JPS6149749A - Continuous casting method of clad steel billet - Google Patents

Continuous casting method of clad steel billet

Info

Publication number
JPS6149749A
JPS6149749A JP17002284A JP17002284A JPS6149749A JP S6149749 A JPS6149749 A JP S6149749A JP 17002284 A JP17002284 A JP 17002284A JP 17002284 A JP17002284 A JP 17002284A JP S6149749 A JPS6149749 A JP S6149749A
Authority
JP
Japan
Prior art keywords
steel
steel strip
strip
molten steel
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17002284A
Other languages
Japanese (ja)
Inventor
Kozo Yano
矢野 幸三
Shinobu Miyahara
忍 宮原
Mikio Mugita
麦田 幹雄
Makoto Suzuki
真 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP17002284A priority Critical patent/JPS6149749A/en
Publication of JPS6149749A publication Critical patent/JPS6149749A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/008Continuous casting of metals, i.e. casting in indefinite lengths of clad ingots, i.e. the molten metal being cast against a continuous strip forming part of the cast product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To weld the entire surface of a clad steel billet to satisfactory quality without deformation and to improve product yield in continuous casting of the clad steel in which a molten steel is supplied, welded and quickly cooled onto the surface of a continuously moving steel strip by preheating the steel strip in plural stages within a specific heating-up range and holding the temp. thereof for prescribed time after pouring. CONSTITUTION:The continuously moving clad steel strip 6 is preheated stepwise within the temp. range of >=300 deg.C and lower by 200 deg.C than the solidus line temp. of the steel strip in plural heating furnaces 12a-c kept within 400 deg.C heating up temp. to prevent the deformation thereof and to heat uniformly the entire surface and thereafter the strip is fed to a pouring part 2. The entire surface is satisfactorily welded in a heat insulating zone 16 and an air cooling zone 17 after pouring then the strip is subjected to quick cooling 18. The clad steel billet 10 has the defectless weld quality without having the unwelded part and without the deformation and buckling thereof. The product yield is thus improved.

Description

【発明の詳細な説明】 〔発明の技術分訝〕 この発明は、連続鋳造によって品質の浸れたクラッド鋼
鋳片全、低コストで歩留り高く能率的j)て製造するこ
とができるクラッド鋼消片の連・胱坊造方法に関するも
のである。
[Detailed Description of the Invention] [Technical Analysis of the Invention] The present invention provides a clad steel slab that can be produced by continuous casting at low cost, with high yield, and with high efficiency. This series concerns the method of making bladders.

〔従来技術とその問題点〕[Prior art and its problems]

クラッド鋼材の製造方法として1次の方法が知られてい
る。
A first-order method is known as a method for manufacturing clad steel materials.

(1)圧延法 (2)爆着法 (3)  肉盛法 (4)  鋳ぐるみ法 圧延法は、母材と合せ材とを重ね合せて4周を溶接し、
熱間圧延によって圧着させること刀・らなる方法である
。しかしなから、この方法は、接合する表面を研摩した
後、その4周を溶接し、さらに酸化防止のため母材と合
せ材のあいだの隙間を真空にするなど、圧延の前処理に
手間が刀λかるので、製造コストが高くなり且つ量産が
難しい。
(1) Rolling method (2) Explosion bonding method (3) Overlay method (4) Casting method rolling method involves overlapping base material and cladding material and welding four circumferences.
This is a method of crimping by hot rolling. However, this method requires a lot of time and effort in pre-rolling, such as polishing the surfaces to be joined, welding the four circumferences, and creating a vacuum between the base material and the laminate to prevent oxidation. Since the sword costs λ, manufacturing costs are high and mass production is difficult.

爆着法は、母材と合せ材と火薬とを重ねて、爆発による
衝撃波で接着させることからなる方法である。この方法
は、広範囲の金属に適用できる長所がある反面、製造可
能面積に上限があり、また高価な火薬を用いることなど
のために、製造コストがきわめて高く、且つ、爆発音が
大きいこと刀1ら、環境上の問題もある。
The explosive bonding method is a method in which a base material, a laminate material, and gunpowder are layered and bonded together using shock waves from an explosion. Although this method has the advantage of being applicable to a wide range of metals, it has an upper limit on the area that can be manufactured, and because it uses expensive gunpowder, the manufacturing cost is extremely high and the explosion noise is loud. There are also environmental issues.

肉感法は、母材表面に合せ材ヲ置接肉盛溶凄することか
・らなる方法である。この方法は、母材の成形加工後の
クラッド化が可能である利点がある反面、溶量作業に手
間がか711’ v、且つ、大面積のものの製造にはむ
いていないなど生産性が悪い。
The sensitization method is a method that consists of placing a cladding material on the surface of the base material and depositing and melting it. Although this method has the advantage of being able to form a cladding after forming the base material, it requires a lot of effort in melting, and is not suitable for manufacturing large-area products, resulting in poor productivity. .

鋳ぐるみ法は、合せ材を鋳型内にセットし、母材でちる
溶鋼を鋳型に注入して合せ材ヲ鋳ぐるむことにより複合
鋼塊を調製し、この複合鋼塊を圧延して産着させること
刀・らなる方法である。し刀・しながら、この方法は、
一定寸法以上の厚さを有する合せ材を必要とするので、
クラッド比が限定され、且つ、介在物のかみこみ、合せ
材表面の絞。
In the casting method, a composite steel ingot is prepared by setting the composite material in a mold, injecting molten steel that has been mixed with the base metal into the mold and casting the composite material, and then rolling this composite steel ingot to produce it. This is the way to make a sword. While using this method,
Since it requires a laminate with a thickness of a certain size or more,
The cladding ratio is limited, inclusions are trapped, and the surface of the laminate is squeezed.

化などに対する対策を必要とするなどの問題がある。と
くに、合せ材の溶損、圧延でのメタルフa−によるクラ
ッド比の変化などによって、歩留の大巾な低下が生ずる
ことは最大の問題である。
There are problems such as the need for countermeasures against In particular, the biggest problem is that the yield is greatly reduced due to melting loss of the laminate material and changes in the cladding ratio due to the metal a during rolling.

