JPS6329635B2 - - Google Patents

Info

Publication number
JPS6329635B2
JPS6329635B2 JP382480A JP382480A JPS6329635B2 JP S6329635 B2 JPS6329635 B2 JP S6329635B2 JP 382480 A JP382480 A JP 382480A JP 382480 A JP382480 A JP 382480A JP S6329635 B2 JPS6329635 B2 JP S6329635B2
Authority
JP
Japan
Prior art keywords
base material
composite material
welding
welded
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP382480A
Other languages
Japanese (ja)
Other versions
JPS56102388A (en
Inventor
Ikutaro Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP382480A priority Critical patent/JPS56102388A/en
Publication of JPS56102388A publication Critical patent/JPS56102388A/en
Publication of JPS6329635B2 publication Critical patent/JPS6329635B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は2種以上の金属板を積層接合して、耐
食性、耐摩耗性、耐熱性等に優れ、しかも安価な
金属板、所謂クラツド金属板を製造する方法に関
するものである。 一般にクラツド金属板の製造方法としては母材
と合材とを重ね合せて爆着する爆着法、母材と合
材とを重ね合せて両者の重ね合せ縁部を潜弧溶接
にて密閉した後、熱間にて圧延する溶接組立法、
母材の片面にエレクトロスラグ溶接して合材を溶
接形成する方法等が実施されている。 ところが爆着法の場合、その実施場所が著しく
制限されるうえ、実施に際しての安全性を常に管
理しなければならず、また溶接組立法は母材、合
材の組立て作業が極めて煩わしく、更にエレクト
ロスラグ溶接法は作業自体著しく長時間を要する
など、いずれの場合も作業性が低く量産が難しい
などの不都合があつた。 このため従来にあつては第4図に示す如く、表
面を清浄にした母材41と、合材42とを重ね合
せ、これらの周縁部をこれに沿つて合材42の表
面側から真空中下で電子ビームにて溶接し、この
閉ループ状の溶接部分WBにて母材41と合材4
2との重ね合せ面間を真空状態に密閉し、そのま
ま熱間にて圧延する方法が提案されている(特公
昭51−19819号、特開昭52−13459号等)。 この方法は電子ビーム溶接の実施に必要な真空
条件と、母材と合材との重ね合せ面間での酸化物
発生防止のために必要とされる排気条件とを単一
の真空室の設置により同時に満足させる一方、電
子ビーム溶接の高速性及び溶け込み深さが大きい
等の特性を利用することによつて、上述した爆着
法におけるが如き危険性、作業場所についての制
限が全くなく、溶接組立法における組立作業及び
組立後、母材と合材との重ね合せ面間の真空化又
は不活性ガスとの置換作業等の煩しさがなく、加
えて電子ビームの溶け込み深さを大きくし得るこ
とを利用して重ね合せた母材と合材との側面部の
重ね合せ縁部に沿つて溶接する煩わしさをも除去
し得るようにしたものである。本発明者が行つた
実験、研究の結果によつても上記方法における作
業性の向上、量産化の容易性が確認されたが、反
面、この従来方法の如く母材と合材とを重ね合せ
た状態でその周縁部のみをこれに沿つて閉ループ
状に溶接するのみでは母材と重ね合せ面に沿つて
作用する剪断力、或いは母材と合材とを相離反さ
せる向きに作用する引張り力に対する強度が弱
く、熱間圧延工程において圧延ロールから圧荷重
が加えられた際に、母材と合材との周縁部に沿つ
て施されている溶接部に亀裂が生じ、母材と合材
との重ね合せ面間に空気が侵入し、接合面に酸化
物等が形成されて、母材と合材との接合が不良と
なることがある外、溶接部が破断されて母材と合
材とが分離してしまうなどの難点があることが解
つた。 本発明はかかる観点からなされたものであつ
て、その目的とするところは母材と合材とを周縁
部のみならず中央部にも同様に電子ビーム溶接を
施して母材と合材との結合力を高め、熱間圧延工
程における母材と合材との接合不良、或いは分離
を的確に防止し得るようにしたクラツド金属板の
製造方法を提供するにある。 本発明に係るクラツド金属板の製造方法は、表
面を清浄にした母材と合材とを積層し、この積層
した母材と合材とを母材又は合材の表面側から真
空中下で電子ビームにて溶接する工程を含むクラ
ツド金属板の製造方法において、母材と合材とを
重ね合せた積層金属板を、周縁部はこれに沿つて
母材と合材との間を外部から遮閉すべく閉ループ
状に溶接し、閉ループ状の溶接部に囲繞された中
央部は母材と合材との相互の結合力を高めるべく
所要の線状に溶接した後、この積層金属板を熱間
にて圧延することを特徴とする。 以下本発明を図面に基いて具体的に説明する。
第1図は本発明に係るクラツド金属板の製造方法
(以下本発明方法という)の工程を示す模式図、
第2図は本発明方法における母材と合材との溶接
工程を示す模式図、第3図は母材と合材とを溶接
した状態の断面図であり、図中1は母材、2は合
材であつて、母材1は炭素鋼板によつて、また合
材2はステンレス鋼板にて形成されている。母材
1となるべき炭素鋼板CSは連続鋳造機CCにて板
幅、板厚を予め設定された状態で鋳造されてきた
連鋳材CC′を所要の板長に切断してスラブSLを
得、このスラブSLを表面仕上工程A、表面精整
工程Bを経て母材1に仕上げられ、溶接工程Cに
送り込まれる。一方、合材2となるべきステンレ
ス鋼板SSは母材1の仕様に合せて予め多数用意
されており、表面精整工程B′を経て、合材2に
仕上げられ、溶接工程Cへの母材1の移送に合せ
て溶接工程Cに送り込まれる。溶接工程Cにおい
ては母材1上に合材2が重ね合され、周縁部及び
中央部に電子ビーム溶接機EBWによつて溶接を
施され、次いで熱間圧延工程Dにてクラツド金属
板CMに仕上げられる。 以下上記各工程を順を追つて説明する。母材1
用の素材たる炭素鋼板CSは第1図に示す如く、
連続鋳造機CCの底無鋳型として、母材1の仕様
に応じた板幅、板厚の連鋳材CC′を得られるもの
を選定すれば、連鋳材CC′を板長に合せて定寸切
断するのみで母材1の仕様に一致したスラブSL
が得られる。スラブSLの仕様が母材1の仕様と
異なる場合はスラブSLを母材1の仕様に合せて
切り揃えるか、或いはスラブSLを圧延して母材
1の仕様に仕上げてもよい。またスラブSLを分
塊圧延機等によつて製造してもよいことは勿論で
ある。母材1の仕様に一致させたスラブSLは先
ず表面仕上工程Aに送られるが、この表面仕上工
程Aにおいて用いられるコールドスカーフアCD
は他の表面精整工程Bにおいて用いられるシヨツ
トブラスト装置SB、溶接工程Cにおいて用いら
れる真空室VCと共に、連続鋳造機CCにて鋳造さ
れてくる連鋳材CC′の移動方向の延長上に配設さ
れており、スラブSLはそのまま各工程A,Bを
経て溶接工程Cに送られることとなる。 表面仕上工程Aにおいて用いられるコールドス
カーフアCDはスラブSLの全幅に亘るよう複数の
ガスバーナを並列配置して構成されており、スラ
ブSLはその移動に従つてその表面にガスバーナ
の火炎を浴び、エツジ部に形成されているばり或
いはスラブSL表面の傷、小さい凹凸部が溶融に
よつて修復され、表面を平坦に仕上げられる。ス
ラブSL表面に対する加工はホツトスカーフアに
て行つてもよい。 表面を平坦に仕上げられたスラブSLは次に表
面精整工程Bに送られる。表面精整工程Bにおい
てはシヨツトブラスト又は切削機械加工が行われ
る。シヨツトブラスト装置SBは適切な鋼製、ガ
ラス製等の球を適正な速度でスラブSL表面に噴
射するよう構成されており、表面仕上工程Aにお
いて、コールドスカーフアCD又はホツトスカー
フアにて処理されたスラブSL表面に形成されて
いるスケール等の酸化物が除去され、表面を浄化
