JPS63140934A - Analyzing method for shearing interference fringes - Google Patents

Analyzing method for shearing interference fringes

Info

Publication number
JPS63140934A
JPS63140934A JP28791986A JP28791986A JPS63140934A JP S63140934 A JPS63140934 A JP S63140934A JP 28791986 A JP28791986 A JP 28791986A JP 28791986 A JP28791986 A JP 28791986A JP S63140934 A JPS63140934 A JP S63140934A
Authority
JP
Japan
Prior art keywords
phase
interference
wavefront
wave
shearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28791986A
Other languages
Japanese (ja)
Inventor
Shoichi Kawabata
河端 章一
Kunio Nakada
中田 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28791986A priority Critical patent/JPS63140934A/en
Publication of JPS63140934A publication Critical patent/JPS63140934A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0215Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods by shearing interferometric methods

Abstract

PURPOSE:To reduce a shearing quantity and to reproduce the wave front of even shearing interference fringes whose wave front shift in phase large spatially by increasing the number of spatial samples of interference fringe intensity. CONSTITUTION:Laser light 1a emitted by a laser light source 11 is reflected by a body 15 to be measured and made incident on a shearing interferometer after phase modulation, and the interference fringe intensity is converted by a photoelectric element 19 into an electric signal. A triangular wave of angular frequency omega, on the other hand, is supplied to a driving circuit 211 for an electrostrictive element 17, and the output of the photoelectric element 19 is multiplied with clock pulses through an amplifier 212. The multiplication output is multiplied by a sine wave and a cosine wave synchronized with the output of a two-multiplier 24 and the outputs of low pass filters 28a and 28b are divided by a divider 29 to find the arctangent by an arctangent computing element 20. This operation is repeated by scanning interference fringes 10c in two dimensions by the photoelectric element 19 to find the whole phase of the interference fringes 10c, thereby finding the shape of the wave front of luminous flux 1b.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レンズ、ミラー等の平面、球面又は非球面の
形状を精密に測定する測定方法に関し、詳しくはシェア
リング干渉縞解析方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a measurement method for precisely measuring the shape of a flat, spherical or aspherical surface of a lens, mirror, etc., and specifically relates to a shearing interference fringe analysis method. .

従来の技術 従来、縞走査型シェアリング干渉計において、シェア量
は測定する波面の位相の空間的変化に依存し、又干渉縞
強度の空間的サンプル数の制限を受ける。
BACKGROUND OF THE INVENTION Conventionally, in a fringe scanning type shearing interferometer, the amount of shearing depends on the spatial variation of the phase of the wavefront to be measured, and is also limited by the number of spatial samples of interference fringe intensity.

以下、第7図を用いて従来技術について説明する。レー
ジ光源e1から出たレーザ光6aは、ビームエキスパン
ダ82、ハーフミラ−63a、基準レンズe4を介し測
定物66で反射し位相変調され、ハーフミラ−63aで
光路を変え、シェアリング干渉計へ入射する。
The prior art will be explained below using FIG. 7. The laser beam 6a emitted from the laser light source e1 is reflected by the measuring object 66 via the beam expander 82, half mirror 63a, and reference lens e4, and is phase modulated, changes the optical path by the half mirror 63a, and enters the shearing interferometer. .

光束8bは、ハーフミラ−e3bで光束ea。The luminous flux 8b is a luminous flux ea at the half mirror e3b.

6dに分割され、コーナーキューブ86a、66bによ
υ相対的に横ずらしを受け、再び・・−フミン−63b
’i介し干渉縞6eが生じる。ここでレーザの波長をλ
、nを任意の自然数とするとき、コ−ナキュープ66a
を電歪素子67を用い矢印の方向へ7ずつ移動させ6d
の波面の位相を変化させ、おのおのの位相において、干
渉縞6eの強度を撮像装#6aでサンプリングし、フレ
ームメモリ610に取り込む。ここで、コーナキューλ
i プロ8aが1fだけ移動したときの干渉縞6eの強度1
 (x、y、i、)  は光束6bの波面の位相をh(
” z 7 ) 、 X方向の横ずらし量をΔI、光束
6c。
It is divided into 6d, subjected to relative lateral shift by the corner cubes 86a and 66b, and again... - Fumin-63b
'i causes interference fringes 6e. Here, the wavelength of the laser is λ
, when n is an arbitrary natural number, the corner cup 66a
is moved by 7 in the direction of the arrow using the electrostrictive element 67 to 6d.
The intensity of the interference fringes 6e is sampled at each phase by the imaging device #6a, and is captured in the frame memory 610. Here, the corner cue λ
i Intensity 1 of interference fringe 6e when professional 8a moves by 1f
(x, y, i,) is the phase of the wavefront of the light beam 6b h(
"z7), the amount of lateral shift in the X direction is ΔI, and the luminous flux is 6c.