上述したように、従来のクラッド鋼の製造方法は、いず
れも生産性が低く、製造コストが高いので、コストメリ
ットが出にくく需要拡大は離しいのが実情である。
As mentioned above, all conventional methods for manufacturing clad steel have low productivity and high manufacturing costs, so the reality is that it is difficult to achieve cost benefits and demand expansion is slow.

そこで、近年連続鋳造によってクラッド鋼鋳片を製造す
る研究がなされており、例えば、特開昭53−2341
号および特開昭58−65549号   ゛には、1つ
の合せ材の表面または1対の合せ材間に、母材としての
溶鋼全供給しつつ鋳造することによってクラッド鋼鋳片
を製造すること7)>らなる方法が開示されている。
Therefore, in recent years, research has been carried out to manufacture clad steel slabs by continuous casting.
No. 58-65549 and JP-A No. 58-65549 disclose a method of producing a clad steel slab by casting while supplying all of the molten steel as a base material to the surface of one cladding material or between a pair of cladding materials 7 )> is disclosed.

第3図は、上述した従来方法の概略説明図である。取鍋
1内の母材としての溶鋼5は、取鍋1の下方に設けられ
たタンディツシュ2内に、取鍋1の底部に設けられたノ
ズル3を通って注入される。
FIG. 3 is a schematic explanatory diagram of the conventional method described above. Molten steel 5 as a base material in the ladle 1 is injected into a tundish 2 provided below the ladle 1 through a nozzle 3 provided at the bottom of the ladle 1.

タンディツシュ2の下部には、水平の溶鋼排出口4が設
けられており、タンディツシュ2内の母材としての溶鋼
5は、水平の溶鋼排出口4を通って排出される。
A horizontal molten steel discharge port 4 is provided at the lower part of the tundish 2, and the molten steel 5 as a base material in the tundish 2 is discharged through the horizontal molten steel discharge port 4.

一方、合せ材鋼帯6は、払い出し装置としての被イオフ
リール7刀1う1駆動ロール8によって水平に引出され
て、タンディツシュ2の下部に水平に設けられた溶鋼排
出口4の下方に導かれ、タンディツシュ2の下面に沿っ
て水平に移動する。9は溶鋼排出口4の下方位置を起点
として、合せ材鋼帯6の移動通路に沿って設けられた冷
却装置である。
On the other hand, the laminating material steel strip 6 is pulled out horizontally by a driving roll 8 of a reel 7 serving as a dispensing device, and guided below the molten steel discharge port 4 provided horizontally at the bottom of the tundish 2. It moves horizontally along the lower surface of Tanditsh 2. Reference numeral 9 denotes a cooling device provided along the movement path of the cladding material steel strip 6 starting from a position below the molten steel discharge port 4.

タンディツシュ2からその溶鋼排出口4を通って排出さ
れた母材としての、溶鋼5は、水平に移動する合せ材鋼
帯6の表面上に供給されて合せ材鋼帯6に溶着し、冷却
装置9により合せ材鋼帯6の裏面から冷却されて、合せ
材鋼帯6の表面上に凝固し、かくして、連続的にクラッ
ド鋼鋳片10が製造される。
The molten steel 5 as a base material discharged from the tundish 2 through the molten steel discharge port 4 is supplied onto the surface of the horizontally moving cladding steel strip 6, and is welded to the cladding steel strip 6, and then cooled by the cooling device. 9, the laminated steel strip 6 is cooled from the back side and solidified on the surface of the laminated steel strip 6, thus continuously producing a clad steel slab 10.

し77瓢しながら上述した方法には、次のような問題が
ある。
However, the above-mentioned method has the following problems.

(1)  合せ材鋼帯6と母材としての溶鋼5とが完全
に溶着するためには、両者の接触界面がある程度の高温
状態(例えば固相i尿温度)になっている必要がある。
(1) In order for the laminate steel strip 6 and the molten steel 5 as the base material to be completely welded together, the contact interface between the two needs to be at a certain high temperature (for example, solid phase temperature).

しかしながら、合せ材゛鋼帯6は常温である刀為ら、#
鋼5が供給されても、その界面温度が溶着に必要な温度
まで達男るのに時間が717刀・る一方、低温の合せ材
鋼帯6との接;独によって、溶鋼5に凝固シェルが生成
しやすくなるため、合せ材鋼帯6と溶鋼5の間に未溶着
部分が生ずる。
However, the laminating material steel strip 6 is at room temperature.
Even if the steel 5 is supplied, it takes 717 hours for the interface temperature to reach the temperature required for welding. Since it is easy to form, an unwelded portion is created between the cladding material steel strip 6 and the molten steel 5.

(2)合せ材鋼帯6は、母材としての溶鋼5の供給時に
生ずる急激な温度変化、即ち室温71λら700〜10
00℃への急激な温度上昇によって、溶鋼5の供給位置
近傍において変形(反りや曲がV)および座屈が生じや
すい。
(2) The laminated steel strip 6 is exposed to the sudden temperature change that occurs when the molten steel 5 as a base material is supplied, that is, from room temperature 71λ to 700-10
Due to the rapid temperature rise to 00° C., deformation (curvature or curve V) and buckling are likely to occur near the supply position of the molten steel 5.

(3)  鋳造後の、冷却段階のクラッド鋼鋳片にも変
形および座屈が生じやすい。
(3) Clad steel slabs are also susceptible to deformation and buckling during the cooling stage after casting.

上記(2)および(3)に述べた変形および座屈は、急
激な温度変「ヒによる熱膨張および収縮(熱歪)や、鋼
帯の厚さ方向における極端な温度の不均一によって発生
するものであり、クラッド鋼鋳片の安定した製造を妨げ
る大きな問題点である。
The deformation and buckling mentioned in (2) and (3) above are caused by thermal expansion and contraction (thermal strain) due to sudden temperature changes, and by extreme temperature non-uniformity in the thickness direction of the steel strip. This is a major problem that hinders the stable production of clad steel slabs.