された状態で溶接工程Cに送られる。 一方、ステンレス鋼板SSは予め合材2の仕様
に合せて用意したものを一定のタイミングで表面
精整工程B′に送り込む。ステンレス鋼板SSの表
面精整工程B′は酸洗装置(図示せず)にて構成
されており、該酸洗工程により母材1と重ね合せ
られるべき片面側を浄化されて合材2に仕上げら
れ、溶接工程Cに送られる。溶接工程Cにおいて
用いられる真空室VCは前記シヨツトブラスト装
置SB側の側壁に母材1及び合材2の導入口(図
示せず)が、また反対側の側壁に母材1と合材2
とを重ね合せた積層金属板の送出口(図示せず)
を備えておりこれらの導入口、送出口を閉鎖し、
真空ポンプVPを作動させることにより、真空室
VC内を所要の真空度に維持し得るよう構成され
ている。真空室VC内にはそのフロア上に前後方
向及び左右方向に走行可能な移動台車MCが配設
され、また天井部に電子ビーム溶接機EBWが下
向きに装備されている。この電子ビーム溶接機
EBWは電界制御によつてビームEBを所要方向に
ウイービングさせ得るよう構成されている。真空
室VC内には先ず母材1が導入されて、移動台車
MC上にセツトされ、次いで合材2が導入されて
母材1上に重ね合される。真空ポンプVPを作動
して真空室VC内を所要の真空度、通常1×
10-1Torr以下、望ましくは1×10-3〜1×
10-5Torrに維持し、溶接作業を行う。即ち、先
ず移動台車MCを操作して例えば第2図に黒丸で
示す如く各P点においてスポツト的に電子ビーム
溶接を行い、母材1と合材2とを適当な間隔で仮
付けし、本溶接時に合材2にそりが生じないよう
にしておく。次いで電子ビームEBの狙い位置を
例えば母材1上に重ね合せた合材2の一隅部Oに
定め、移動台車MCを前後方向又は左右方向に移
動し、母材1上に重ね合せた合材2の表面側から
電子ビームEBをその移動台車に対する相対移動
方向に垂直にウイービングさせながら照射し、合
材2の表面から母材1の所定深さに迄溶融せし
め、母材1に対し合材2の3辺をコ字形に溶接
し、次いで残りの1辺と平行に所要ピツチで複数
回溶接し、全体として母材1と合材2とをその周
辺部は閉ループ状に、また中央部は格子状に溶接
し、後の大気中下での熱間圧延工程Dでも母材1
と合材2と重ね合せ面間を真空に維持し、また母
材1と合材2とが離反しないよう十分な強度に溶
接して積層金属板を得る。母材1と合材2との結
合強度は電子ビーム溶接に際しての電子ビーム
EBのウイービング幅及び中央部に対する溶接個
所の数を調節することによつて任意に設定し得
る。なお溶接部分の溶け込み深さは電子ビーム溶
接機EBWの出力調節によつて適宜に変更し得る。 第3図は母材1と合材2との溶接部断面の1例
を示す模式図であり、合材2の板厚は20mmのもの
を用い、真空室VCは10-3〜10-5Torrとし、電子
ビーム溶接機EBWの出力:100KW、溶接速度:
2.5m/分にて溶接部幅W:5mm、溶け込み深さ
d:30mm、溶接部間のピツチp:20mmとした場合
を示している。 なお、母材1と合材2との周辺部、中央部に対
する溶接順序、中央部の溶接態様については何ら
上述した場合にのみ限定するものではなく、例え
ば溶接順序は最初に中央部を、次いで周辺部を溶
接してもよいし、また中央部の溶接態様はジグザ
グ状、或いは渦巻状等にしてもよい。溶接工程C
を経て一体的に溶接結合された積層金属板は加熱
炉(図示せず)によつて、又は電磁誘導によつて
全体を略1250℃前後に加熱した後、母材1の下面
側を熱間圧延時のそりを防止するため冷却装置
WCにより1180℃前後に冷却しつつこのまま熱間
圧延工程Dにて圧延し、母材1と合材2との衝合
面を一体に接合した状態の所望仕様のクラツド金
属板CMを得る。 以下に実施例を示す。 実施例 1 (1) 母材材質 低炭素鋼(カーボン量:0.11%) (2) 合材材質 SUS 304 (3) 母材と合材との溶接条件 真空度:5×10-4Torr 溶接部幅:5mm 電子ビーム出力:100KW 溶接部ピツチ:20mm 溶接速度:2.5m/分 溶け込み深さ:30mm (4) 溶接態様(中央部) 格子状 (5) クラツド金属板としての仕様 板厚:10.0mm 板幅:1800mm 板長:12000mm クラツド比:10% 実施例 2 (1) 母材材質 低炭素鋼 (2) 合材材質 高炭素鋼 (3) 母材と合材との溶接条件 真空度:1×10-5Torr 溶接部幅:5mm 電子ビーム出力:40KW 溶接部ピツチ:15mm 溶接速度:0.5m/分 溶け込み深さ:20mm (4) 溶接態様(中央部) 格子状 (5) クラツド金属板としての仕様 板厚:15mm 板幅:900mm 板長:6000mm クラツド比:50% 実施例 3 (1) 母材材質 低炭素鋼 (2) 合材材質 Cu+Ni(Cu:90% Ni:10%) (3) 母材と合材との溶接条件 真空度:5×10-4Torr 電子ビーム出力:100KW 溶接速度:2m/分 溶け込み深さ:35mm (4) 溶接態様 ジグザグ状 (5) クラツド金属板としての仕様 板厚:10mm 板幅:1800mm 板長:9000mm クラツド比:10% 表1は上記実施例において母材と合材とを溶接
した状態のままの金属板について行つた強度試験
結果を示している。なお比較のため同じ材質仕様
の母材と合材とを第4図に示す如く周縁部のみを
閉ループ状に溶接する従来の方法によつて得た金
属板についての強度試験結果も示してある。
The present invention relates to a method of manufacturing a so-called clad metal plate, which is an inexpensive metal plate that has excellent corrosion resistance, wear resistance, heat resistance, etc., by laminating and bonding two or more types of metal plates. In general, clad metal plates are manufactured using the explosion bonding method in which the base material and composite material are overlapped and bonded together, or the base material and composite material are overlapped and the overlapping edges of the two are sealed by submerged arc welding. After that, welding assembly method by hot rolling,
A method of welding a composite material by electroslag welding on one side of a base material has been implemented. However, in the case of the explosive bonding method, the places where it can be carried out are severely restricted, and safety must always be controlled during its implementation.In addition, with the welding assembly method, the work of assembling base materials and composite materials is extremely troublesome, and furthermore, In both cases, the slag welding method has disadvantages such as the work itself being extremely time-consuming and the workability being low and making mass production difficult. For this reason, conventionally, as shown in FIG. 4, a base material 41 whose surface has been cleaned and a composite material 42 are placed one on top of the other, and their peripheral edges are placed in a vacuum from the surface side of the composite material 42 along this. Welding is performed with an electron beam at the bottom, and the base material 41 and composite material 4 are welded at this closed loop welding part WB.