6dの振幅をそれぞれA1.A2、初期位相差をφとす
ると、次式で与えられる。
6d amplitude respectively A1.6d. A2, where φ is the initial phase difference, it is given by the following equation.

1 (x、y、i) = 7(A、 +A2)+A、A
2cos (h(x、y)−h(工やΔ工、ア)−φ−
二1) 従って、フーリエ級数を用いて光束6eの波面Δh (
x、y )は、次式で求められる。
1 (x, y, i) = 7 (A, +A2) + A, A
2cos (h(x, y)-h(technical or Δtechnical, a)-φ-
21) Therefore, using the Fourier series, the wavefront Δh (
x, y) are determined by the following formula.

次にΔh(x、y)をX方向に積分し、y方向にっいて
も同様に行い、合成することでh(:c、y)が求めら
れる。ここで横ずらし量ΔXは次式を満足する必要があ
る。
Next, h(:c, y) is obtained by integrating Δh(x, y) in the X direction, performing the same process in the y direction, and synthesizing. Here, the lateral shift amount ΔX needs to satisfy the following equation.

1h(x、y)−h(x+Δ!、7)l≦/7  、、
、川、、山曲■又、撮像装置6aによるX方向のサンプ
ル数mは、光束6bの直径をDとすると次式を満足する
必要がある。
1h(x, y)-h(x+Δ!, 7)l≦/7 ,,
, Kawa, , Yamamagari■Also, the number m of samples in the X direction by the imaging device 6a must satisfy the following equation, where D is the diameter of the light beam 6b.

77≦m   ・・・・・・・・・・・・・旧旧旧旧・
・・旧・・・・・■発明が解決しようとする問題点 上記従来の方法では、光束6bの波面の位相が空間的に
大きく変化していると、■式よりΔXを小さくする必要
があり、従って■式よりmが大きくなりフレームメモリ
61oの容量の増大、計算時間が遅くなる等の欠点があ
った。又、サンプル数mは撮像装置の性能で制約され、
無制限に大きくできなかった。これらの理由により、非
球面量の大きい非球面レンズ等は測定できなかった。
77≦m・・・・・・・・・・・・Old old old old・
...Old... ■Problems to be solved by the invention In the conventional method described above, if the phase of the wavefront of the light beam 6b changes spatially significantly, it is necessary to reduce ΔX according to the formula (■). , Therefore, m is larger than in equation (2), which has drawbacks such as an increase in the capacity of the frame memory 61o and a slow calculation time. In addition, the number of samples m is limited by the performance of the imaging device,
It could not be made infinitely large. For these reasons, aspherical lenses with a large amount of aspherical surface could not be measured.

問題点を解決するだめの手段 上記問題点を解決するために、本発明のシェアリング干
渉縞解析方法では、横ずらしした波面の位相と他方の波
面の位相を相対的に三角波的に変調し、シェアリング干
渉で生じる干渉縞のある一点における干渉縞強度を光電
素子で検出し、その出力信号に前記三角波の半周期ごと
に前記三角波の周波数の2倍の正弦波および余弦波をそ
れぞれ乗算し、ローパスフィルターを介した後、正弦波
全乗算した信号を余弦波を乗算した信号で除算し、その
信号の逆正接を演算することにより干渉波面のその点で
の位相を求め、この操作を干渉波面全体にわたって2次
元的に行い干渉波面全体の位相を求め、その情報に基づ
き元の波面を再生するものである。
Means for Solving the Problems In order to solve the above problems, in the shearing interference fringe analysis method of the present invention, the phase of the laterally shifted wavefront and the phase of the other wavefront are relatively modulated in a triangular wave manner, Detecting the interference fringe intensity at one point of the interference fringes caused by shearing interference with a photoelectric element, and multiplying the output signal by a sine wave and a cosine wave twice the frequency of the triangular wave every half period of the triangular wave, respectively, After passing through a low-pass filter, the signal obtained by fully multiplying the sine wave is divided by the signal obtained by multiplying the cosine wave, and the phase of the interference wavefront at that point is obtained by calculating the arctangent of the signal. The phase of the entire interference wavefront is determined two-dimensionally over the entire area, and the original wavefront is reproduced based on that information.