〔発明の目的〕[Purpose of the invention]

従って、この発明の目的は、連続鋳造によってクラッド
鋼鋳片全製造するに当り、健全な溶着面を有し且つ変形
や座屈のない品質の優れたクラッド鋼鋳片を、歩留り高
く安定して連続的に製造する方法全提供することにちる
Therefore, an object of the present invention is to produce high-quality clad steel slabs with a sound welding surface and no deformation or buckling in a stable manner with a high yield when manufacturing clad steel slabs by continuous casting. We are here to provide a complete method for continuous production.

〔発明の概要〕[Summary of the invention]

この発明の方法は、連続的に移動°する、1つの合せ材
鋼帯の表面上または1対の合せ材鋼帯の間に、母材とし
ての溶鋼を供給して、前記溶鋼を前記合せ材鋼帯に溶着
させ、次いで、前記合せ材鋼帯の前記溶鋼の溶N直と反
対側の面全強制冷却して、前記合せ材鋼帯に溶着した溶
鋼を凝固させることによりクラッド鋼鋳片を連、読的に
製造するクラッド鋼鋳片の連続鋳造方法において、前記
母材としての溶鋼が供給される前に、前記合せ材鋼帯を
、前記溶鋼が供給される側の表面こ度が、300℃刀・
ら、前記合せ材鋼帯の固相テ尿温度よりも200℃低い
温度の範囲内になるように予熱し、そして、前記予熱を
複数段にわけ、1回の予熱による鋼帯の温度上昇金40
0℃以内として段階的に行ない、次いで、前記母材とし
ての溶鋼を供給し、前記溶鋼の供給された合せ材鋼帯の
背面を、所定時間の間、断熱材で保温した後、段階的に
強制冷却することに特黴全有するものである。
The method of the present invention involves supplying molten steel as a base material onto the surface of a continuously moving cladding steel strip or between a pair of cladding steel strips, and transferring the molten steel to the cladding steel strip. A clad steel slab is welded to a steel strip, and then the entire surface of the clad steel strip opposite to the molten steel is forcedly cooled to solidify the molten steel welded to the clad steel strip. In a continuous casting method for continuous casting of clad steel slabs, before the molten steel serving as the base material is supplied, the cladding material steel strip is made such that the surface roughness on the side to which the molten steel is supplied is 300℃ sword
The steel strip is preheated to a temperature 200°C lower than the solid state temperature of the laminated steel strip, and the preheating is divided into multiple stages to reduce the temperature increase of the steel strip by one preheating. 40
The process is carried out in stages within 0°C, and then the molten steel as the base material is supplied, and the back side of the laminated steel strip to which the molten steel has been supplied is kept warm with a heat insulator for a predetermined period of time, and then the process is carried out in stages. It has the special feature of forced cooling.

〔発明の構成〕[Structure of the invention]

第1図は、この発明の方法に使用される装置の1つの実
施態様として、1つの合せ材鋼帯の表面上に母材として
の溶g4全供給し、片面クラッド鋼鋳片を製造する装置
を示す説明図である。取鍋1の下方(ではタンディツシ
ュ2が設けられ、クンディツシュ2の下部には水平の溶
鋼排出口4が設けられている。取鍋1内の母材としての
溶鋼5は、取鍋lの底部に設けられたノズル3を通って
タンディツシュ2内に注入され、タンディツシュ2内の
溶m5は、水平の溶鋼排出口4を通って排出される。
FIG. 1 shows, as one embodiment of the apparatus used in the method of the present invention, an apparatus for producing a single-sided clad steel slab by supplying all of the molten g4 as a base material onto the surface of one laminated steel strip. FIG. A tundish 2 is provided below the ladle 1, and a horizontal molten steel discharge port 4 is provided at the bottom of the tundish 2. The melt m5 in the tundish 2 is injected into the tundish 2 through the provided nozzle 3 and is discharged through the horizontal molten steel outlet 4.

コイル状に巻小れている合せ材鋼帯6は、駆動ロール8
によって、払い出し装置としてのペイオフリール7η1
ら水平に引出され、ローラ13によってタンディツシュ
2の下部に水平に設けられた溶鋼排出口4の下方に導η
)れ、タンディツシュ2の下面に沿って移動する。
The laminated steel strip 6 wound into a coil is moved to a drive roll 8.
Accordingly, the payoff reel 7η1 as a payout device
The molten steel is pulled out horizontally from the tundish 2 and guided by rollers 13 to the lower part of the molten steel discharge port 4 provided horizontally at the bottom of the tundish 2.
) and moves along the bottom surface of the tanditsh 2.

タンディツシュ2の入側における、合せ材鋼帯6の移動
通路に沿って、合せ材鋼帯6の形状全矯正するための矯
正ロール11と、合せ材鋼帯6を予熱するための、第1
加熱炉12a、第2加熱炉12bおよび第3加熱炉12
cとが設けられている。第1加熱炉12a、第2加熱炉
12b1第3加熱炉12cは、この順に、加熱温度が次
第に高くなるように設定されており、最も高温の第3加
熱炉12cは、クンディツシュ2の直前に設けられてい
る。加熱炉12a 、12b 、12c内は、合せ材鋼
帯6の酸化を防止するために不活性ガス雰囲気に保つこ
とが望ましい。
Along the movement path of the clad steel strip 6 on the entry side of the tundish 2, there is a straightening roll 11 for completely correcting the shape of the clad steel strip 6, and a first straightening roll 11 for preheating the clad steel strip 6.
Heating furnace 12a, second heating furnace 12b, and third heating furnace 12
c is provided. The first heating furnace 12a, the second heating furnace 12b1, and the third heating furnace 12c are set so that the heating temperature gradually increases in this order, and the third heating furnace 12c, which has the highest temperature, is installed immediately before the kundish 2. It is being It is desirable to maintain an inert gas atmosphere in the heating furnaces 12a, 12b, and 12c to prevent oxidation of the laminated steel strip 6.

