JPS63241305A - Fringe scanning method - Google Patents

Fringe scanning method

Info

Publication number
JPS63241305A
JPS63241305A JP7406587A JP7406587A JPS63241305A JP S63241305 A JPS63241305 A JP S63241305A JP 7406587 A JP7406587 A JP 7406587A JP 7406587 A JP7406587 A JP 7406587A JP S63241305 A JPS63241305 A JP S63241305A
Authority
JP
Japan
Prior art keywords
voltage
fringe scanning
crystal
electro
fringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7406587A
Other languages
Japanese (ja)
Inventor
Chuichi Miyazaki
忠一 宮崎
Toshio Akatsu
赤津 利雄
Sadao Mori
貞雄 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7406587A priority Critical patent/JPS63241305A/en
Publication of JPS63241305A publication Critical patent/JPS63241305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform uniform fringe scanning without disturbing a wave front over the entire range of beam, by performing fringe scanning while the phase scanning between reference beam and signal beam is changed by the voltage applied to a member having electrooptical effect. CONSTITUTION:When the voltage from an oscillator 15 is applied to the electrooptical crystal 18 provided on the common beam path 2 of reference beam and signal beam as crystal apply voltage 17 through an amplifier 16, the phase difference between the reference beam and the signal beam receives relative modulation in proportion to said voltage to perform fringe scanning. When the applied voltage data at this time is taken in a computer and the image processing of the interference fringe pattern subjected to modulation is performed, the interpolation between fringes can be performed and the profile of an object to be measured can be measured with measuring resolving power higher than lambda/4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ干渉計における縞走査法に係り。[Detailed description of the invention] [Industrial application field] The present invention relates to a fringe scanning method in a laser interferometer.

特に高精度・高速の縞走査が実現できるため、このよう
な原理に基づくレーザ干渉計の測定精度の向上が期待で
きる。
In particular, since high-precision and high-speed fringe scanning can be achieved, improvements in the measurement accuracy of laser interferometers based on this principle can be expected.

〔従来の技術〕[Conventional technology]

従来、レーザ干渉計における縞走査法については、「光
学」第15巻第1号、1986年2月。
Regarding the conventional fringe scanning method in a laser interferometer, see "Optics" Vol. 15, No. 1, February 1986.

第25頁から第30頁の「正弦波位相変調干渉法」と題
する論文にて論じられているようにPZTによって行わ
れている。
This is done with PZT as discussed in the paper entitled "Sinusoidal Phase Modulation Interferometry" on pages 25-30.

この技術を第3図により説明する。レーザ発振器1から
のレーザ光2は、ビームエキスパンダ3において拡大さ
れビームスプリッタ4で分割されてそれぞれ基準反射面
24及び測定対象面10に照射される0両者からの反射
光は再びビームスプリッタ4において合成されて干渉を
起こし、この干渉縞パターンをカメラ12において光電
変換し、ざらにA/D変換器13を介してその画像情報
をコンピュータ14に取り込んで画像処理を行う。
This technique will be explained with reference to FIG. A laser beam 2 from a laser oscillator 1 is expanded by a beam expander 3, split by a beam splitter 4, and irradiated on a reference reflecting surface 24 and a surface to be measured 10, respectively.The reflected light from both is then sent back to the beam splitter 4. They are combined to cause interference, and this interference fringe pattern is photoelectrically converted in the camera 12, and the image information is roughly taken into the computer 14 via the A/D converter 13 for image processing.

ここで測定分解能を向上させるために1発振器15から
の電圧を増幅器16を介してPZT印加電圧23として
PZT22を駆動し、PZT22に接着された反射基準
面7を掃引することにより直接的に参照光路長5を変化
させて縞走査を実現していた。
Here, in order to improve the measurement resolution, the voltage from the oscillator 15 is used as the PZT applied voltage 23 through the amplifier 16 to drive the PZT 22, and by sweeping the reflective reference plane 7 bonded to the PZT 22, the reference optical path is directly set. Fringe scanning was realized by changing the length 5.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、PZTを用いて機械的変位により反
射基準面を変位させているため、使用するPZTの特性
によって基準反射面がビームに対して完全には垂直な姿
勢を保たなくなり、その結果ある広がりをもった参照ビ
ームの範囲内で参照光路長が不均一になってしまう点が
問題となった。
In the above-mentioned conventional technology, since the reflecting reference plane is displaced by mechanical displacement using PZT, the reference reflecting plane does not maintain a completely perpendicular attitude to the beam due to the characteristics of the PZT used, and as a result, The problem was that the reference optical path length became non-uniform within the range of a reference beam with a certain spread.

