JPS58153731A - Method of reducing residual weld stress - Google Patents

Method of reducing residual weld stress

Info

Publication number
JPS58153731A
JPS58153731A JP3395582A JP3395582A JPS58153731A JP S58153731 A JPS58153731 A JP S58153731A JP 3395582 A JP3395582 A JP 3395582A JP 3395582 A JP3395582 A JP 3395582A JP S58153731 A JPS58153731 A JP S58153731A
Authority
JP
Japan
Prior art keywords
weld
residual stress
welded joint
metal
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3395582A
Other languages
Japanese (ja)
Inventor
Toshimi Matsumoto
松本 俊美
Hiroshi Sato
宏 佐藤
Tsutomu Konuma
小沼 勉
Koji Sato
晃二 佐藤
Norio Kitamura
北村 紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3395582A priority Critical patent/JPS58153731A/en
Publication of JPS58153731A publication Critical patent/JPS58153731A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To reduce residual stress in a welded joint without the formation of the sigma phase, by welding martensitic steel pieces together, melting the parent metal at the weld heat-affected zone of the welded joint and its vicinity, and then slowly cooling it. CONSTITUTION:The parent metal 1 of martensitic steel is welded by an austenitic welding material 2. The parent metal 1 at the weld heat-affected zone and its vicinity in about 2-3mm. apart from the weld beads is then melted by heating it over the width of about 10mm. along the weld line to transform it into austenite, in a manner such that the weld metal 2 is not melted. In succession, the parent metal is slowly cooled, so that residual stress in the welded joint along a direction making a right angle with the weld line is reduced without the formation of the sigma phase in the weld metal.

Description

【発明の詳細な説明】 本発明にマルテンザイト系鋼母材とする溶接継手に係り
、特に溶着金属材料としてオーステナイト系綱を使用す
る溶接継手に好適な溶接残留応力の低減方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a welded joint using a martensitic steel base material, and particularly to a method for reducing welding residual stress suitable for a welded joint using an austenitic steel as the weld metal material.

マルテンザイト系鋼においては、低い予熱温度で溶接割
れを防止できるという観点から、オーステナイト系の溶
着金属材料を使用して溶接継手を製造する場合も多い。
In martensitic steel, welded joints are often manufactured using austenitic weld metal materials from the viewpoint that weld cracking can be prevented with a low preheating temperature.

オーステナイト系の溶着金属材料は、フェライト系及び
マルテンサイト系の材料より熱膨張係数が大きく、更に
冷却過程における変態に伴う膨張も発生しない。
Austenitic weld metal materials have a larger coefficient of thermal expansion than ferritic and martensitic materials, and furthermore, no expansion occurs due to transformation during the cooling process.

このため、マルテンサイト系鋼の母材をオーステナイト
系の溶着金属材料で接合した浴接継手には、継手強度上
不利に作用する引張側の溶接線直角方向の残留応力が大
きく発生する。この溶接残留応力を低減するだめの従来
方法は、応力除去焼なまし熱処理である。しかし、オー
ステナイト未溶着金属には高温割れ防止を目的としてδ
フェライトが含まれるようになっており、前記溶接金塊
を応力除去焼きなまし熱処理で650℃以上の高温に長
時間曝すと、δフェライトがσ相に変化して前記溶接金
属が脆化するという欠点があった。
For this reason, in a bath welded joint in which a martensitic steel base material is joined with an austenitic welded metal material, a large amount of residual stress is generated in the direction perpendicular to the weld line on the tensile side, which has a disadvantageous effect on the strength of the joint. A conventional method for reducing this welding residual stress is stress relief annealing heat treatment. However, for austenitic unwelded metals, δ is applied for the purpose of preventing hot cracking.
Ferrite is included, and if the weld metal ingot is exposed to a high temperature of 650°C or higher for a long time during stress relief annealing heat treatment, the δ ferrite changes to the σ phase and the weld metal becomes brittle. Ta.