第3加熱炉12cの出側刀・ら、タンディツシュ2の溶
鋼排出口4を通って所定距離の間の合せ材鋼帯6の移動
通路に沿い、合せ材鋼帯6の裏面に接近させて、加熱炉
12a、12b、12Cにより予熱された合せ材鋼帯6
の裏面刀・らの熱放散全防止するための耐火物製の断熱
材14が設けられている。なお断熱材14は、合せ材鋼
帯6の全面を覆う断熱室状となし、その内部を不活性ガ
ス雰囲気にすれば、より効果的である。
Along the movement path of the cladding material steel strip 6 for a predetermined distance from the exit side of the third heating furnace 12c through the molten steel discharge port 4 of the tundish 2, approaching the back surface of the cladding material steel strip 6, Laminating steel strip 6 preheated by heating furnaces 12a, 12b, 12C
A heat insulating material 14 made of a refractory material is provided to completely prevent heat dissipation from the back of the sword. It will be more effective if the heat insulating material 14 is formed into a heat insulating chamber that covers the entire surface of the laminated steel strip 6, and the inside thereof is filled with an inert gas atmosphere.

15は、タンディツシュ2のi溶鋼排出口4の出側に、
その表面上に母材としての溶M5が供給され几合せ材鋼
帯6の移動通路に沿って、その両側方に配設され友、固
定の、−2之は、無端帯刀≧らなる移動式のサイドブロ
ックである。
15 is on the exit side of the molten steel discharge port 4 of the tanditsh 2,
Molten M5 as a base material is supplied onto the surface of the steel strip 6, and a movable type consisting of an endless belt is disposed on both sides of the steel strip 6 along the moving path. This is the side block.

タンディツシュ2の溶鋼排出口4の出側には、溶鋼排出
口4小ら一定間隔全おいて、合せ材5・4帯6の移動通
路に沿い、その表面上に母材としての溶鋼5が供給され
た合せ材鋼帯6をその裏面刀1ら冷却するための、冷却
水を噴射する上向きの複数のスプレーノズルからなる、
第1冷却帯18a、第2冷却帯18b、第3冷却帯18
cが設けられている。
On the outlet side of the molten steel discharge port 4 of the tundish 2, molten steel 5 as a base material is supplied onto the surface of the molten steel discharge port 4 along the movement path of the cladding materials 5 and 4 strips 6 at regular intervals from the molten steel discharge port 4. It consists of a plurality of upward spray nozzles that spray cooling water to cool the laminated steel strip 6 from its back side blade 1.
First cooling zone 18a, second cooling zone 18b, third cooling zone 18
c is provided.

16は、タンディツシュ2の溶鋼排出口4と第1冷却帯
18aとの間に設けられた、母材としての溶!jt!4
5が供給された合せ材鋼帯6の裏面を、所定時間の間、
断熱材14で保温するための断熱保温帯、17は、断熱
保温帯16に続く空冷帯である。
16 is a molten steel base material provided between the molten steel discharge port 4 of the tundish 2 and the first cooling zone 18a. jt! 4
For a predetermined period of time, the back side of the laminated steel strip 6 supplied with
A heat insulating zone 17 for keeping warm with the heat insulating material 14 is an air cooling zone following the heat insulating zone 16.

駆動ロール8によりペイオフリール77)−ラ引出され
て、−一213により水平に移動する合せ材鋼帯6は、
第1加熱炉12a、第2加熱炉12bおよび第3加熱炉
12cによってその表面が段階的に所定温度に予熱され
、次いで、その表面上に、タンディツシュ2の溶鋼排出
口4小ら母材としての溶g!45が供給される5゜溶鋼
5と合せ材鋼帯6とは、合せ材鋼帯6が第1加熱炉18
a、第2加熱炉18b、第3加熱炉18cによって、段
階的に所定温度にまで予熱されているので、変形督よび
座屈が生ずることなく完全に溶着する。
The laminating steel strip 6 is pulled out by the drive roll 8 and moved horizontally by the payoff reel 77)-1 213.
The surface is preheated to a predetermined temperature in stages by the first heating furnace 12a, the second heating furnace 12b and the third heating furnace 12c, and then the molten steel outlet 4 of the tundish 2 is heated as a base material onto the surface. Molten g! 45 is supplied to the 5° molten steel 5 and the cladding steel strip 6, the cladding steel strip 6 is supplied to the first heating furnace 18.
a, the second heating furnace 18b, and the third heating furnace 18c preheat to a predetermined temperature in stages, so that complete welding occurs without deformation or buckling.

次いで、溶鋼5が溶着した合せ材鋼帯6は、少なくとも
短辺側の凝固が終るまでサイドブロック15によりサポ
ートされて移動し、断熱保温帯16でその裏面が所定時
間保温され、空冷帯17で弱冷却され几後、第1冷却帯
18a、第2冷却帯18b、第3冷却帯18Cによυ段
階的に冷却されて溶鋼5が凝固し、クラッド鋼鋳片10
となる。
Next, the clad steel strip 6 to which the molten steel 5 has been welded is supported by the side blocks 15 and moved until at least the short sides have solidified, the back side of which is kept warm in the heat insulating zone 16 for a predetermined period of time, and the back surface is kept warm in the air cooling zone 17. After being weakly cooled, the molten steel 5 is cooled in stages by the first cooling zone 18a, the second cooling zone 18b, and the third cooling zone 18C, solidifying the molten steel 5, and forming the clad steel slab 10.
becomes.

