JPS6329630B2 - - Google Patents

Info

Publication number
JPS6329630B2
JPS6329630B2 JP15696180A JP15696180A JPS6329630B2 JP S6329630 B2 JPS6329630 B2 JP S6329630B2 JP 15696180 A JP15696180 A JP 15696180A JP 15696180 A JP15696180 A JP 15696180A JP S6329630 B2 JPS6329630 B2 JP S6329630B2
Authority
JP
Japan
Prior art keywords
temperature
heating
insert material
bonding
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15696180A
Other languages
Japanese (ja)
Other versions
JPS5781978A (en
Inventor
Yasuhiro Fukaya
Masazumi Nagareda
Shigeo Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15696180A priority Critical patent/JPS5781978A/en
Publication of JPS5781978A publication Critical patent/JPS5781978A/en
Publication of JPS6329630B2 publication Critical patent/JPS6329630B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 本発明は品質が良好で、しかも生産性の優れた
液相拡散溶接方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid phase diffusion welding method with good quality and excellent productivity.

液相拡散溶接法は、接合材間にインサート材を
挿入し、インサート材を溶融させた後、接合材と
拡散させ、等温凝固してインサート材が消滅し、
接合材と同質継手を得る接合法である。
In the liquid phase diffusion welding method, an insert material is inserted between the joining materials, the insert material is melted, and then diffused with the joining material, solidified isothermally and the insert material disappears.
This is a joining method that produces a joint that is the same as the joining material.

この接合材において、インサート材は、接合材
より低融点か、接合材との反応で接合材より低融
点のものを生成するものとし、また接合温度は、
このインサート材の溶融温度より高く、接合材の
溶融温度より低い温度とする。なお、接合雰囲気
は、通常、真空、不活性ガス等の保護雰囲気が採
用される。
In this bonding material, the insert material has a lower melting point than the bonding material or generates a material with a lower melting point than the bonding material by reaction with the bonding material, and the bonding temperature is
The temperature is higher than the melting temperature of the insert material and lower than the melting temperature of the bonding material. Note that the bonding atmosphere is usually a protective atmosphere such as vacuum or inert gas.

第1図は上記液相拡散法の接合サイクルを示す
図表である。
FIG. 1 is a chart showing the bonding cycle of the liquid phase diffusion method.

第1図において、横軸は時間、縦軸は温度、実
線αは接合温度を示し、横軸中の〜は ……昇温過程(ステツプ) ……インサート材溶融点(ステツプ) ……インサート材中溶質原子の接合材中への
拡散(溶融インサート材の減少)過程
(ステツプ) ……溶融インサート材消滅点(ステツプ) ……インサート材消滅均質化過程(ステツプ
) であり、また縦軸中の〜は ……インサート材溶融温度 ……接合材溶融温度 である。
In Fig. 1, the horizontal axis is time, the vertical axis is temperature, and the solid line α shows the bonding temperature, and ~ on the horizontal axis is...Temperature rising process (step)...Insert material melting point (step)...Insert material Diffusion of intermediate solute atoms into the bonding material (reduction of molten insert material) process (step)...Disappearance point of molten insert material (step)...Insert material annihilation homogenization process (step), and ~ is the melting temperature of the insert material and the melting temperature of the bonding material.

また、上記〜における接合材とインサート
材との接合状態を模式的に第2図〜に示す。
Moreover, the bonded state of the bonding material and the insert material in the above-described steps are schematically shown in FIG. 2-.

第2図〜は上記第1図の〜に対応し、
第2図中1は接合材、2はインサート材である。
Figure 2 ~ corresponds to ~ in Figure 1 above,
In FIG. 2, 1 is a bonding material and 2 is an insert material.