A method has been proposed in which the overlapping surfaces of the two are sealed in a vacuum state and then hot rolled as they are (Japanese Patent Publication No. 51-19819, Japanese Patent Application Laid-open No. 13459/1983, etc.). This method combines the vacuum conditions required to perform electron beam welding and the exhaust conditions required to prevent the generation of oxides between the mating surfaces of the base material and composite material in a single vacuum chamber. At the same time, by utilizing the characteristics of electron beam welding, such as its high speed and large penetration depth, it is possible to weld without any of the dangers and restrictions on work areas as in the above-mentioned explosion bonding method. There is no need for assembly work in the assembly method, and there is no need to create a vacuum between the overlapping surfaces of the base material and composite material after assembly, or to replace the work with inert gas, and in addition, the penetration depth of the electron beam can be increased. Taking advantage of this, it is possible to eliminate the trouble of welding along the overlapping edges of the side surfaces of the overlapping base material and composite material. The results of experiments and research conducted by the present inventor have confirmed that the above method improves workability and facilitates mass production. If only the peripheral edge is welded in a closed loop along this state, shearing force that acts along the base material and the overlapping surface, or tensile force that acts in the direction that causes the base material and composite material to separate from each other. During the hot rolling process, when pressure is applied from the rolls during the hot rolling process, cracks occur in the welds along the periphery of the base material and composite material, causing the base material and composite material to crack. Air may enter between the mating surfaces, forming oxides, etc. on the joint surface, resulting in poor bonding between the base material and composite material, or the weld may break and join with the base material. It was discovered that there were problems such as the material separating from the material. The present invention has been made from this point of view, and its purpose is to perform electron beam welding not only on the periphery but also on the central part of the base material and the composite material. It is an object of the present invention to provide a method for manufacturing a clad metal plate that increases the bonding strength and can accurately prevent poor bonding or separation between a base material and a composite material during a hot rolling process. The method for producing a clad metal plate according to the present invention is to laminate a base material and a composite material whose surfaces have been cleaned, and to apply the laminated base material and composite material under vacuum from the surface side of the base material or composite material. In a manufacturing method for clad metal plates that includes a process of welding with an electron beam, a laminated metal plate in which a base material and a composite material are overlapped, and the peripheral edge is welded between the base material and composite material from the outside. The laminated metal plates are welded in a closed loop for shielding, and the central part surrounded by the closed loop weld is welded in a required line to increase the mutual bonding strength between the base material and composite material. It is characterized by rolling in between. The present invention will be specifically explained below based on the drawings.