本発明の目的は、マルテンザイト系鋼の母材をオーステ
ナイト系の溶着金属材料で接合する溶接継手の訴接線直
角方向の残留応力を、溶接金属にσ相を発生することな
く、低減する方法を提供することにある。
An object of the present invention is to provide a method for reducing the residual stress in the direction perpendicular to the application tangent of a welded joint in which a base metal of martensitic steel is joined with an austenitic weld metal material without generating a σ phase in the weld metal. It is about providing.

すなわち本発明を概説すれば、本発明は、マルテンサイ
ト系鋼の母材をオーステナイト系の溶着金属材料で接合
する溶接継手において、溶接後、前記溶接継手の溶接熱
影響部及びその近傍の母材を前記溶接継手の溶接線方向
に沿って溶融してオーステナイト変態させ、その後徐冷
することを特徴とする溶接残留応力の低減力法に関する
That is, to summarize the present invention, in a welded joint in which a martensitic steel base material is joined with an austenitic weld metal material, after welding, the weld heat affected zone of the welded joint and the base metal in the vicinity The present invention relates to a method for reducing welding residual stress, characterized in that the welded joint is melted along the weld line direction to undergo austenite transformation, and then slowly cooled.

用材のマルテンサイト系鋼をオーステナイト系溶着金属
材料で接合する溶接継手においては、浴接残留応力が高
くなるが、特に余盛止端部の溶接線直角方向の溶接残留
応力は疲労強度を低下させるので問題となる。しかし、
本発明は、母材のマルテンサイト系鋼が溶接凝固した後
冷却中の変態に伴って大きく膨張するという性質に着目
し、前記母材を前記溶着金属材料で接合して溶接継手と
した後、前記溶接継手の溶接熱影響部及びその近傍の母
材を前記溶接継手の溶接線方向に沿って溶融してオース
テナイト変態させ、その後除冷して冷却中の変態に伴っ
て発生する膨張によって、余盛止端部近傍の溶接線直角
方向の引張残留応力と低減するようにしたものである。
In welded joints in which martensitic steel is joined with austenitic weld metal material, bath welding residual stress increases, but welding residual stress in the direction perpendicular to the weld line, especially at the toe of reinforcement, reduces fatigue strength. Therefore, it becomes a problem. but,
The present invention focuses on the property that martensitic steel as a base metal expands greatly due to transformation during cooling after solidification by welding, and after joining the base metal with the weld metal material to form a welded joint, The weld heat-affected zone of the welded joint and the base metal in the vicinity thereof are melted along the weld line direction of the welded joint and transformed into austenite, and then gradually cooled to remove excess heat due to the expansion that occurs due to the transformation during cooling. This is designed to reduce the tensile residual stress in the direction perpendicular to the weld line near the weld toe.

更に、本発明を適用する際には、前記溶接熱影響部及び
その近傍の母材を溶融徐冷する方法として、前記溶接継
手の溶接線方向に前後して並んで一定の距離に保った二
つの熱源を、前記溶接線方向に移動させ、先行する熱源
によって溶融凝固した部分の少なくとも一部分を含む部
分を、後行する熱源によって更に溶融させた後、徐冷す
るようにした方が、前記溶融凝固する部分の冷却速度を
緩やかにでき、靭性向上の観点から望ましい。
Furthermore, when applying the present invention, as a method of melting and slowly cooling the base metal in the weld heat affected zone and its vicinity, two It is better to move two heat sources in the direction of the welding line, and to further melt a portion including at least a portion of the portion melted and solidified by the preceding heat source by the following heat source, and then slowly cool the melted and solidified portion. The cooling rate of the solidified portion can be slowed down, which is desirable from the viewpoint of improving toughness.

次に、本発明を添付図面に基づいて具体的に説明する。Next, the present invention will be specifically explained based on the accompanying drawings.

第1図に従来の溶接後の溶接継手の概略斜視図である。FIG. 1 is a schematic perspective view of a welded joint after conventional welding.

第1図において、1は母材、2は溶接金属を示す。In FIG. 1, 1 indicates a base material and 2 indicates a weld metal.