第1,2図において、ステツプでインサート
材2は固相状態にあり、ステツプでインサート
材2が溶融し、ステツプでは接合温度α下で溶
融したインサート材2中の溶質原子が接合材1中
へ拡散して行き、溶融インサート材2が減少し、
ステツプで溶融インサート材が消滅し、ステツ
プでインサート材中の溶質原子が濃度高い継手
部から接合材1に向つて拡散し、継手部が接合材
と同一組成に均質化する。
In Figs. 1 and 2, the insert material 2 is in a solid state at the step, the insert material 2 melts at the step, and the solute atoms in the melted insert material 2 at the bonding temperature α enter the bonding material 1 at the step. The molten insert material 2 decreases as it diffuses.
In the step, the molten insert material disappears, and in the step, the solute atoms in the insert material diffuse from the joint portion where the concentration is high toward the bonding material 1, and the joint portion is homogenized to have the same composition as the bonding material.

上記液相拡散溶接法では、インサート材は、前
記したように基本的には接合材との共晶組成のも
のか、接合温度直下で共晶組成を生成するものか
が選ばれるが、第1図に示すステツプで昇温速
度が緩やかな時は、共晶組成インサート材ではイ
ンサート材中の溶質原子が昇温中に接合材中に拡
散して行き、接合温度αに至つた時点には本来の
共晶組成から逸脱してしまい、また接合温度直下
で共晶組成を生成するインサート材でも同様に昇
温中にインサート材原子が接合材中に拡散して行
き、接合温度αに至つた時点には本来の共晶組成
濃度が得られない。すなわち、インサート材は、
低融点(共晶組成が最も低融点)とならず、接合
温度αで溶融しなくなり、液相拡散溶接は成就し
ない(ボイド等の継手欠陥が発生する)。これは
上記液相拡散溶接法の本質的な第1の欠点といえ
る。更に、ステツプでは均質化に長時間(数時
間〜数十時間)を必要とし、生産性が極わて悪い
のが第2の欠点である。
In the above-mentioned liquid phase diffusion welding method, the insert material is basically selected to have a eutectic composition with the bonding material as described above, or to produce a eutectic composition just below the bonding temperature. When the heating rate is slow in the steps shown in the figure, the solute atoms in the insert material with eutectic composition will diffuse into the bonding material during the temperature rise, and by the time the bonding temperature α is reached, the In addition, even with insert materials that form a eutectic composition just below the bonding temperature, atoms of the insert material similarly diffuse into the bonding material during temperature rise, and at the point when the bonding temperature α is reached. The original eutectic composition concentration cannot be obtained. In other words, the insert material is
It does not have a low melting point (the eutectic composition has the lowest melting point), does not melt at the joining temperature α, and liquid phase diffusion welding is not achieved (joint defects such as voids occur). This can be said to be the first essential drawback of the liquid phase diffusion welding method. Furthermore, the second drawback is that the step requires a long time (several hours to several tens of hours) for homogenization, resulting in extremely poor productivity.

本発明は、上記の欠点を解消するためになされ
たもので、昇温過程(ステツプ)を高周波誘導
加熱、抵抗加熱、電子ビーム加熱、レーザ加熱等
による集中高温加熱で急速加熱し、確実かつ多量
にインサート材の容融を得、引続き加熱保持をイ
ンサート材の溶融が完全に行われるまでの時間
(ステツプ)から溶融インサート材が消滅まる
までの時間(ステツプ)の任意のところまで行
ない、最後の組成均質化過程(ステツプ)の加
熱は通常の炉加熱で行なうことを特徴とする液相
拡散溶接方法に関するものである。
The present invention was made in order to eliminate the above-mentioned drawbacks, and the temperature raising process (step) is rapidly heated by concentrated high temperature heating using high frequency induction heating, resistance heating, electron beam heating, laser heating, etc., thereby reliably and in large quantities. Melt the insert material at This invention relates to a liquid phase diffusion welding method characterized in that the heating in the composition homogenization process (step) is carried out by ordinary furnace heating.