FIG. 1 is a schematic diagram showing the steps of the method for manufacturing a clad metal plate according to the present invention (hereinafter referred to as the method of the present invention);
FIG. 2 is a schematic diagram showing the welding process of the base material and composite material in the method of the present invention, and FIG. 3 is a cross-sectional view of the base material and composite material welded together. The base material 1 is made of a carbon steel plate, and the composite material 2 is made of a stainless steel plate. The carbon steel plate CS, which is to be the base material 1, is obtained by cutting a continuous cast material CC′, which has been cast with a continuous casting machine CC with the width and thickness set in advance, into the required length to obtain the slab SL. This slab SL is finished into a base material 1 through a surface finishing process A and a surface polishing process B, and then sent to a welding process C. On the other hand, a large number of stainless steel sheets SS that are to become the composite material 2 are prepared in advance according to the specifications of the base material 1, and are finished as the composite material 2 through the surface polishing process B', which is then used as the base material for the welding process C. It is sent to welding process C in accordance with the transfer of step 1. In the welding process C, the composite material 2 is superimposed on the base metal 1, and the peripheral and central parts are welded by an electron beam welding machine EBW.Then, in the hot rolling process D, the composite metal plate CM is formed into a clad metal plate CM. It will be finished. Each of the above steps will be explained in order below. Base material 1
As shown in Figure 1, the carbon steel sheet CS that is the material for
If you select a bottomless mold for the continuous casting machine CC that can produce a continuous cast material CC' with a width and thickness that match the specifications of the base metal 1, the continuous cast material CC' can be determined according to the plate length. Slab SL that matches the specifications of base material 1 by simply cutting to size
is obtained. If the specifications of the slab SL are different from the specifications of the base material 1, the slab SL may be trimmed to match the specifications of the base material 1, or the slab SL may be rolled to the specifications of the base material 1. Of course, the slab SL may also be manufactured using a blooming mill or the like. The slab SL matched to the specifications of the base material 1 is first sent to the surface finishing process A.
is an extension of the continuous cast material CC′ cast by the continuous casting machine CC along with the shot blasting device SB used in the other surface finishing process B and the vacuum chamber VC used in the welding process C. The slab SL is directly sent to the welding process C through each process A and B. The cold scarf burner CD used in the surface finishing process A is composed of a plurality of gas burners arranged in parallel over the entire width of the slab SL, and as the slab SL moves, the surface is exposed to the flames of the gas burners and the edges are Any burrs formed on the surface of the slab SL, scratches or small irregularities on the surface of the slab SL are repaired by