作  用 上記方法によれば、位相が空間的に大きく変化している
波面のシェアリング干渉縞においても、干渉縞強度の空
間的サンプル数を、多くすることで、シェアリング量を
小さくし干渉縞解析を可能とし、波面の再生が可能とな
るものである。
Effect According to the above method, even in shearing interference fringes of a wavefront whose phase changes significantly spatially, by increasing the number of spatial samples of the interference fringe intensity, the amount of shearing can be reduced and the interference fringes can be improved. This enables analysis and wavefront reproduction.

実施例 以下、本発明の実施例全第1図〜第6図に基づき説明す
る。He −N eレーザ光源などのレーザ光源11か
らでたレーザ光1aは、ビームエキスパンダ12、ハー
フミラ−13a、基準し/ズ14を介し測定物16で反
射し位置相変調され、ハーフミラ−13aで光路上変え
、シェアリング干渉計へ入射する。光束1bはハーフミ
ラ−13bで分割され、コーナキューブ18a、18b
に相対的に横ずらし上受は再びハーフミラ−13bを通
り、シェアリング干渉した波面1ocとなり、光電素子
19で干渉縞強度を電気信号に変換する。
EXAMPLES Below, examples of the present invention will be explained based on FIGS. 1 to 6. Laser light 1a emitted from a laser light source 11 such as a He-N e laser light source is reflected by a measuring object 16 via a beam expander 12, a half mirror 13a, and a reference lens 14, and is position-phase modulated. The optical path is changed and the beam enters the shearing interferometer. The light beam 1b is divided by a half mirror 13b, and is divided into corner cubes 18a and 18b.
The horizontally shifted upper receiver passes through the half mirror 13b again and becomes a shearing interference wavefront 1oc, and the photoelectric element 19 converts the interference fringe intensity into an electrical signal.

さら【、電歪素子17を用い、光路長に位相変調をかけ
る。このとき、座標(!、7)上に位置している光電素
子19の出力を増幅した増幅器212の出力信号V(x
、y)は、光束10bの波面の位相’kh(x、y) 
、光束10a、10bの横ずらし量をΔI、光路長の違
いによる位相差をφ、電歪素子1了で与える位相差を4
とすると、次式で与えられる。
Furthermore, an electrostrictive element 17 is used to apply phase modulation to the optical path length. At this time, the output signal V(x
, y) is the phase 'kh(x, y) of the wavefront of the light beam 10b
, the amount of lateral shift of the light beams 10a and 10b is ΔI, the phase difference due to the difference in optical path length is φ, and the phase difference given by the electrostrictive element 1 is 4.
Then, it is given by the following formula.

V(z、y)=v1+v2cos (h(z、y)−h
(x+Δ!+7)−φ−4)次に、クロックパルス発生
器23により角周波数ωの波形61を発生させ(第5図
)、これに同期した角周波数ωの三角波を三角波発生器
22により発生させ電歪素子駆動回路211へ供給する
V (z, y) = v1 + v2 cos (h (z, y) - h
(x+Δ!+7)-φ-4) Next, the clock pulse generator 23 generates a waveform 61 with an angular frequency ω (Fig. 5), and the triangular wave generator 22 generates a triangular wave with an angular frequency ω synchronized with this. and is supplied to the electrostrictive element drive circuit 211.

このとき、電歪素子17で与えられる位相lが波形31
(第3図)となるように電歪素子駆動回路211を調整
する。このとき、増幅器212の出力信号の波形は、波
形41となる(第4図)。この波形41と波形61を乗
算器25aで乗算し、波形42を得る(第6図)。次に
2逓倍器24を用いて角周波数2ωのクロックパルスを
作り、この信号に同期した角周波数2ωの正弦波及び余
弦波を正弦波発生器26、余弦波発生器27を用いて発
生させ、前記波形42に乗算器25b、25cを用いて
、それぞれ乗算し、ローパスフィルター28a 、28
bにより積分する。ローパスフィルター28aの値をロ
ーパスフィルター2abO値で除算器29を用いて除算
し、逆正接演算器20で逆正接を求める。この結果、位
相h(x、y)−h(x+Δ”t7)−φが求められる
。以上に述べた操作を、光電素子19全干渉縞10 c
止金第1図矢印X、Yで示すように2次元的に走査する
ことで干渉縞I Q c全体の位相を求める。すなわち
シェアリング量ΔXに基づいて!方向に積分する。
At this time, the phase l given by the electrostrictive element 17 is the waveform 31
The electrostrictive element drive circuit 211 is adjusted so that (FIG. 3) is obtained. At this time, the waveform of the output signal of the amplifier 212 becomes a waveform 41 (FIG. 4). This waveform 41 and waveform 61 are multiplied by a multiplier 25a to obtain a waveform 42 (FIG. 6). Next, a clock pulse with an angular frequency of 2ω is generated using a doubler 24, and a sine wave and a cosine wave with an angular frequency of 2ω synchronized with this signal are generated using a sine wave generator 26 and a cosine wave generator 27, The waveform 42 is multiplied using multipliers 25b and 25c, respectively, and low-pass filters 28a and 28
Integrate by b. The value of the low-pass filter 28a is divided by the value of the low-pass filter 2abO using the divider 29, and the arctangent is obtained using the arctangent calculator 20. As a result, the phase h(x,y)−h(x+Δ”t7)−φ is obtained.
The phase of the entire interference fringe IQc is determined by two-dimensional scanning as shown by arrows X and Y in FIG. In other words, based on the sharing amount ΔX! Integrate in the direction.