なお、従来は、全工程(ステツプ〜ステツプ
)を炉加熱または高周波誘導加熱で行つてお
り、前者の場合は品質、生産性に、後者の場合は
生産性に問題があつた。
In the past, the entire process (from step to step) was performed by furnace heating or high-frequency induction heating, and the former had problems with quality and productivity, and the latter had problems with productivity.

以下、本発明方法を詳細に説明する。 The method of the present invention will be explained in detail below.

第3図A,B,Cは本発明方法の集中高温加熱
による急速加熱法を説明するための図である。
FIGS. 3A, B, and C are diagrams for explaining the rapid heating method using concentrated high-temperature heating of the method of the present invention.

第3図Aは高周波誘導加熱によるもので、図中
1は接合材、2はインサート材、3は高周波誘導
加熱源を示し、該加熱源3によりインサート材2
周辺部を急速加熱する。
FIG. 3A shows high-frequency induction heating; in the figure, 1 is a bonding material, 2 is an insert material, and 3 is a high-frequency induction heating source.
Rapidly heats the surrounding area.

第3図Bは電気抵抗加熱によるもので、図中4
が電気回路を省略した抵抗加熱チツプを示す。
Figure 3B shows electrical resistance heating.
shows a resistance heating chip without the electric circuit.

第3図Cは電子ビーム、レーザービーム加熱に
よるもので、図中5がビームオシレーシヨンした
電子ビーム、レーザビームを示し、該オシレーシ
ヨンされたビーム5によりインサート材2周辺を
急速加熱する。
FIG. 3C shows heating by an electron beam or a laser beam. In the figure, 5 indicates a beam oscillated electron beam or laser beam, and the oscillated beam 5 rapidly heats the periphery of the insert material 2.

上記第3図A〜Cのいずれかの急速加熱法で昇
温過程(ステツプ)を経過後、引続いてインサ
ート材の完全溶融(ステツプ)から該完全溶融
インサート材の消滅(ステツプ)までの間の任
意のところまで加熱保持する。この加熱保持が終
了したら、一旦冷却し、改めて炉で加熱保持し、
接合材1の組成均質化過程(ステツプ)を行な
う。
After passing through the temperature raising process (step) using one of the rapid heating methods shown in Figure 3 A to C above, the period from the complete melting of the insert material (step) to the disappearance of the completely melted insert material (step) Heat and hold to any desired point. Once this heating and holding is completed, it is cooled once and then heated and held in a furnace again.
A process (step) of homogenizing the composition of the bonding material 1 is performed.

なお、本発明方法は、真空雰囲気、不活性ガス
等の保護雰囲気下で行なわれる。
Note that the method of the present invention is carried out under a protective atmosphere such as a vacuum atmosphere or an inert gas.

本発明方法は、従来の全工程炉加熱による溶接
法に比べ、次のような効果を有する。
The method of the present invention has the following effects compared to the conventional welding method using furnace heating throughout the entire process.

(1) 従来の炉加熱で昇温(ステツプ)すると、
接合材の質量にもよるが、インサート材溶融ま
で数時間も要していたのに対し、本発明の昇温
では、いずれの場合も、数秒から30分程度でイ
ンサート材の溶融に到達する。
(1) When the temperature is raised (stepped) using conventional furnace heating,
It used to take several hours for the insert material to melt, depending on the mass of the bonding material, but with the temperature increase of the present invention, the insert material melts in about a few seconds to about 30 minutes in any case.

この急速加熱により、共晶組成インサート材
では、インサート材中の溶質原子が接合材中に
拡散する時間がなくなり、インサート材の組成
変化は微少となる。その結果、インサート材の
溶融は確実に生じ、かつ溶融量は所期通りのも
のが得られ、継手品質は極めて安定する(溶融
量が減少すると、継手間隙への充填が不充分と
なり、ボイド発生等継手欠陥を生成することに
なる)。
Due to this rapid heating, in the eutectic composition insert material, there is no time for solute atoms in the insert material to diffuse into the bonding material, and the change in the composition of the insert material becomes minute. As a result, the insert material melts reliably, the amount of melting is as expected, and the quality of the joint is extremely stable. etc. will produce joint defects).