合せ材鋼帯6を移動させるための財勤ロール8は、ペイ
オフリール7とタンディツシュ2との間の適宜の位置お
よびタンディツシュ2より下流側の適宜の位置に設けら
れ、ペイオフリール7刀瓢ら引出された合せ材鋼帯6を
、所定の速度で加熱炉12a 、12b 、12c@経
てタンディツシュ2の溶鋼排出口4の下方に導き、そし
て、前記溶鋼排出口4から合せ材鋼帯6の表面上に溶鋼
5が供給され溶着したクラッド鋼鋳片10を、所定の速
度で移動させる。
A rolling roll 8 for moving the laminated steel strip 6 is provided at an appropriate position between the payoff reel 7 and the tundish 2 and at an appropriate position downstream of the tundish 2, and is provided at an appropriate position downstream from the tundish 2, and is used to move the payoff reel 7 from the drawer. The laminated steel strip 6 is guided at a predetermined speed through the heating furnaces 12a, 12b, 12c@ to below the molten steel outlet 4 of the tundish 2, and from the molten steel outlet 4 onto the surface of the laminated steel strip 6. The clad steel slab 10 to which molten steel 5 is supplied and welded is moved at a predetermined speed.

上述した装置によってクラッド鋼刺片を製造するに当り
、母材の厚さは、タンディツシュ2の溶鋼排出口4から
排出される溶鋼5の流量または合せ材鋼帯6の移動速度
によって制御することができる。
In manufacturing clad steel strips using the above-described apparatus, the thickness of the base metal can be controlled by the flow rate of the molten steel 5 discharged from the molten steel outlet 4 of the tundish 2 or the moving speed of the clad steel strip 6. can.

この発明(でおいては、母材としての溶鋼が供給される
直前における合せ材鋼帯を、前記溶鋼が供給される側の
表面温度が、300′C71−ら、前記合せ材鋼帯の固
相線温度よりも200℃低い温度の範囲内になるように
予熱することが必要である。
In this invention, the surface temperature of the laminate steel strip immediately before the molten steel is supplied as the base material is 300'C71-, and the hardness of the laminate steel strip is 300'C71-. It is necessary to preheat to a temperature that is 200° C. lower than the phase line temperature.

即ち、母材としての;溶鋼が供給される直前((おける
合せ材鋼帯を、上述した範囲内の温度まで予熱すること
によって、合せ材鋼帯の表面上に溶鋼が供給されたとき
に、両者の界面全迅速に溶着に必要な高温にすることが
できる。従って、合せ材鋼帯の表面上に供給された溶鋼
が冷却されて凝固シェルが生成することはなく、健全な
溶着界面を有するクラッド鋼鋳片を安定して製造するこ
とができる。
That is, as the base metal; The entire interface between the two can be quickly brought to the high temperature required for welding.Therefore, the molten steel supplied onto the surface of the cladding steel strip will not cool down and a solidified shell will be generated, resulting in a sound welding interface. Clad steel slabs can be stably produced.

予熱された合せ材鋼帯の温度が300℃未満では、上記
作用に所望の効果が得られない。一方、予熱された合せ
材鋼帯の温度が、その固相線温度よりも200℃低い温
度奮起えて高いと、合せ材鋼帯の引張シ強度が著しく低
下する結果、合せ材鋼帯が変形または破断したり、また
、合せ材鋼帯の表面に供給された溶鋼によってその温度
が上昇しすぎて、合せ材鋼帯が溶損または溶断する問題
が生ずる。
If the temperature of the preheated laminated steel strip is less than 300°C, the desired effect cannot be obtained from the above action. On the other hand, if the temperature of the preheated laminate steel strip is 200°C lower than its solidus temperature, the tensile strength of the laminate steel strip will decrease significantly, resulting in deformation or deformation of the laminate steel strip. There is a problem in that the steel strip breaks or the temperature of the steel strip increases too much due to the molten steel supplied to the surface of the steel strip, causing the steel strip to melt or break.

上述した合せ材鋼帯の予熱は、複数基の加熱炉によって
段階的に行ない、1回の予熱による鋼帯の温度上昇は、
400℃以内とすることが必要であり、そして、母材と
しての溶鋼が溶着した合せ材鋼帯の冷却は、所定時間の
間、上記鋼帯の裏面を保温した後、複数の冷却帯により
段階的に冷却することが必要である。
The above-mentioned preheating of the laminated steel strip is performed in stages using multiple heating furnaces, and the temperature rise of the steel strip due to one preheating is as follows:
It is necessary to keep the temperature within 400℃, and the cooling of the laminated steel strip to which the molten steel as the base material has been welded is carried out in stages using multiple cooling zones after keeping the back side of the steel strip warm for a predetermined period of time. Temperature cooling is required.

第2図は、合せ材鋼帯の予熱温度および溶鋼が溶着した
合せ材鋼帯の冷却温度の一例を示すグラフである。図面
かられ刀)るように、合せ材鋼帯は、第1加熱炉12a
で約400℃に予熱され、第2加熱炉12bで約750
℃に予熱され、そして、第3加熱炉12Cで約1100
℃に予熱される。
FIG. 2 is a graph showing an example of the preheating temperature of the cladding steel strip and the cooling temperature of the cladding steel strip to which molten steel has been welded. As shown in the drawing, the laminated steel strip is heated in the first heating furnace 12a.
It is preheated to about 400°C in the second heating furnace 12b, and heated to about 750°C in the second heating furnace 12b.
℃ and heated to about 1100℃ in a third heating furnace 12C.
Preheated to ℃.

そして、溶鋼が溶着した合せ材鋼帯は、断熱保@帯16
で約1400℃に保持され、空冷帯17で約1150℃
まで徐冷された後、第1冷却帯18aで約850℃に、
第2冷却帯18b−1?約7oo℃にそして第3冷却帯
18Cで約350℃にまで冷却される。
The cladding steel strip to which the molten steel has been welded is then
The temperature is maintained at approximately 1400℃, and the temperature is maintained at approximately 1150℃ in air cooling zone 17.
After being slowly cooled to about 850°C in the first cooling zone 18a,
Second cooling zone 18b-1? It is cooled to about 70° C. and then to about 350° C. in the third cooling zone 18C.