同様にy方向について行い、I方向の結果と合成するこ
とで光束1bの波面の形状を知ることができる。
The shape of the wavefront of the light beam 1b can be determined by performing the same process in the y direction and combining the results with the results in the I direction.

発明の効果 以上に述べたごとく、本発明によれば光電素子が、干渉
縞上を2次元的に走査するので、空間的サンプル数を自
由に大きくでき、それによりシェア量を小さくできるの
で空間的に位相変化の大きな波面の形状が測定可能とな
るものである。又、干渉縞の各点における位相をアナロ
グ的に計算できるので高速かつ精度よく測定可能となる
Effects of the Invention As stated above, according to the present invention, since the photoelectric element scans the interference fringes two-dimensionally, the number of spatial samples can be freely increased, and the amount of shear can thereby be reduced. This makes it possible to measure the shape of a wavefront with a large phase change. Furthermore, since the phase at each point of the interference fringes can be calculated in an analog manner, measurement can be performed at high speed and with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す概略図、第2図はそのブ
ロック図、第3図、第4図、第6図および第8図は第1
図および第2図の各ブロックの信号波形を示すグラフ、
第7図は従来例を示す概略図である。 10c・・・・・・干渉縞、11・・・・・・レーザ光
源、18a。 16b・・・・・・コーナキューブ、17・・・・・・
電歪素子、19・・・・・・光電素子、2o・・・・・
・逆正接演算器、22・・・・・・三角波発生器、23
・・・・・・クロックツくシス発生器、24・・・・・
・2逓倍器、28a 、28b・・・・・・ローパスフ
ィルター、29・・・・・・除算器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ta
−−−フリメーLL斤レーデ九 1ド−浸11定りわり1し几イ先 40a−−・シェアこ九1;L−ヂ丸 jOレーーーゾエア3れZL)7.−ルーフ絶イor、
−toeL、tob+: i3 f s9m第  1 
 図                 fl−−−レ
ーア゛先5.秤、f2−・−び、乙エキスノ釘しヂ 13J3b−−−ノ\−)ぐラー イ千−−−1玉sl l−シス! 15−−− @l声1牛) j凸、Kb−−−y −j ?ニーデ ィ?−,tl ≠2、)
FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a block diagram thereof, and FIGS.
Graphs showing signal waveforms of each block in FIG. 2 and FIG.
FIG. 7 is a schematic diagram showing a conventional example. 10c...Interference fringes, 11...Laser light source, 18a. 16b... Corner cube, 17...
Electrostrictive element, 19...Photoelectric element, 2o...
・Arcade tangent calculator, 22... Triangular wave generator, 23
...Clock Tsuku Sith Generator, 24...
- Double multiplier, 28a, 28b...low pass filter, 29...divider. Name of agent: Patent attorney Toshio Nakao and one other person
---Flime LL cat Rede 91 Do-Immersion 11 Determination 1 Shiriga tip 40a--Share Ko 91; - Roof-free or,
-toeL, tob+: i3 f s9m 1st
Figure fl---Ray destination 5. Scales, f2--bi, Otsu Exno Nagishiji 13J3b---ノ\-) Gurai Sen---1 ball sl l-sis! 15--- @l voice 1 cow) j convex, Kb---y -j? Needy? -, tl ≠ 2,)

Claims (1)