また、接合温度直下で共晶組成を生成するイ
ンサート材でも同様に、インサート材原子が接
合材中に拡散する時間がなくなり、その結果、
接合温度でインサート材の溶融は確実に生じ、
かつ溶融量も所期通りのものが得られ、継手品
質は極めて安定する。
In addition, even with insert materials that generate a eutectic composition just below the bonding temperature, there is no time for insert material atoms to diffuse into the bonding material, and as a result,
Melting of the insert material occurs reliably at the joining temperature,
In addition, the desired amount of melting can be obtained, and the quality of the joint is extremely stable.

(2) 従来は同一炉を極めて長時間にわたつて占拠
するため生産効率が悪かつたのに対し、本発明
では液相拡散溶接のポイントとなる昇温過程と
インサート材の溶融から消滅までの任意のとこ
ろまでとを集中高温加熱による急速加熱と引続
いての加熱保持で行なつており、これらの過程
を短時間で行なうことができ、しかも長時間を
要する均質化過程を多量に一度に一つの炉内で
処理できるため、生産効率を著しく向上でき
る。
(2) In the past, the same furnace was occupied for an extremely long period of time, resulting in poor production efficiency, but in the present invention, the key points of liquid phase diffusion welding are the heating process and the process from the melting of the insert material to its disappearance. This method performs rapid heating using concentrated high-temperature heating and then holding the heat to any desired point, making it possible to perform these processes in a short period of time.Moreover, the homogenization process, which requires a long time, can be carried out in large quantities at once. Since it can be processed in one furnace, production efficiency can be significantly improved.

また、本発明方法は従来の全工程高周波誘導
加熱による溶接法に比べ、次のような効果を有
する。
Furthermore, the method of the present invention has the following effects compared to the conventional welding method using high-frequency induction heating in all steps.

(3) 高周波誘導加熱で昇温すると数秒から30分で
インサート材の溶融に到達し、上記の(1)で述べ
たように優れた継手品質を得ることができる
が、従来のように全工程を高周波誘導加熱で行
なうと極めて長時間にわたつて装置を占拠しな
ければならず生産効率が悪いのに対し、本発明
では長時間を要する均質化過程を炉加熱で行な
うため、生産効率を大幅に向上させることがで
きる。
(3) When the temperature is raised by high-frequency induction heating, the insert material can reach melting in a few seconds to 30 minutes, and as mentioned in (1) above, excellent joint quality can be obtained. If high-frequency induction heating is used, the equipment must be occupied for an extremely long period of time, resulting in poor production efficiency.In contrast, in the present invention, the homogenization process, which requires a long time, is carried out using furnace heating, which greatly improves production efficiency. can be improved.

以上のように、本発明方法によれば品質向上お
よび生産性向上の面から極めて有益である。
As described above, the method of the present invention is extremely beneficial in terms of quality improvement and productivity improvement.

実施例 1 接合材としてS45C(10φ×50)を、インサー
ト材として炭素(厚さ200μ)を用い、第3図A
の態様で真空雰囲気下の高周波誘導加熱を行な
い、室温から溶接温度1250℃まで10分で昇温し、
引続き1250℃で30分保持し、冷却した。
Example 1 S45C (10φ x 50) was used as the bonding material and carbon (thickness 200μ) was used as the insert material.
High-frequency induction heating is performed in a vacuum atmosphere in this manner, and the temperature is raised from room temperature to the welding temperature of 1250℃ in 10 minutes.
Subsequently, it was held at 1250°C for 30 minutes and cooled.

次いで、上記のようにして得られた複数個の継
手片を真空雰囲気下の炉に搬入し、1250℃で9.5
時間保持し、冷却した。
Next, the plurality of joint pieces obtained as described above were carried into a furnace under a vacuum atmosphere, and heated at 1250°C to 9.5°C.
Hold for an hour and cool.

