフミラ−13bを
通り、シェアリング干渉した波面10Cとなυ、光電素
子19で干渉縞強度を電気信号に変換する。
Embodiments Hereinafter, embodiments of the present invention will be explained based on FIGS. 1 to 6. In FIG. 1, a laser beam 1a emitted from a laser light source 11 is transmitted to a beam expander 12. half mirror
13a, it is reflected by the measurement object 15 through the reference lens 14, is phase modulated, changes its optical path by the half mirror 13a, and enters the shearing interferometer. The light beam 1b is a half mirror 1
3b, is relatively laterally shifted by the corner cubes 16a and 16b, passes through the half mirror 13b again, becomes a shearing interference wavefront 10C, and the photoelectric element 19 converts the interference fringe intensity into an electrical signal.

さらに、電歪素子17を用い、光路長に位相変調をかけ
る。このとき、第2図に示すように、座標(x、y)上
に対応する光電素子1eの出力を増幅した増幅器212
の出力信号v(x、y)は、光eヘ一/゛ 束1bの波面の位相をh(x、y)、光束10a。
Furthermore, the electrostrictive element 17 is used to apply phase modulation to the optical path length. At this time, as shown in FIG. 2, an amplifier 212 amplifies the output of the photoelectric element 1e corresponding to the coordinates (x, y).
The output signal v(x, y) of the light beam e/' is the phase of the wavefront of the beam 1b, h(x, y), and the phase of the wavefront of the beam 10a.

10bの横ずらし量をΔX、光路長の違いによる位相差
をφ、電歪素子17で与える位相差をlとすると、次式
で与えられる。
Assuming that the amount of lateral shift of 10b is ΔX, the phase difference due to the difference in optical path length is φ, and the phase difference provided by the electrostrictive element 17 is l, it is given by the following equation.

v(x、 y) = Vj+ v2cos (h(x、
y)−h(x+Δx+y)−φ−1)次に、クロックパ
ルス発生器23によシ第4図に示す角周波数ωの波形4
1を発生させ、これに同期した角周波数ωの正弦波を正
弦波発生器22により発生させ電歪素子駆動回路211
へ供給する。このとき増幅器212の出力信号の波形は
、第3図の波形31となる。この波形31と波形41を
乗算器25&で乗算し、第6図の波形42を得る。次に
、正弦波発生器22により発生させた信号の正弦及び余
弦を正弦演算器26.余弦演算器27を用いそれぞれ演
算し、前記波形42におのおの乗算し、積分器28a、
28bによシ積分する。次に積分器28&の出力値を積
分器28bの出力値で除算器29を用いて除算し、逆正
接演算器20で逆正接を求める。この結果、位相h(X
、7)−h(x+Δx、y)−φが求められる。
v(x, y) = Vj+v2cos (h(x,
y)-h(x+Δx+y)-φ-1) Next, the clock pulse generator 23 generates the waveform 4 of the angular frequency ω shown in FIG.
1, and a sine wave with an angular frequency ω synchronized with this is generated by the sine wave generator 22, and the electrostrictive element drive circuit 211
supply to At this time, the waveform of the output signal of the amplifier 212 becomes the waveform 31 in FIG. 3. The waveform 31 and the waveform 41 are multiplied by the multiplier 25& to obtain the waveform 42 shown in FIG. Next, the sine and cosine of the signal generated by the sine wave generator 22 are calculated by the sine calculator 26. The cosine calculator 27 is used to perform calculations, the waveform 42 is multiplied, and the integrator 28a,
28b. Next, the output value of the integrator 28& is divided by the output value of the integrator 28b using the divider 29, and the arctangent is obtained by the arctangent calculator 20. As a result, the phase h(X
, 7)-h(x+Δx,y)-φ is obtained.

7ヘージ 以上に述べた操作を、光電素子19を干渉縞10C上を
第1図矢印X、Yで示すように2次元的に走査すること
で干渉縞100全体の位相を求める。
The phase of the entire interference fringe 100 is determined by scanning the photoelectric element 19 two-dimensionally over the interference fringe 10C as shown by arrows X and Y in FIG. 1 through the above-described operation.

すなわちシェアリング量ΔXに基ずいてX方向に積分す
る。同様にy方向について行い、X方向の結果と合成す
ることで光束1bの波面の形状を知ることができる。
That is, integration is performed in the X direction based on the sharing amount ΔX. The shape of the wavefront of the light beam 1b can be determined by performing the same process in the y direction and combining the results with the results in the x direction.