これは干渉縞パターンにそのまま反映されるため測定誤
差の原因となった。
This was directly reflected in the interference fringe pattern and caused measurement errors.

またPZTはその動特性においてヒステリシスが非常に
大きな問題点であり、縞走査の高精度化を図る上でネッ
クとなっており、さらにその掃引本発明の目的は以上の
問題点を一挙に解決し、縞走査の高精度・高速化を実現
することにある。
In addition, PZT has a very large problem with hysteresis in its dynamic characteristics, which is a bottleneck in achieving high precision in fringe scanning.The purpose of the present invention is to solve the above problems all at once. The purpose of this invention is to realize high precision and high speed fringe scanning.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、PZTによって機械的に参照光の光路長を
変化させる代わりに、参照面は固定して参照光路長は物
理的に一定とし、ビームエキスパンダでビームを拡げら
れる手前の位置でかつ参照光と信号光の共通光路上に電
気光学結晶を設けてこれに電圧を印加し、相対的な位相
差を静的に変化させることにより達成される。
The above purpose is to fix the reference plane and keep the reference optical path length physically constant, instead of mechanically changing the optical path length of the reference beam using PZT, and to set the reference plane at a position before the beam is expanded by the beam expander and This is achieved by providing an electro-optic crystal on the common optical path of the light and signal light and applying a voltage to it to statically change the relative phase difference.

〔作用〕[Effect]

電気光学結晶とは光学的に異方性の結晶であり偏光面が
互いに直交する参照光及び信号光の偏光面をそれぞれ結
晶の2本の軸方向と一致するように光を通過させて使用
すれば、結晶に印加する電圧(これにより発生する電界
)に比例して2つの直線偏光の位相がそれぞれ異なる割
合で変化する光学素子であり、結果的に印加電圧に比例
して両光の間の位相差が相対的に正確に変化するので、
結晶の印加電圧によって見かけ1参照光の光路差を自由
にコントロールできる。従ってビームエキスパンダの前
位に設けた電気光学結晶はレーザビームの波面を乱すこ
となく位相差を変化させることができるので結果的には
、拡がりをもった測定ビーム範囲内すべてにおいて均一
な縞走査が実現できる。さらに電気光学結晶はPZTと
比較してヒステリシスがほとんどなく、また直線性も格
段に良好であるため高精度な縞走査が実現できる上、そ
の応答性の良さから縞走査の高周波数化が図れる。
An electro-optic crystal is an optically anisotropic crystal that is used by passing light so that the polarization planes of the reference light and signal light, whose polarization planes are orthogonal to each other, coincide with the two axis directions of the crystal. For example, it is an optical element that changes the phase of two linearly polarized lights at different rates in proportion to the voltage applied to the crystal (the electric field generated thereby), and as a result, the phase between the two lights changes in proportion to the applied voltage. Since the phase difference changes relatively accurately,
The optical path difference of the apparent reference beam can be freely controlled by applying voltage to the crystal. Therefore, the electro-optic crystal installed in front of the beam expander can change the phase difference without disturbing the wavefront of the laser beam, resulting in uniform fringe scanning throughout the wide measurement beam range. can be realized. Furthermore, compared to PZT, electro-optic crystals have almost no hysteresis and have much better linearity, making it possible to achieve highly accurate fringe scanning, and because of its good responsiveness, it is possible to increase the frequency of fringe scanning.

〔実施例〕〔Example〕

以下本発明の実施例を第1図により説明する。 Embodiments of the present invention will be described below with reference to FIG.