melting, and the surface is finished flat. The surface of the slab SL may be processed using a hot scarf. The slab SL whose surface has been finished flat is then sent to a surface finishing process B. In the surface finishing step B, shot blasting or cutting machining is performed. The shot blasting device SB is configured to spray balls made of appropriate steel, glass, etc. at an appropriate speed onto the surface of the slab SL, and in the surface finishing process A, the shot blasting device SB is treated with a cold scarf or hot scarf. Oxides such as scale formed on the surface of the slab SL are removed, and the surface is sent to the welding process C in a purified state. On the other hand, the stainless steel plate SS is prepared in advance according to the specifications of composite material 2 and sent to the surface polishing process B' at a certain timing. The surface finishing process B' of the stainless steel sheet SS consists of a pickling device (not shown), and the pickling process cleans one side that is to be overlapped with the base material 1 and finishes it into composite material 2. and sent to welding process C. The vacuum chamber VC used in the welding process C has an inlet (not shown) for the base material 1 and composite material 2 on the side wall on the shot blasting device SB side, and an inlet for the base material 1 and composite material 2 on the opposite side wall.
Outlet of laminated metal plate (not shown)
These inlets and outlets are closed,
By operating the vacuum pump VP, the vacuum chamber
It is configured to maintain the required degree of vacuum inside the VC. Inside the vacuum chamber VC, a movable cart MC that can move forward and backward and left and right is installed on the floor, and an electron beam welding machine EBW is installed on the ceiling facing downward. This electron beam welding machine
The EBW is configured to weave the beam EB in a desired direction by controlling the electric field. First, the base material 1 is introduced into the vacuum chamber VC, and then the moving trolley
It is set on the MC, and then the composite material 2 is introduced and superimposed on the base material 1. Activate the vacuum pump VP to create the required degree of vacuum in the vacuum chamber VC, usually 1×
10 -1 Torr or less, preferably 1×10 -3 to 1×
Maintain the temperature at 10 -5 Torr and perform welding work. That is, first, by operating the movable cart MC, spot electron beam welding is performed at each P point as shown by the black circles in FIG. Prevent warpage from occurring in the composite material 2 during welding. Next, the target position of the electron beam EB is set, for example, at one corner O of the composite material 2 overlaid on the base material 1, and the movable trolley MC is moved in the front-back or left-right direction to remove the composite material overlaid on the base material 1. The electron beam EB is irradiated from the surface side of the composite material 2 while weaving perpendicularly to the direction of relative movement with respect to the moving cart, melting the composite material 2 from the surface to a predetermined depth of the base material 1. The three sides of 2 are welded in a U-shape, and then welded multiple times parallel to the remaining side at the required pitches, so that the base material 1 and composite material 2 are welded together in a closed loop around the periphery and in the center. The base material 1 is welded in a lattice shape, and even in the subsequent hot rolling process D in the atmosphere.