【特許請求の範囲】[Claims] 縞走査型シエアリング干渉計において、横ずらしした波
面の位相と他方の波面の位相を相対的に三角波的に変調
し、シエアリング干渉で生じる干渉縞の任意の一点にお
ける干渉縞強度を光電素子で検出し、光電素子の出力信
号に、前記三角波の半周期ごとに、前記三角波の周波数
の2倍の周波数の正弦波および余弦波をそれぞれ乗算し
、ローパスフィルターを介した後、正弦波を乗算した信
号を余弦波を乗算した信号で除算し、その信号の逆正接
を演算することにより干渉波面のその点での位相を求め
、この操作を干渉波面全体にわたって2次元的に行い干
渉波面全体の位相を求め、その情報に基づき元の波面を
再生することを特徴とするシエアリング干渉縞解析方法
In a fringe scanning type shearing interferometer, the phase of a laterally shifted wavefront and the phase of the other wavefront are relatively modulated in a triangular wave manner, and a photoelectric element detects the intensity of the interference fringe at any point in the interference fringes caused by shearing interference. , the output signal of the photoelectric element is multiplied by a sine wave and a cosine wave having a frequency twice the frequency of the triangular wave every half period of the triangular wave, and after passing through a low-pass filter, the signal multiplied by the sine wave is obtained. Dividing by the signal obtained by multiplying the cosine wave and calculating the arctangent of that signal determines the phase of the interference wavefront at that point.This operation is performed two-dimensionally over the entire interference wavefront to determine the phase of the entire interference wavefront. , a shearing interference fringe analysis method characterized by reproducing the original wavefront based on that information.
JP28791986A 1986-12-03 1986-12-03 Analyzing method for shearing interference fringes Pending JPS63140934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28791986A JPS63140934A (en) 1986-12-03 1986-12-03 Analyzing method for shearing interference fringes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28791986A JPS63140934A (en) 1986-12-03 1986-12-03 Analyzing method for shearing interference fringes

Publications (1)

Publication Number Publication Date
JPS63140934A true JPS63140934A (en) 1988-06-13

Family

ID=17723426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28791986A Pending JPS63140934A (en) 1986-12-03 1986-12-03 Analyzing method for shearing interference fringes

Country Status (1)

Country Link
JP (1) JPS63140934A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084233A (en) * 2004-09-14 2006-03-30 Hamamatsu Photonics Kk Sample measuring device and measuring method
CN103471724A (en) * 2013-09-16 2013-12-25 中国科学院上海光学精密机械研究所 Lateral shearing interferometer for measuring non-axisymmetry wave surface
JP2016016407A (en) * 2014-07-04 2016-02-01 株式会社ディスコ Laser processing device
CN110196105A (en) * 2019-05-09 2019-09-03 南京理工大学紫金学院 Collimation wavefront measuring method based on retroeflector shear interference

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084233A (en) * 2004-09-14 2006-03-30 Hamamatsu Photonics Kk Sample measuring device and measuring method
JP4698992B2 (en) * 2004-09-14 2011-06-08 浜松ホトニクス株式会社 Sample measuring apparatus and measuring method
CN103471724A (en) * 2013-09-16 2013-12-25 中国科学院上海光学精密机械研究所 Lateral shearing interferometer for measuring non-axisymmetry wave surface
JP2016016407A (en) * 2014-07-04 2016-02-01 株式会社ディスコ Laser processing device
CN110196105A (en) * 2019-05-09 2019-09-03 南京理工大学紫金学院 Collimation wavefront measuring method based on retroeflector shear interference
CN110196105B (en) * 2019-05-09 2021-04-02 南京理工大学紫金学院 Collimating wavefront measuring method based on shear interference of retroreflector

Similar Documents

Publication Publication Date Title
US6940602B2 (en) Method and device for high-speed interferential microscopic imaging of an object
CN102221342B (en) Method for measuring object deformation by time-domain multi-wavelength heterodyne speckle interference
JP2689503B2 (en) Laser doppler speedometer
JPS63140934A (en) Analyzing method for shearing interference fringes
JPH05232232A (en) Phase measuring device and distance measuring device
JPH06186337A (en) Laser distance measuring equipment
CN114295203A (en) Vortex intensity measuring device and method for vortex light beam
JP2993836B2 (en) Interferometer using coherence degree
JPS63298106A (en) Sharing interference-fringe analyzing method
JPH0271187A (en) Distance measuring equipment
JPS63128211A (en) Spacing measuring method
JPS598762B2 (en) How to use the information
RU2127867C1 (en) Method of dynamic measurement of angular displacements
JPH07503547A (en) Interferometric probe for distance measurement
JPS6154422A (en) Method and instrument for measuring mode field diameter of optical fiber
JPH0356401B2 (en)
SU1732291A1 (en) Method of surface wave phase velocity measuring
JPH01126582A (en) Laser distance measuring apparatus
RU2157963C1 (en) Method for monitoring article border position and device which implements said method
JPS61133813A (en) Surface shape measuring apparatus
RU2047090C1 (en) Device for determination of position and lateral dimension of part
JPS62288512A (en) Displacement measuring apparatus
JPH01302127A (en) Light pulse measuring apparatus
SU599158A1 (en) Interference method of measuring linear and angular displacements
JPS6334402B2 (en)