本実施例はレーザ干渉を利用した平面度測定装置である
。直線偏光を発振するレーザ発振器1からのレーザ光2
は電気光学結晶18を経てビームエキスパンダ3に至り
、ここで拡大されたビームは偏光ビームスプリッタ4(
以後P、B、8.4と略す)において紙面と垂直な振動
面をもつビーム(以下S偏光成分ビームという。)5と
紙面に平行な振動面をもつビーム(以下P偏光成分ビー
ムという。)8に分割される。S偏光成分ビーム5は、
P、B、S。
This embodiment is a flatness measuring device using laser interference. Laser light 2 from a laser oscillator 1 that oscillates linearly polarized light
passes through the electro-optic crystal 18 and reaches the beam expander 3, where the expanded beam is sent to the polarizing beam splitter 4 (
Hereinafter abbreviated as P, B, 8.4), a beam (hereinafter referred to as the S-polarized component beam) 5 has a vibration plane perpendicular to the plane of the paper and a beam (hereinafter referred to as the P-polarized component beam) has a vibration plane parallel to the plane of the paper. It is divided into 8 parts. The S-polarized component beam 5 is
P, B, S.

4で反射され一波長板6を経た後、平面度が概知の基準
反射面7で反射され再び一波長板6を経てP、B、8.
4に至るが、−波長板6を1往復してきたこの光は振動
面が90度回転しているので今度はP、B、8.4を透
過して偏光板11に至る。
4 and passes through the one-wavelength plate 6, it is reflected at a reference reflecting surface 7 whose flatness is known and passes through the one-wavelength plate 6 again, and then P, B, 8.
However, since the plane of vibration of this light that has made one round trip through the -wave plate 6 has been rotated by 90 degrees, it now passes through P, B, and 8.4, and reaches the polarizing plate 11.

一方、最初にP、B、5.4を透過したP偏光成分ビー
ム8は一波長板9を経て測定対象面10において反射さ
れ、再び一波長板9を経てP、B、S。
On the other hand, the P-polarized component beam 8, which first passes through P, B, 5.4, passes through the one-wavelength plate 9, is reflected at the measurement target surface 10, passes through the one-wavelength plate 9 again, and becomes P, B, and S.

4に至るが、先と同様に振動面が90度回転しているの
でP、B、8.4で反射され偏光板11に至る。偏光板
11への入射時点では両光は振動面が互いに直交してい
るので干渉しないが、偏光板11の透過軸を両光の振動
面に対して45度に設定しておくとその透過軸方向成分
同士が透過して干渉縞パターンが発生する。この干渉縞
パターンをカメラ12において光電変換し、さらにA/
D変換器13を介してその画像情報をコンピューター4
に取り込んで画像処理する。そして、この画像処理デー
タによって測定対象面のプロフィールを測定することが
できる。ただし、この場合の測定分解能は、レーザの波
長をλとするとλ/4であり、さらに高い測定分解能を
得るための手段として縞走査法が知られている。
4, the vibration plane is rotated 90 degrees as before, so it is reflected by P, B, and 8.4, and reaches the polarizing plate 11. At the time of incidence on the polarizing plate 11, the vibration planes of both lights are orthogonal to each other, so they do not interfere, but if the transmission axis of the polarizing plate 11 is set at 45 degrees with respect to the vibration plane of both lights, the transmission axis will change. The directional components are transmitted through each other and an interference fringe pattern is generated. This interference fringe pattern is photoelectrically converted in the camera 12, and further A/
The image information is sent to the computer 4 via the D converter 13.
and process the image. Then, the profile of the surface to be measured can be measured using this image processing data. However, the measurement resolution in this case is λ/4, where λ is the wavelength of the laser, and a fringe scanning method is known as a means for obtaining even higher measurement resolution.