A vacuum is maintained between the superposed surfaces of the base material 1 and the composite material 2, and the base material 1 and the composite material 2 are welded with sufficient strength so as not to separate, thereby obtaining a laminated metal plate. The bond strength between base material 1 and composite material 2 is determined by the electron beam welding
It can be set arbitrarily by adjusting the weaving width of the EB and the number of welding points with respect to the center part. Note that the penetration depth of the welded portion can be changed as appropriate by adjusting the output of the electron beam welding machine EBW. Fig. 3 is a schematic diagram showing an example of a cross section of a welded part between base material 1 and composite material 2. The thickness of composite material 2 is 20 mm, and the vacuum chamber VC is 10 -3 to 10 -5 . Torr, electron beam welding machine EBW output: 100KW, welding speed:
The case is shown in which the weld width W: 5 mm, the penetration depth d: 30 mm, and the pitch between welds p: 20 mm at 2.5 m/min. Note that the welding order for the peripheral and central parts of the base material 1 and the composite material 2, and the welding mode for the central part are not limited to the above-mentioned cases. For example, the welding order may be first welding the central part, then The peripheral portion may be welded, and the welding pattern of the central portion may be zigzag, spiral, or the like. Welding process C
The laminated metal plates that have been integrally welded together through the process are heated as a whole to approximately 1250°C in a heating furnace (not shown) or by electromagnetic induction, and then the lower surface of the base material 1 is heated to approximately 1250°C. Cooling device to prevent warping during rolling
The sheet is cooled to around 1180° C. by WC and then rolled in a hot rolling step D to obtain a clad metal sheet CM of desired specifications in which the abutment surfaces of the base material 1 and composite material 2 are integrally joined. Examples are shown below. Example 1 (1) Base material: Low carbon steel (carbon content: 0.11%) (2) Composite material: SUS 304 (3) Welding conditions between base material and composite material: Degree of vacuum: 5×10 -4 Torr Welded area Width: 5mm Electron beam output: 100KW Weld pitch: 20mm Welding speed: 2.5m/min Penetration depth: 30mm (4) Welding pattern (center) Grid pattern (5) Specification plate thickness as clad metal plate: 10.0mm Plate width: 1800mm Plate length: 12000mm Cladding ratio: 10% Example 2 (1) Base material low carbon steel (2) Composite material high carbon steel (3) Welding conditions between base material and composite material Vacuum degree: 1 ×10 -5 Torr Weld width: 5mm Electron beam output: 40KW Weld pitch: 15mm Welding speed: 0.5m/min Penetration depth: 20mm (4) Welding pattern (center) Grid (5) As a clad metal plate Specifications Plate thickness: 15mm Plate width: 900mm Plate length: 6000mm Clad ratio: 50% Example 3 (1) Base material low carbon steel (2) Composite material Cu+Ni (Cu: 90% Ni: 10%) (3 ) Welding conditions between base metal and composite material Vacuum level: 5×10 -4 Torr Electron beam output: 100KW Welding speed: 2m/min Penetration depth: 35mm (4) Welding pattern Zigzag shape (5) As a clad metal plate Specification Plate Thickness: 10mm Plate Width: 1800mm Plate Length: 9000mm Clad Ratio: 10% Table 1 shows the strength test results conducted on the metal plate in the above example where the base material and composite material were welded together. . For comparison, strength test results are also shown for metal plates obtained by a conventional method in which a base material and a composite material having the same material specifications are welded in a closed loop only at the periphery as shown in FIG.