連続的に供給される鋼帯を加熱炉で加熱する場合、前後
の温度差が何度以内であれば座屈・変形金起こさないか
については、合せ材鋼帯の材質。
When continuously supplied steel strip is heated in a heating furnace, the difference in temperature between the front and rear must be within a certain range before buckling or deformation occurs, depending on the material of the cladding steel strip.

加熱方式1合せ材鋼帯の支持方法などによって異なるが
、熱膨張によって発生する歪を簡単なモデル式で表わす
と次のようになる。
Heating Method 1 Although it differs depending on the method of supporting the laminate steel strip, etc., the strain caused by thermal expansion can be expressed as follows using a simple model equation.

この式で、Xは加熱開始位置からの距離、Xoは加熱開
始位置から、鋼帯温度が定常温度になる位置までの距離
、εは距離Xにおける歪、αは合せ材鋼帯の課膨張係数
、△Tは加熱前と加熱後の合せ材鋼帯の温度差である。
In this equation, X is the distance from the heating start position, Xo is the distance from the heating start position to the position where the steel strip temperature reaches a steady temperature, ε is the strain at distance X, and α is the coefficient of expansion of the clad steel strip. , ΔT is the temperature difference between the laminated steel strip before and after heating.

上式は距離Xについての2次関数であり、Xについて微
分すると、α・△T ε’=     (2x  Xo)  となる。
The above equation is a quadratic function with respect to distance X, and when differentiated with respect to X, it becomes α·ΔT ε'= (2x Xo).

 0Z 従って、x=xo/2で歪εは最大となる。このときの
歪εmaxは・ εmax”α・△T/4 弾性限歪εcr k O,2%とすると、温度変化によ
って座屈変形を起こさない条件ε。r≧εmaxは、合
せ、材鋼帯が普通炭素@(α=8.8〜14.4X10
  Klの場合はΔT≦570.ステンレス鋼(α=1
1.5〜20.2X10−6に−”)の場合はΔT≦4
00となる。従って1回の加熱での鋼帯温度の上昇’(
i−400℃以内とすれば、合せ材鋼帯はまったく変形
座屈を起こすことなく予熱可能である。
0Z Therefore, the strain ε becomes maximum at x=xo/2. The strain εmax at this time is εmax"α・△T/4 Elastic limit strain εcr k O, 2%, the condition ε that buckling deformation does not occur due to temperature change. r ≥ εmax means that the steel strip is Ordinary carbon @ (α=8.8~14.4X10
In the case of Kl, ΔT≦570. Stainless steel (α=1
1.5 to 20.2X10-6), ΔT≦4
It becomes 00. Therefore, the steel strip temperature increases with one heating process'(
If the temperature is within i-400°C, the laminated steel strip can be preheated without causing any deformation buckling.

なお加熱炉は、ガス炉、電気抵抗炉、誘導加熱炉等、鋼
帯の材質、加熱温度などの条件を考瓜して適宜選択可能
であり、これらの併用も可能である。
Note that the heating furnace can be appropriately selected from gas furnaces, electric resistance furnaces, induction heating furnaces, etc., taking into consideration conditions such as the material of the steel strip and the heating temperature, and these can also be used in combination.

一方、冷却の際には、溶鋼が溶着した鋼帯をただちに水
冷すると、合せ材鋼帯と母材としてのi溶鋼との熟成1
縮率の差によって界面近傍に歪が生じ、その歪が大きい
場合には、合せ材と母材とが剥離することもある。また
、冷却時の厚み方向の温度の不均一により、溶鋼が溶着
した鋼帯が変形することもちる。これらを防止するには
、空冷などによジ弱冷却を行ない、加熱時と同様、歪を
生じない程度に徐々に冷却することが効果的である。た
だし、その場合でも、注湯口近傍は断熱保温帯とし1合
せ材と母材の十分な溶M k実現することが必要である
On the other hand, during cooling, if the steel strip to which the molten steel is welded is immediately water-cooled, the mating steel strip and the molten steel as the base material will age 1.
The difference in shrinkage ratio causes strain near the interface, and if the strain is large, the laminate and base material may separate. Furthermore, the steel strip to which the molten steel is welded may be deformed due to nonuniform temperature in the thickness direction during cooling. In order to prevent these, it is effective to perform mild cooling using air cooling or the like, and to cool gradually to an extent that no distortion occurs, similar to when heating. However, even in that case, it is necessary to provide a heat insulating zone near the pouring port to achieve sufficient melting Mk of the laminate material and the base material.

〔発明の実施例〕[Embodiments of the invention]

次に、この発明?更に実施例により詳述する。 Next, this invention? This will be further explained in detail with reference to Examples.

第1図に示した装置を用いて、ステンレス・クラッド鋼
澗片を製造した。厚さ5聾1幅1000.=、+lli
の、18−8ステンレス鋼(SUS 304)の鋼帯を
合せ材とし、母材として普通炭素914 (0,10%
C含有)の容鋼ヲ供給した。合せ材のステンレス鋼帯は
、熱延コイルであるが、あらかじめ酸洗して使用した。
Stainless clad steel pieces were manufactured using the apparatus shown in FIG. Thickness 5 Deafness 1 Width 1000. =, +lli
The laminating material is 18-8 stainless steel (SUS 304) steel strip, and the base material is ordinary carbon 914 (0.10%
We supplied C-containing steel. The stainless steel strip used as the cladding material was a hot-rolled coil, which was pickled before use.

合せ材としてのステンレス鋼帯を、アルゴン+3%水素
雰囲気にした加熱炉で予熱し、その表面上に溶鋼を約4
0+o+の厚さになるように供給した。このときのステ
ンレス鋼帯の予熱は、第1図に示すように3つの加熱炉
で行なh1第1加熱炉12aで約400℃に、第2加熱
炉12bで約750℃にそして第3加熱炉12cで約1
100℃に予熱した。
A stainless steel strip as a laminate is preheated in a heating furnace with an argon + 3% hydrogen atmosphere, and about 40% of the molten steel is placed on its surface.
It was supplied to a thickness of 0+o+. At this time, the stainless steel strip is preheated in three heating furnaces as shown in Fig. 1. h1 The first heating furnace 12a is heated to about 400°C, the second heating furnace 12b is heated to about 750°C, and the third heating furnace is heated to about 750°C. Approximately 1 in furnace 12c
Preheated to 100°C.