この縞走査をビームエキスパンダの前段に設けた電気光
学結晶18によって実現しているのが本発明の特徴であ
る。参照光と信号光の共通ビームパス2上に設けた電気
光学結晶18に1発撮器15からの電圧を増幅器16を
介して結晶印加電圧17として印加すると、これに比例
して参照光と信号光の位相差が相対的に変調を受け、縞
走査が行なえる。この際の印加電圧情報をコンピュータ
に取り込み、変調を受けた干渉縞パターンの画像処理を
行えば、縞と縞の間の補間が行え、λ/4よりも高い測
定分解能で測定対象物のプロフィールが測定できる。
A feature of the present invention is that this fringe scanning is realized by an electro-optic crystal 18 provided before the beam expander. When the voltage from the 1-shot device 15 is applied as the crystal applied voltage 17 via the amplifier 16 to the electro-optic crystal 18 provided on the common beam path 2 for the reference light and the signal light, the reference light and the signal light are The phase difference between the two is relatively modulated, and fringe scanning can be performed. By importing the applied voltage information into a computer and performing image processing on the modulated interference fringe pattern, interpolation between the fringes can be performed, and the profile of the measured object can be determined with a measurement resolution higher than λ/4. Can be measured.

次にもうひとつの実施例を第2図により説明する。Next, another embodiment will be explained with reference to FIG.

本実施例はレーザ干渉を利用した変位測定装置である。This embodiment is a displacement measuring device using laser interference.

直線偏光を発振するレーザ発振H#1からのレーザ光2
は電気光学結晶18を経て偏光ビームスプリッタ4に至
り1紙面と垂直な振動面をもつS偏光成分ビーム5は反
射され、これを参照光と称し、紙面に平行な振動面をも
つP偏光成分ビーム8は透過し、これを信号光と称する
。P、B、3゜4で反射されたS偏光成分5は一波長板
6を経て反射膜7で反射され再び一波長板6を経てP、
B、3゜4に至るが、今度は振動面が90度回転してい
るのでP、B、8.4を透過して偏光板11に至る。
Laser light 2 from laser oscillation H#1 that oscillates linearly polarized light
passes through the electro-optic crystal 18 and reaches the polarizing beam splitter 4. The S-polarized component beam 5, which has a plane of vibration perpendicular to the plane of the paper, is reflected. 8 is transmitted and is called signal light. The S-polarized light component 5 reflected at P, B, 3°4 passes through the one-wavelength plate 6, is reflected by the reflective film 7, passes through the one-wavelength plate 6 again, and becomes P,
B, 3°4, but this time the vibration plane is rotated 90 degrees, so it passes through P, B, 8.4 and reaches the polarizing plate 11.

一方P偏光成分ビーム8は一波長板9を透過して変位測
定対象物に取り付けた反射鏡10で反射され再び一波長
板9を経てP、B、8.4に至るが、やはり振動面が9
0度回転しているのでP、B、S。
On the other hand, the P-polarized component beam 8 passes through the one-wavelength plate 9, is reflected by the reflecting mirror 10 attached to the displacement measurement object, passes through the one-wavelength plate 9 again, and reaches P, B, 8.4, but the vibration plane is 9
Since it is rotated 0 degrees, P, B, S.

4で反射され偏光板11に至る。偏光板11への入射時
点では両光は振動面が互いに直交しているので干渉しな
いが、偏光板11の透過軸を両光の振動面に対して45
度に設定しておくとその透過軸方向成分同士が透過して
干渉を起こす。レーザ波長をλとするとこの干渉光強度
は測定対象物λ 10が−だけ変位するごとに明→暗又は、暗→明と変化
するのでこれを光検出器19で電気信号20(これを干
渉信号と呼ぶ)に変換し、明暗変化の回数を制御回路2
1中のカウンタでカウントλ することにより、WA定対象10の変位を分解能−で測
定できる。ここでさらに測定分解能を向上するために縞
走査法を適応するが、やはり本実施例でもこれを電気光
学結晶18によって実現している。参照光と信号光の共
通ビームバス2上に設けた電気光学結晶18増幅器16
を介した高周波の結晶印加電圧17を印加すると、これ
に比例して参照光と信号光の位相差が相対的に変調を受
け。
4 and reaches the polarizing plate 11. At the time of incidence on the polarizing plate 11, the vibration planes of the two lights are perpendicular to each other, so they do not interfere, but the transmission axis of the polarizing plate 11 is set at 45
If it is set to 100 degrees, the components in the transmission axis direction will pass through each other and cause interference. Assuming that the laser wavelength is λ, the intensity of this interference light changes from bright to dark or from dark to bright every time the object to be measured λ10 is displaced by -. ), and the number of brightness changes is determined by the control circuit 2.
By counting λ with the counter 1, the displacement of the WA constant object 10 can be measured with resolution. Here, in order to further improve the measurement resolution, a fringe scanning method is applied, which is also realized by the electro-optic crystal 18 in this embodiment. Electro-optic crystal 18 amplifier 16 provided on the common beam bus 2 for reference light and signal light
When a high frequency crystal applied voltage 17 is applied through the crystal, the phase difference between the reference light and the signal light is relatively modulated in proportion to this.