第2図は本発明方法の一実施の態様により処理した溶接
継手の概略斜視図である。第2図において、1及び2は
第1図と同義であり、3は残留応力低減用溶接ビードと
示す。
FIG. 2 is a schematic perspective view of a welded joint treated according to one embodiment of the method of the present invention. In FIG. 2, 1 and 2 have the same meanings as in FIG. 1, and 3 indicates a weld bead for reducing residual stress.

本発明方法の処理においては、第2図に示したように、
溶接金属の溶融を生じさせることなく、浴接ビードから
、約2〜3mm離れた熱影響部を加熱する。その加熱方
法としては、タングステン電極を用いる方法、高周波加
熱による方法等、適宜選定してよい。第2図における溶
接ビードは溶接継手の形に応じて片面又は片側だけに行
なってもよく、その幅に約10mm程度でよい。
In the process of the method of the present invention, as shown in FIG.
Heats the heat affected zone approximately 2-3 mm away from the bath weld bead without causing melting of the weld metal. As the heating method, a method using a tungsten electrode, a method using high frequency heating, etc. may be selected as appropriate. The weld bead shown in FIG. 2 may be formed on one side or only on one side depending on the shape of the weld joint, and its width may be about 10 mm.

本発明方法による処理を行うと、従来の応力除去焼きな
まし熱処理を行った場合よりも、残留応力を大きく除去
することができる点及び操作が簡便でコスト低下ができ
る点で有利である。
The treatment according to the present invention is advantageous in that residual stress can be removed to a greater extent than in the case of conventional stress-relieving annealing heat treatment, and the operation is simple and costs can be reduced.

以下、本発明を実施例により更に具体的に説明するが、
本発明はこれらに限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited thereto.

なお、第3図は実施例1で使用した母材の熱膨張曲線、
そして第4図は実施例2で使用した母材の熱膨張曲線を
それぞれ温度(℃)(横軸)と熱膨張ひすみ(縦軸)と
の関係で示したグラフである。
In addition, FIG. 3 shows the thermal expansion curve of the base material used in Example 1,
FIG. 4 is a graph showing the thermal expansion curves of the base material used in Example 2 in relation to temperature (° C.) (horizontal axis) and thermal expansion strain (vertical axis).

実施例1 第1表は、本実施例においで使用した母材及び溶着金属
材料それぞれの化学成分を示したものである。
Example 1 Table 1 shows the chemical components of the base material and weld metal materials used in this example.

母材は重量で約5%のN1を含むマルテンサイト系の1
3Crステンレス鋼であり、板厚50mmのものとした
。溶着金属材料は重量で約12%N1及び約22%のO
rを含むオーステナイト系のものである。第3図は、母
材の熱膨張曲線を示すが、冷却中の母材に約180℃に
達すると、変態を開始して大きく膨張するようになる。
The base material is martensitic 1 containing approximately 5% N1 by weight.
It was made of 3Cr stainless steel and had a plate thickness of 50 mm. The deposited metal material contains approximately 12% N1 and approximately 22% O by weight.
It is an austenitic material containing r. FIG. 3 shows the thermal expansion curve of the base material. When the base material reaches about 180° C. during cooling, it starts to transform and expands significantly.

第2表は、溶接継手を作製するのに適用した溶接粂件を
ボす。
Table 2 lists the welding elements applied to make the welded joints.