【表】 表1から明らかなように、母材と合材との間に
おける剪断強度及び引張り強度共、従来例に比較
して著しく増大していることがわかる。 表2は上述した各実施例によつて製造したクラ
ツド金属板と、従来の如く母材と合材との周辺部
のみに電子ビーム溶接を施した積層金属板を圧延
して製造したクラツド金属板との接合不良発生率
を対比して示したものである。
[Table] As is clear from Table 1, both the shear strength and tensile strength between the base material and the composite material are significantly increased compared to the conventional example. Table 2 shows the clad metal plates manufactured according to the above-mentioned examples and the clad metal plates manufactured by rolling a laminated metal plate in which electron beam welding was performed only on the periphery of the base material and composite material as in the past. This figure shows the rate of occurrence of bonding defects in comparison with

【表】 表2から明らかなように本発明方法によつた場
合には不良は皆無に近く、良好な接合状態が得ら
れていることがわかる。 以上の如く本発明方法にあつては母材と合材と
の結合力が格段に向上し、積層金属板を母材と合
材とが接合したクラツド金属板に熱間圧延する際
にも母材と合材との重ね合せ面に大気が介在する
ことがなく、また母材と合材とが離反することも
なく、母材と合材との接合が的確に行われてクラ
ツド金属板としての品質の大幅な向上が図れる
等、本発明方法は優れた効果を奏するものであ
る。
[Table] As is clear from Table 2, when the method of the present invention was used, there were almost no defects and a good bonding state was obtained. As described above, in the method of the present invention, the bonding strength between the base material and the composite material is significantly improved, and the bond strength between the base material and the composite material is significantly improved, and the bonding strength between the base material and the composite material is also improved when hot rolling a laminated metal plate into a clad metal plate in which the base material and composite material are joined. There is no air present between the overlapping surfaces of the material and the composite material, and the base material and composite material do not separate, allowing the base material and composite material to be accurately joined to form a clad metal plate. The method of the present invention has excellent effects such as a significant improvement in quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施工程を示す模式図、
第2図は母材と合材とを溶接した積層金属板の断
面図、第3図は母材と合材とを溶接した状態の断
面図、第4図は従来の方法の積層金属板の断面図
である。 1……母材、2……合材、SL……スラブ、
EBW……電子ビーム溶接機、MC……移動台車、
EB……電子ビーム、CD……コールドスカーフ
ア、SB……シヨツトブラスト装置。
FIG. 1 is a schematic diagram showing the implementation steps of the method of the present invention,
Figure 2 is a cross-sectional view of a laminated metal plate obtained by welding the base material and composite material, Figure 3 is a cross-sectional view of the base metal and composite material welded together, and Figure 4 is a cross-sectional view of the laminated metal plate obtained by welding the base material and composite material. FIG. 1...Base material, 2...Mixture material, SL...Slab,
EBW...Electron beam welding machine, MC...Moving trolley,
EB...electron beam, CD...cold scarf, SB...shot blast device.