発明の効果 以上に述べたごとく、本発明によれば光電素子が、干渉
縞上を2次元的に走査するので、空間的サンプル数を自
由に大きくでき、それによりシェア量を小さくできるの
で空間的に位相変化の大きな波面の形状が測定可能とな
るものである。又、干渉縞の各点における位相をアナロ
グ的に計算できるので高速かつ精度よく測定可能となる
Effects of the Invention As stated above, according to the present invention, since the photoelectric element scans the interference fringes two-dimensionally, the number of spatial samples can be freely increased, and the amount of shear can thereby be reduced. This makes it possible to measure the shape of a wavefront with a large phase change. Furthermore, since the phase at each point of the interference fringes can be calculated in an analog manner, measurement can be performed at high speed and with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略図、第2図はその
ブロック図、第3図、第4図および第6図は第1図およ
び第2図の各ブロックの信号波形を示す図、第6図は従
来例を示す概略図である。 10C・・・・・・干渉縞、11・・・・・・レーザ光
源、16a。 16b・・・・コーナキューブ、17・・・・・・電歪
素子、19・・・・・・光電素子、2o・・・・・・逆
正接演算器、22・・・・・・正弦波発生器、23・・
・・・・クロックパルス発生器、2a&、28b・・・
・・・積分器、29・・・・・除算器。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a block diagram thereof, and FIGS. 3, 4, and 6 show signal waveforms of each block in FIGS. 1 and 2. 6 are schematic diagrams showing a conventional example. 10C...Interference fringes, 11...Laser light source, 16a. 16b... Corner cube, 17... Electrostrictive element, 19... Photoelectric element, 2o... Arctangent operator, 22... Sine wave Generator, 23...
...Clock pulse generator, 2a &, 28b...
...integrator, 29...divider.

Claims (1)

【特許請求の範囲】[Claims] 縞走査型シェアリング干渉計において、横ずらしした波
面の位相と他方の波面の位相を相対的に正弦波的に変調
し、シェアリング干渉で生じる干渉縞の、ある一点にお
ける干渉縞強度を光電素子で検出し、その光電素子の出
力信号を少なくとも半周期以上にわたってアナログ処理
することにより干渉波面のその点での位相を求め、この
操作を干渉縞全体にわたって2次元的に行い干渉波面全
体の位相分布を求め、その情報に基づき元の波面を再生
することを特徴とするシェアリング干渉縞解析方法。
In a fringe scanning type shearing interferometer, the phase of a laterally shifted wavefront and the phase of the other wavefront are relatively sinusoidally modulated, and the intensity of the interference fringe at a certain point of the interference fringes generated by shearing interference is measured using a photoelectric element. The phase of the interference wavefront at that point is determined by analog processing the output signal of the photoelectric element over at least half a cycle, and this operation is performed two-dimensionally over the entire interference fringe to determine the phase distribution of the entire interference wavefront. A shearing interference fringe analysis method that is characterized by determining the information and reproducing the original wavefront based on that information.
JP62135239A 1987-05-29 1987-05-29 Sharing interference-fringe analyzing method Pending JPS63298106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135239A JPS63298106A (en) 1987-05-29 1987-05-29 Sharing interference-fringe analyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135239A JPS63298106A (en) 1987-05-29 1987-05-29 Sharing interference-fringe analyzing method

Publications (1)

Publication Number Publication Date
JPS63298106A true JPS63298106A (en) 1988-12-05

Family

ID=15147064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135239A Pending JPS63298106A (en) 1987-05-29 1987-05-29 Sharing interference-fringe analyzing method

Country Status (1)

Country Link
JP (1) JPS63298106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516737A (en) * 2003-01-28 2006-07-06 オラキシオン Full-area optical measurement of surface characteristics of panels, substrates, and wafers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516737A (en) * 2003-01-28 2006-07-06 オラキシオン Full-area optical measurement of surface characteristics of panels, substrates, and wafers

Similar Documents

Publication Publication Date Title
US20230392920A1 (en) Multiple channel locating
US6940602B2 (en) Method and device for high-speed interferential microscopic imaging of an object
JPH0338524B2 (en)
JPS61202128A (en) Semiconductor laser heterodyne interferometer
JPS6324115A (en) Method and device for measuring flotating quantity of magnetic head
JP3410051B2 (en) Shape measuring method and device
US7417747B2 (en) Method and a device for measuring the three dimension surface shape by projecting moire interference fringe
JPS63298106A (en) Sharing interference-fringe analyzing method
JPH10232204A (en) Device for measuring refractive index
US20230062525A1 (en) Heterodyne light source for use in metrology system
JP2997765B2 (en) High sensitivity space positioning method
JPS63140934A (en) Analyzing method for shearing interference fringes
JPS63128211A (en) Spacing measuring method
JP2519411B2 (en) Thermal dilatometer
JP2993836B2 (en) Interferometer using coherence degree
JPH06235620A (en) Real-time measuring apparatus for shape of phase
JPH07190737A (en) Shearing interference measuring method and shearing interferometer
JPS63241305A (en) Fringe scanning method
JP2805045B2 (en) Spatial positioning method
JP2942002B2 (en) Surface shape measuring device
JPH0619254B2 (en) Fringe scanning phase interferometer
JPH0217043B2 (en)
EP0467343A2 (en) Optical heterodyne interferometer
JPH05133725A (en) Surface shape measuring device
JPH0719842A (en) Optical measuring apparatus for shape of surface