予熱・バス間温度は50℃とした。溶接法は、棒径4m
mの溶接棒を使用し、被覆アーク溶接法とした。溶接継
手は2体作製し、本発明の方法による残留応力の低減効
果を検討した。溶接継手2体のうち1体は、第1図のよ
うに,母材1を溶接金属2で接合されたままのものとし
、他の1体は、第2図のように、母材1を溶接金属2で
接合した後、本発明の残留応力低減方法で処理したもの
であり、残留応力低減用溶接ビード3が溶接継手の表裏
面に形成されたものである、残留応力低減用溶接ビート
3は、直径32mmの2本のタングステン電極を溶接継
手の浴接線方向に並べ、互いの間隔を15mm一定に保
持するようにして、予熱温度50℃で不活性ガス雰囲気
中で形成されたものである。処理条件はいずれの電極に
おいても第3表の条件を適用した。第4表は溶接継手の
余盛止端部近傍の溶接熱影響部における溶接線直角方向
の残留応力を電気抵抗ひずみゲージで測定した結果であ
る。
The preheating/bath temperature was 50°C. The welding method uses a rod diameter of 4m.
A covered arc welding method was used using a welding rod of 1.5 m. Two welded joints were prepared and the effect of reducing residual stress by the method of the present invention was investigated. One of the two welded joints has base metal 1 joined with weld metal 2 as shown in Figure 1, and the other has base metal 1 joined with weld metal 2 as shown in Figure 2. Welding bead 3 for reducing residual stress, which is processed by the residual stress reducing method of the present invention after joining with weld metal 2, and welding bead 3 for reducing residual stress is formed on the front and back surfaces of the weld joint. was formed in an inert gas atmosphere at a preheating temperature of 50°C by arranging two tungsten electrodes with a diameter of 32 mm in the direction of the bath tangent to the welded joint and keeping the distance between them constant at 15 mm. . The processing conditions shown in Table 3 were applied to all electrodes. Table 4 shows the results of measuring the residual stress in the direction perpendicular to the weld line in the weld heat affected zone near the toe of reinforcement of the welded joint using an electrical resistance strain gauge.

測定は溶接継手の中央部でそれぞれ3点ずつ実施した。Measurements were performed at three points each at the center of the welded joint.

第4表の結果より、本発明の方法で処理する前の残留応
力は30〜40kgf/mm2に達しているが、本発明
の方法で処理した後の残留応力は10kgf/mm2以
下となることが確認された。
From the results in Table 4, the residual stress before treatment with the method of the present invention reaches 30 to 40 kgf/mm2, but the residual stress after treatment with the method of the present invention can be less than 10 kgf/mm2. confirmed.

なお、同じ第1図に示した溶接継手について、応力除去
焼なましを、590℃±25℃で3時間の加熱で行った
後、同様にして残留応力を測定したところ、18、20
及び24kgf/mm2、すなわち約20kgf/mm
2の測定値を得た。
Regarding the welded joint shown in the same Figure 1, stress relief annealing was performed by heating at 590°C ± 25°C for 3 hours, and the residual stress was measured in the same manner.
and 24 kgf/mm2, or about 20 kgf/mm
Two measurements were obtained.

したがって本発明方法による残留応力10kgf/mm
2以下という値は、顕著な効果を示す。
Therefore, the residual stress due to the method of the present invention is 10 kgf/mm.
A value of 2 or less indicates a significant effect.

実施例2 第5表は本実施例において使用された母材及ひ溶着金属
材料それぞれの化学成分を示したものである。
Example 2 Table 5 shows the chemical components of the base material and weld metal materials used in this example.

母材は重量で約1%のN1を含むマルテンチサイト系の
13Crステンレス鋼であり、やはり板厚50mmのも
のを使用した。溶着金属材料は庫重量で約13%のN1
及び約24%のCrを含むオーステナイト系のものを使
用した。第4図は、母材の熱膨張曲線を示すが、冷却中
の母材は約330℃に達すると変態を開始し、実施例1
の母材程ではないがかなり大きく膨張する。
The base material was martensitic 13Cr stainless steel containing about 1% N1 by weight, and also had a plate thickness of 50 mm. The welded metal material is approximately 13% N1 by weight.
and an austenitic material containing about 24% Cr. FIG. 4 shows the thermal expansion curve of the base material, and the base material during cooling starts to transform when it reaches about 330°C, and Example 1
It expands considerably, although not as much as the base material.