Claims (1)

【特許請求の範囲】[Claims] 1 表面を清浄にして母材と合材とを積層し、積
層した母材と合材とを、母材又は合材の表面側か
ら真空中下で電子ビームにて溶接する工程を含む
クラツド金属板の製造方法において、母材と合材
とを重ね合せた積層金属板を、周縁部はこれに沿
つて母材と合材との間を外部から遮閉すべく閉ル
ープ状に溶接し、閉ループ状の溶接部に囲繞され
る中央部は母材と合材との相互の結合力を高める
べく所要の線状に溶接した後、この積層金属板を
熱間にて圧延することを特徴とするクラツド金属
板の製造方法。
1 Clad metal, which involves the process of cleaning the surface, laminating the base material and composite material, and welding the laminated base material and composite material from the surface side of the base material or composite material with an electron beam under vacuum in a vacuum. In the manufacturing method of the plate, a laminated metal plate made by overlapping a base material and a composite material is welded along the peripheral edge in a closed loop shape to shield the gap between the base material and composite material from the outside. The central part surrounded by the welded part is welded in a required line to increase the mutual bonding strength between the base metal and composite metal, and then this laminated metal plate is hot rolled. Method of manufacturing metal plates.
JP382480A 1980-01-16 1980-01-16 Manufacture of clad metallic plate Granted JPS56102388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP382480A JPS56102388A (en) 1980-01-16 1980-01-16 Manufacture of clad metallic plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP382480A JPS56102388A (en) 1980-01-16 1980-01-16 Manufacture of clad metallic plate

Publications (2)

Publication Number Publication Date
JPS56102388A JPS56102388A (en) 1981-08-15
JPS6329635B2 true JPS6329635B2 (en) 1988-06-14

Family

ID=11567935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP382480A Granted JPS56102388A (en) 1980-01-16 1980-01-16 Manufacture of clad metallic plate

Country Status (1)

Country Link
JP (1) JPS56102388A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008015995A1 (en) * 2008-03-27 2009-10-01 Dieffenbacher Gmbh + Co. Kg Fabricating press plates with cooling channels, used to manufacture panels, bonds two flat components together by electron beam welding

Also Published As

Publication number Publication date
JPS56102388A (en) 1981-08-15

Similar Documents

Publication Publication Date Title
WO2018036382A1 (en) Method for preparing stainless steel composite plate for tmcp bridge
JP7165756B2 (en) Apparatus and method for manufacturing metal composite plate by continuous casting and rolling
CN102764960B (en) Method for manufacturing composite steel plate for hydrogenation reaction kettle barrel
JP2021527569A (en) Production equipment and methods for manufacturing metal composite plates in a short process
CN107009090A (en) Production method of stainless steel composite board
US3393445A (en) Manufacture of stainless clad steel
CN104786582B (en) A kind of precast concrete production line die station face steel plate and its manufacture method
JPS6329635B2 (en)
US3228103A (en) Metal cladding
US3906618A (en) Process for the production of bi-metallic sheets
WO2010123402A1 (en) Bimetallic billet and a method for manufacturing a clad metal sheet
US2619715A (en) Bonding together of metals
RU2700441C1 (en) Method of producing copper-nickel coating on surfaces of titanium plate
JPS6149749A (en) Continuous casting method of clad steel billet
RU2421312C2 (en) Method of producing clad metal sheet
KR102348528B1 (en) Method of manufacturing clad steel plate
RU2709302C1 (en) Clad sheet manufacturing method
US3474218A (en) Electron beam conditioning ingot and slab surfaces
JPS6149748A (en) Continuous casting method of clad steel billet
KR102405037B1 (en) Method of manufacturing clad steel plate
JPS60223657A (en) Joining method of thick-walled steel material
CN114523185B (en) Vacuum diffusion composite welding production process for high-alloy thick plate blank
JPS58153731A (en) Method of reducing residual weld stress
RU2225781C2 (en) Method for making large-size clad sheets
JPS60244491A (en) Production of copper or copper alloy clad steel plate