このようにして約1100℃に予熱された合せ材鋼帯の
表面上に、母材としての溶fAヲ約40調の厚さとなる
ように供給した。溶鋼の供給温度は1570℃、鋳造速
度(鋼帯の移動速度)は2 m/1Ilnであり、溶鋼
の供給口の断面形状は扁平スリット状で、溶鋼吐出流の
向きは合せ材鋼帯に対して25°とした。
Molten fA as a base material was supplied onto the surface of the laminated steel strip preheated to about 1100° C. to a thickness of about 40 mm. The molten steel supply temperature was 1570°C, the casting speed (steel strip movement speed) was 2 m/1ln, the cross-sectional shape of the molten steel supply port was a flat slit, and the direction of the molten steel discharge flow was relative to the laminated steel strip. The angle was set at 25°.

母材としての溶鋼が供給された合せ材鋼帯は、溶鋼供給
位置法ら50口の間の断熱保温帯16において、その裏
面を断熱材で保温し、次いで、50口の長さの空冷帯1
7において徐冷した後、その冷却水量が段階的に増加し
ている第1冷却帯18a、第2冷却帯18b1第3冷却
帯18cにおいて、段階的に冷却した。
The laminated material steel strip to which the molten steel as a base material has been supplied is kept warm on the back side with a heat insulating material in the heat insulating zone 16 between the molten steel supply position and 50 holes, and then placed in an air cooling zone with a length of 50 holes. 1
After slow cooling in step 7, cooling was performed in stages in the first cooling zone 18a, second cooling zone 18b1, and third cooling zone 18c, in which the amount of cooling water increased in stages.

その結果、健全な溶着界面を有するクラッド鋼鋳片を、
変形や座屈が生ずることなく製造することができた。
As a result, clad steel slabs with a sound weld interface,
The product could be manufactured without deformation or buckling.

この発明は、上述した1つの合せ材鋼帯の表面上に母材
としての溶鋼を供給し、片面クラッド鋼鋳片′5r:製
造する場合に限られるものではなく、1対の合せ材鋼帯
の間に母材としての溶鋼全供給し、両面クラッド鋼鋳片
を製造子る場合にも適用し得ること勿論である。
This invention is not limited to the case where molten steel as a base material is supplied onto the surface of one clad steel strip as described above to produce a single-sided clad steel slab '5r; Of course, this method can also be applied to the case where all of the molten steel is supplied as the base material during the manufacturing process, and a double-sided clad steel slab is produced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明方法によれば、界面に未
溶着部分のない健全な溶着界面を有する品質の優れたク
ラッド′w4鋳片t、変形や座屈が生ずることなく、歩
留り高く安定して経済的に製造することができる工業上
澄れた効果がもたらされる。
As explained above, according to the method of the present invention, a high-quality clad slab with a healthy welded interface with no unwelded parts at the interface, without deformation or buckling, and with a high yield and stability. It provides an industrially superior effect that can be produced economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の方法に使用される装置の1つの実
施態様を示す説明図、第2図は合せ材鋼帯の予熱温度お
よび溶鋼の供給された合せ材鋼帯の冷却温度の一例を示
すグラフ、箒3図は従来の装置の一例を示す説明図であ
る。図面において、1・・・取鍋、       2・
・タンrイツ/ユ、3・・・ノズル、      4・
・・溶鋼排出口、5・・・溶鋼、       6・・
・合せ材鋼帯、7・・・ペイオフリール、  8・・・
駆動0− ル、9・・・冷却装置、     10・・
・クラッド鋼鋳片、11・・・矯正ロール、   12
a・・・第1加熱炉、12b・・・第2加熱炉、   
12c・・・第3加熱炉、13・・・ローラ、    
 14・・・断熱材、15・・・サイドブロック、16
・・・断熱保温帯、17・・・空冷帯、     18
a・・・第1冷却帯、18b・・・第2冷却帯、   
18c・・・第3冷却帯。
FIG. 1 is an explanatory diagram showing one embodiment of the apparatus used in the method of the present invention, and FIG. 2 is an example of the preheating temperature of the laminated steel strip and the cooling temperature of the laminated steel strip supplied with molten steel. The graph showing , and Figure 3 are explanatory diagrams showing an example of a conventional device. In the drawing, 1... ladle, 2.
・Tan r it/yu, 3...nozzle, 4・
... Molten steel discharge port, 5... Molten steel, 6...
- Laminated steel strip, 7... Payoff reel, 8...
Drive 0-le, 9...Cooling device, 10...
- Clad steel slab, 11... Straightening roll, 12
a...first heating furnace, 12b...second heating furnace,
12c...Third heating furnace, 13...Roller,
14...Insulating material, 15...Side block, 16
...Insulation and heat retention zone, 17...Air cooling zone, 18
a... first cooling zone, 18b... second cooling zone,
18c...Third cooling zone.

Claims (1)