溶接継手は同しく2体作製し、溶接条件.本発明の残留
応力低減方法の処理条件及び溶接残留応カの測定方法は
実施例1に準じて実施した。
Two welded joints were made in the same way, and the welding conditions were adjusted. The processing conditions for the residual stress reduction method of the present invention and the method for measuring welding residual stress were carried out in accordance with Example 1.

ただし、継手溶接の予熱・パス間温度は250℃、及び
残留応力低減処理の際の予熱は250℃とした。第6表
は溶接継手の余盛止端部近傍の溶接熱影部における溶接
線直角方向の残留応力を測定した結果である。
However, the preheating and interpass temperature for joint welding was 250°C, and the preheating during residual stress reduction treatment was 250°C. Table 6 shows the results of measuring the residual stress in the direction perpendicular to the weld line in the weld heat shadow near the toe of the welded joint.

これによって、本発明の方法で処理する前の溶接残留力
は35〜40kgf/mm2存在するが、本発明の方法
で処理した後は約10kgf/mm2程度に低下するこ
とが確認された。
As a result, it was confirmed that the welding residual force was 35 to 40 kgf/mm2 before being treated by the method of the present invention, but it was reduced to about 10 kgf/mm2 after being treated by the method of the present invention.

以上の各実施例及び比較例から明らかなように、本発明
方法によれば、溶接後の残留応力を従来方法よりも簡便
な操作で大幅に低下させることかできる点で顕著な効果
を有する。
As is clear from the above examples and comparative examples, the method of the present invention has a remarkable effect in that the residual stress after welding can be significantly reduced with a simpler operation than the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の溶接後の溶接継手の概略斜視図である
。第2図に、本発明方法の一実施の態様により処理した
溶接継手の概略斜視図である。第3図は、実施図1で使
用した母材の熱膨張曲線、そして第4図は実施例2で使
用した母材の熱膨張曲線を温度と熱膨張ひずみとの関係
で示したグラフである。 1:母材、 2:溶接金属、 3:残留応力低減用溶接
ビード
FIG. 1 is a schematic perspective view of a welded joint after conventional welding. FIG. 2 is a schematic perspective view of a welded joint treated according to one embodiment of the method of the present invention. FIG. 3 is a graph showing the thermal expansion curve of the base material used in Example 1, and FIG. 4 is a graph showing the thermal expansion curve of the base material used in Example 2 in relation to temperature and thermal expansion strain. . 1: Base metal, 2: Weld metal, 3: Weld bead for reducing residual stress

Claims (1)

【特許請求の範囲】 1、マルテンサイト系鋼の母材をオーステナイト系の溶
着金属制御材料で接合する溶接継手において、溶接後、
前記溶接継手の溶接熱影響部及びその近傍のfJ制を前
記溶接継手の溶接線方向に沿って溶融してオーステナイ
ト変態させ、その後徐冷することfe%徴とする溶接残
留応力の低減方法。 2、溶接熱影響部及びその近傍の母材を溶融徐冷する方
法として、前記溶接継手の直接線方向に前後して並んで
一定の距離に保った二つの熱源を、前記溶接線方向に移
動させ、先行する熱源によって溶融凝固した部分の少な
くとも一部分を営む部分を、後行する熱源によって更に
溶融させた後、徐冷する特許請求の範囲第1項に記載の
溶接残留応力の低減方法。
[Claims] 1. In a welded joint in which a martensitic steel base material is joined with an austenitic weld metal control material, after welding,
A method for reducing welding residual stress, which comprises melting the weld heat affected zone of the welded joint and the fJ area in the vicinity thereof along the weld line direction of the welded joint to transform it into austenite, and then slowly cooling it. 2. As a method of melting and slowly cooling the base metal in the weld heat affected zone and its vicinity, two heat sources that are lined up one after the other in the direct line direction of the weld joint and kept at a constant distance are moved in the weld line direction. The method for reducing welding residual stress according to claim 1, wherein at least a portion of the portion melted and solidified by the preceding heat source is further melted by the subsequent heat source, and then slowly cooled.
JP3395582A 1982-03-05 1982-03-05 Method of reducing residual weld stress Pending JPS58153731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3395582A JPS58153731A (en) 1982-03-05 1982-03-05 Method of reducing residual weld stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3395582A JPS58153731A (en) 1982-03-05 1982-03-05 Method of reducing residual weld stress