結果的に干渉信号20が変調される。このとき干渉信号
20が最も明るくなる瞬間には、測定対象物1oが変位
したことにより発生する参照光と信号光の位相差と、電
気光学結晶18において発生する両光の位相差がちょう
どバランスして結果的に位相差が零になるので、この瞬
間における結晶印加電圧17を制御回路21中のサンプ
リング回路においてサンプリングしてくれば、前もって
使用する電気光学結晶について調べておいた結晶印 ゛
加電圧と発生する位相差との比例関係感度から、変位に
より発生する位相差が求められ、これをさらに測定対象
物10の変位量に変換することによλ す、分解能−を上回る高精度変位測定が可能となる。
As a result, the interference signal 20 is modulated. At this moment, at the moment when the interference signal 20 becomes the brightest, the phase difference between the reference light and the signal light generated by the displacement of the measurement object 1o and the phase difference between the two lights generated in the electro-optic crystal 18 are just balanced. As a result, the phase difference becomes zero, so if the crystal applied voltage 17 at this moment is sampled by the sampling circuit in the control circuit 21, the crystal applied voltage which has been investigated in advance for the electro-optic crystal to be used can be obtained. The phase difference caused by the displacement is determined from the proportional relationship between the sensitivity and the phase difference generated.By further converting this into the amount of displacement of the object to be measured 10, high-precision displacement measurement exceeding the resolution is possible. It becomes possible.

また本実施例の場合には、従来のPZTによる方法と異
なって機械的稼働部なしに光路長を変化させることがで
きるので、縞走査の高速・高周波化が図れ、測定系の時
間分解能が大幅に向上する点からも測定分解能向上の効
果がある。
In addition, in the case of this example, unlike the conventional PZT method, the optical path length can be changed without any mechanical moving parts, so high-speed and high-frequency fringe scanning can be achieved, and the time resolution of the measurement system can be greatly improved. This also has the effect of improving measurement resolution.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ビームの全範囲にわたって波面を乱す
ことなく均一な縞走査が行え、さらにまた電気光学結晶
はPZTに比較してヒステリシスが非常に小さく、印加
電圧に対して発生する位相変化量の直線性も非常に良い
ので、飛躍的に縞走査の精度が向上する。
According to the present invention, uniform fringe scanning can be performed over the entire range of the beam without disturbing the wavefront, and furthermore, electro-optic crystal has extremely small hysteresis compared to PZT, and the amount of phase change that occurs with respect to applied voltage is Since the linearity of is also very good, the accuracy of fringe scanning is dramatically improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の装置構成図、第2図はさら
に別の一実施例の装置構成図、第3図は従来例の装置1
み成因である。 1・・・レーザ発振器、4・・・偏光ビームスプリッタ
、18・・・電気光学結晶、22・・・ピエゾ素子。
FIG. 1 is a configuration diagram of a device according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a device according to another embodiment, and FIG. 3 is a device configuration diagram of a conventional example.
It is the cause. DESCRIPTION OF SYMBOLS 1... Laser oscillator, 4... Polarizing beam splitter, 18... Electro-optic crystal, 22... Piezo element.