【特許請求の範囲】  連続的に移動する、1つの合せ材鋼帯の表面上または
1対の合せ材鋼帯の間に、母材としての溶鋼を供給して
、前記溶鋼を前記合せ材鋼帯に溶着させ、次いで、前記
合せ材鋼帯の前記溶鋼の溶着面と反対側の面を強制冷却
して、前記合せ材鋼帯に溶着した溶鋼を凝固させること
によりクラッド鋼鋳片を連続的に製造するクラッド鋼鋳
片の連続鋳造方法において、 前記母材としての溶鋼が供給される前に、前記合せ材鋼
帯を、前記溶鋼が供給される側の表面温度が、300℃
から、前記合せ材鋼帯の固相線温度よりも200℃低い
温度の範囲内になるように予熱し、そして、前記予熱を
複数段にわけ、1回の予熱による鋼帯の温度上昇を40
0℃以内として段階的に行ない、次いで、前記母材とし
ての溶鋼を供給し、前記溶鋼の供給された合せ材鋼帯の
裏面を、所定時間の間、断熱材で保温した後、段階的に
強制冷却することを特徴とするクラッド鋼鋳片の連続鋳
造方法。
[Claims] Molten steel as a base material is supplied onto the surface of one cladding steel strip or between a pair of cladding steel strips that move continuously, and the molten steel is transferred to the cladding steel. The clad steel slab is continuously welded to the strip, and then the surface of the clad steel strip opposite to the welded surface of the molten steel is forcedly cooled to solidify the molten steel welded to the clad steel strip. In the continuous casting method of clad steel slabs manufactured in
The steel strip is preheated to a temperature that is 200°C lower than the solidus temperature of the laminated steel strip, and the preheating is divided into multiple stages to reduce the temperature rise of the steel strip due to one preheating by 40°C.
The process is carried out in stages within 0°C, and then the molten steel as the base material is supplied, and the back side of the laminated steel strip to which the molten steel has been supplied is kept warm for a predetermined period of time with a heat insulating material, and then the molten steel is heated in stages. A continuous casting method for clad steel slabs characterized by forced cooling.
JP17002284A 1984-08-16 1984-08-16 Continuous casting method of clad steel billet Pending JPS6149749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17002284A JPS6149749A (en) 1984-08-16 1984-08-16 Continuous casting method of clad steel billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17002284A JPS6149749A (en) 1984-08-16 1984-08-16 Continuous casting method of clad steel billet

Publications (1)

Publication Number Publication Date
JPS6149749A true JPS6149749A (en) 1986-03-11

Family

ID=15897146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17002284A Pending JPS6149749A (en) 1984-08-16 1984-08-16 Continuous casting method of clad steel billet

Country Status (1)

Country Link
JP (1) JPS6149749A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301741A (en) * 1991-06-03 1994-04-12 Olin Corporation Casting of metal strip
US7156149B2 (en) * 2004-06-02 2007-01-02 Miba Gleitlager Gmbh Method for producing a stratified composite material
US7281568B2 (en) * 2004-06-02 2007-10-16 Miba Gleitlager Gmbh Method for producing a stratified composite material
CN110340321A (en) * 2019-08-21 2019-10-18 大连理工大学 A kind of bottom filling pouring device and a kind of carbon steel-monel metal laminar composite preparation method
CN110369683A (en) * 2019-08-09 2019-10-25 大连理工大学 A kind of bearing bush antifriction layer copper alloy fills type device and a kind of preparation method of bearing shell double metallic composite material
EP3804874A4 (en) * 2018-06-29 2021-07-14 Baoshan Iron & Steel Co., Ltd. Metal compound plate strip continuous production equipment and method
JP2021527569A (en) * 2018-06-29 2021-10-14 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. Production equipment and methods for manufacturing metal composite plates in a short process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301741A (en) * 1991-06-03 1994-04-12 Olin Corporation Casting of metal strip
US7156149B2 (en) * 2004-06-02 2007-01-02 Miba Gleitlager Gmbh Method for producing a stratified composite material
US7281568B2 (en) * 2004-06-02 2007-10-16 Miba Gleitlager Gmbh Method for producing a stratified composite material
EP3804874A4 (en) * 2018-06-29 2021-07-14 Baoshan Iron & Steel Co., Ltd. Metal compound plate strip continuous production equipment and method
JP2021527569A (en) * 2018-06-29 2021-10-14 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. Production equipment and methods for manufacturing metal composite plates in a short process
US11788167B2 (en) 2018-06-29 2023-10-17 Baoshan Iron & Steel Co., Ltd. Device and method for manufacturing metal clad strips continuously
CN110369683A (en) * 2019-08-09 2019-10-25 大连理工大学 A kind of bearing bush antifriction layer copper alloy fills type device and a kind of preparation method of bearing shell double metallic composite material
CN110369683B (en) * 2019-08-09 2020-06-02 大连理工大学 Bearing bush antifriction layer copper alloy mold filling device and preparation method of bearing bush bimetal composite material
CN110340321A (en) * 2019-08-21 2019-10-18 大连理工大学 A kind of bottom filling pouring device and a kind of carbon steel-monel metal laminar composite preparation method

Similar Documents

Publication Publication Date Title
US11788167B2 (en) Device and method for manufacturing metal clad strips continuously
JP7253576B2 (en) Production apparatus and method for manufacturing metal composite plate in short process
JP7165756B2 (en) Apparatus and method for manufacturing metal composite plate by continuous casting and rolling
US4675974A (en) Method of continuous casting and rolling strip
KR20030064760A (en) A method of producing steel
KR101129489B1 (en) Casting of non-ferrous metals
US5909764A (en) Vertical caster and associated method
US4213558A (en) Continuous casting and cladding process and apparatus for producing metal clad
JPS6149749A (en) Continuous casting method of clad steel billet
CN1319678C (en) Method and device for the production of a trimmed metal strip
WO1996001708A1 (en) Twin-roll caster and rolling mill for use therewith
JPS6149748A (en) Continuous casting method of clad steel billet
JPS6149750A (en) Continuous casting method of clad steel billet
US20110036531A1 (en) System and Method for Integrally Casting Multilayer Metallic Structures
US3743005A (en) Process for producing hot rolled three layer steel products from continuously cast hollow tubes
JPH11221651A (en) Method for making forged product subjected to coating and apparatus therefor
US20110036530A1 (en) System and Method for Integrally Casting Multilayer Metallic Structures
JPS60255239A (en) Continuous casting method of clad steel slab
JPH10113713A (en) Production of steel plate of controlled cooling
JPH0519165Y2 (en)
JPS63238953A (en) Method for casting molten metal by using twin rolls
JPS60187448A (en) Continuous casting installation
JPH1034286A (en) Method and device for continuous casting
JPS60255241A (en) Continuous casting method
JPS61135462A (en) Apparatus for continuous casting of metal-clad material