Publications (1)

Publication Number Publication Date
JPS58153731A true JPS58153731A (en) 1983-09-12

Family

ID=12400909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3395582A Pending JPS58153731A (en) 1982-03-05 1982-03-05 Method of reducing residual weld stress

Country Status (1)

Country Link
JP (1) JPS58153731A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114169U (en) * 1989-02-28 1990-09-12
US7926180B2 (en) * 2001-06-29 2011-04-19 Mccrink Edward J Method for manufacturing gas and liquid storage tanks
WO2012161207A1 (en) * 2011-05-25 2012-11-29 新日鐵住金株式会社 Reheating method for rail weld parts
KR101524282B1 (en) * 2013-08-30 2015-06-10 조선대학교산학협력단 Structure with reduced stress and Attachment method to reduce stress due to a reinforcing plate
US10544479B2 (en) 2014-04-08 2020-01-28 Nippon Steel Corporation Heat treatment device, heat treatment method, and rail steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114169U (en) * 1989-02-28 1990-09-12
US7926180B2 (en) * 2001-06-29 2011-04-19 Mccrink Edward J Method for manufacturing gas and liquid storage tanks
WO2012161207A1 (en) * 2011-05-25 2012-11-29 新日鐵住金株式会社 Reheating method for rail weld parts
JP5549782B2 (en) * 2011-05-25 2014-07-16 新日鐵住金株式会社 Reheating method for rail welds
US10144983B2 (en) 2011-05-25 2018-12-04 Nippon Steel and Sumitomo Metal Corporation Method of reheating rail weld zone
KR101524282B1 (en) * 2013-08-30 2015-06-10 조선대학교산학협력단 Structure with reduced stress and Attachment method to reduce stress due to a reinforcing plate
US10544479B2 (en) 2014-04-08 2020-01-28 Nippon Steel Corporation Heat treatment device, heat treatment method, and rail steel

Similar Documents

Publication Publication Date Title
Alphonsa et al. Plasma nitriding on welded joints of AISI 304 stainless steel
JPS58153731A (en) Method of reducing residual weld stress
JPS58184081A (en) Composite tempering welding method using laser
JP4953172B2 (en) Method to refine ferrite structure by laser irradiation
US2664622A (en) Method of effecting nonfusion welds with a steel weldrod
JPH08309428A (en) Production of welded steel tube
US3549410A (en) Process of rebuilding steel structures
CN112388195A (en) Welding method of medium carbon quenched and tempered cast steel
JPH05132719A (en) Method for welding high carbon steel sheet or strip
US3196538A (en) Hard-surfacing process
JP2517814B2 (en) Welding method for high silicon steel
US5208828A (en) Production of transition joints between ferritic steel components
JPH08155642A (en) Cladding by welding repair method of hot die
Dubrovskii et al. Electric resistance surfacing with a wire and with melting of the metals to be joined
RU2257984C2 (en) Method for welding articles of cast iron with spheroidal graphite at mounting them
JPS6137954A (en) Welding method for molybdenum or its alloy
JP2688143B2 (en) Martensitic cast steel welding method and work piece
US1250612A (en) Process of making composite bimetallic articles.
Abashkin The effect of combined thermal exposure on the distribution of properties in a 45 steel permanent joint
JP3740031B2 (en) Liquid phase diffusion bonding method using groove filler and its joint
US4492849A (en) Method of welding steel strip
RU2063313C1 (en) Method of surfacing butt joined edges of workpieces
JPH04258390A (en) Manufacture of ferritic stainless steel welded tube
JPS59163094A (en) Method for preventing weld cracking in heat and corrosion resistant alloy steel
JPH07214313A (en) Weld repairing method for high cr cast iron product