Claims (1)

【特許請求の範囲】[Claims] 1、レーザビームの互いに偏光面が直交する2直線偏光
をそれぞれ参照光、信号光とするレーザ干渉測定系にお
ける前記2直線偏光共通光路中に、電気光学効果を有す
る部材と、この部材に電圧を印加する装置を備え、前記
電気光学効果を有する部材への印加電圧により参照光、
信号光間の位相差を変化させて縞走査を行うことを特徴
とする縞走査法。
1. A member having an electro-optic effect is provided in the common optical path of the two linearly polarized lights in a laser interference measurement system in which two linearly polarized lights whose polarization planes are perpendicular to each other are used as reference light and signal light, respectively, and a voltage is applied to this member. A reference light beam is provided by applying a voltage to the member having the electro-optic effect.
A fringe scanning method characterized by performing fringe scanning by changing the phase difference between signal lights.
JP7406587A 1987-03-30 1987-03-30 Fringe scanning method Pending JPS63241305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7406587A JPS63241305A (en) 1987-03-30 1987-03-30 Fringe scanning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7406587A JPS63241305A (en) 1987-03-30 1987-03-30 Fringe scanning method

Publications (1)

Publication Number Publication Date
JPS63241305A true JPS63241305A (en) 1988-10-06

Family

ID=13536416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7406587A Pending JPS63241305A (en) 1987-03-30 1987-03-30 Fringe scanning method

Country Status (1)

Country Link
JP (1) JPS63241305A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259506A (en) * 1989-03-31 1990-10-22 Canon Inc Fringe scanning type interference measuring instrument
JPH0771910A (en) * 1993-09-01 1995-03-17 Kawasaki Heavy Ind Ltd Laser interference fringe forming device
US5412474A (en) * 1992-05-08 1995-05-02 Smithsonian Institution System for measuring distance between two points using a variable frequency coherent source
JP2011504231A (en) * 2007-11-13 2011-02-03 ザイゴ コーポレーション Interferometer using polarization scan
JP2011242304A (en) * 2010-05-19 2011-12-01 Niigata Univ Surface shape measuring method and measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259506A (en) * 1989-03-31 1990-10-22 Canon Inc Fringe scanning type interference measuring instrument
US5412474A (en) * 1992-05-08 1995-05-02 Smithsonian Institution System for measuring distance between two points using a variable frequency coherent source
JPH0771910A (en) * 1993-09-01 1995-03-17 Kawasaki Heavy Ind Ltd Laser interference fringe forming device
JP2011504231A (en) * 2007-11-13 2011-02-03 ザイゴ コーポレーション Interferometer using polarization scan
JP2011242304A (en) * 2010-05-19 2011-12-01 Niigata Univ Surface shape measuring method and measuring device

Similar Documents

Publication Publication Date Title
CN110837214B (en) Scanning interference photoetching system
US4688940A (en) Heterodyne interferometer system
US5220405A (en) Interferometer for in situ measurement of thin film thickness changes
US4815850A (en) Relative-displacement measurement method
JPS62293110A (en) Angle-measuring plane mirror interferometer system
US20240061352A1 (en) Exposure light beam phase measurement method in laser interference photolithography, and photolithography system
US4717250A (en) Angle measuring interferometer
JPS6117921A (en) Real-time wave-head analyzing correcting device
JPS63241305A (en) Fringe scanning method
JP2023036027A (en) Heterodyne light source for use in metrology system
CN111006582B (en) Interference phase shift sensitivity enhancing method based on moire fringes
CN114459620A (en) Device and method for generating pi phase shift between double interference channels through single wave plate
JP2742473B2 (en) High-speed voltage measurement device
US4105336A (en) Electro-optical device for use in improved interferometers
JPS63128211A (en) Spacing measuring method
CN110823088B (en) Laser dynamic interferometer
JPH095018A (en) Device for measuring moving quantity
JP2002013919A (en) Plane shape measuring method for phase-shift interference fringe simultaneous photographing device
CN114459619B (en) Real-time online phase shift measurement device and method
JPH06194189A (en) Optical encoder
CN115218823B (en) Five-step phase shift signal processing light path for measuring phase distribution of interference image
CN114910019B (en) Sample detection device and method for dynamically adjusting diameter of scanning beam
JP2787345B2 (en) Two-wavelength light source element
JPH0619255B2 (en) Interferometer and interferometer for aspherical surface measurement by optical spatial light modulator using liquid crystal
JPS6231281B2 (en)