得られた継手は、いずれも欠陥なく、成分の均
質化も充分行なわれていた。
All of the obtained joints had no defects and the components were sufficiently homogenized.

実施例 2 実施例1と同じ接合材とインサート材を用い、
第3図Bの態様で真空雰囲気下の電気抵抗加熱
(電流600A)を行ない、室温から1250℃まで1分
で昇温し、引続き1250℃で3分保持し、冷却し
た。
Example 2 Using the same bonding material and insert material as Example 1,
Electric resistance heating (current 600 A) in a vacuum atmosphere was carried out in the manner shown in FIG. 3B, and the temperature was raised from room temperature to 1250° C. in 1 minute, and then kept at 1250° C. for 3 minutes and cooled.

次いで、上記のようにして得られた複数個の継
手片を真空雰囲気下の炉に搬入し、1250℃で10時
間保持し、冷却した。
Next, the plurality of joint pieces obtained as described above were carried into a furnace under a vacuum atmosphere, held at 1250° C. for 10 hours, and cooled.

得られた継手は、いずれも欠陥なく、成分の均
質化も充分であつた。
All of the obtained joints had no defects and the components were sufficiently homogenized.

実施例 3 接合材としてインコネル713C(10φ×50)を、
インサート材としてNi―15%Cr―3.5%B(厚さ
200μ)を用い、第3図Cの態様で真空雰囲気下
の電子ビーム加熱(出力0〜30KW、ビームオシ
レーシヨン10mm、継手片は回転させた)を行な
い、室温から溶接温度1200℃まで5分で昇温し、
引続き1200℃で5分保持し、冷却した。
Example 3 Inconel 713C (10φ×50) was used as the bonding material.
Ni-15% Cr-3.5% B (thickness
200μ) in a vacuum atmosphere (output 0 to 30KW, beam oscillation 10mm, joint piece rotated) in the manner shown in Figure 3C, and the welding temperature was raised from room temperature to 1200℃ for 5 minutes. Raise the temperature with
Subsequently, it was held at 1200°C for 5 minutes and cooled.

次いで、上記のようにして得られた複数個の継
手片を真空雰囲気下の炉に搬入し、1200℃で20時
間保持し、冷却した。
Next, the plurality of joint pieces obtained as described above were carried into a furnace under a vacuum atmosphere, held at 1200° C. for 20 hours, and cooled.

得られた継手は、いずれも欠陥なく、成分の均
質化も充分であつた。
All of the obtained joints had no defects and the components were sufficiently homogenized.

実施例 4 実施例1と同じ接合材とインサート材を用い、
第3図Cの態様でAr雰囲気下のレーザビーム加
熱(出力0〜3KW、ビームオシレーシヨン10mm、
継手片は回転させた)を行ない、室温から1250℃
まで5分で昇温し、引続き1250℃で5分保持し、
冷却した。
Example 4 Using the same bonding material and insert material as Example 1,
Laser beam heating in Ar atmosphere in the mode shown in Figure 3C (output 0 to 3KW, beam oscillation 10mm,
The fitting piece was rotated) and heated from room temperature to 1250℃.
The temperature was raised in 5 minutes to
Cooled.

次いで、上記のようにして得られた複数個の継
手片を真空雰囲気下の炉に搬入し、1250℃で10時
間保持し、冷却した。
Next, the plurality of joint pieces obtained as described above were carried into a furnace under a vacuum atmosphere, held at 1250° C. for 10 hours, and cooled.

得られた継手は、いずれも欠陥なく、成分の均
質化も充分であつた。
All of the obtained joints had no defects and the components were sufficiently homogenized.

比較例 1 実施例1と同じ接合材とインサート材を用い、
真空雰囲気下の炉加熱で溶接した。
Comparative Example 1 Using the same bonding material and insert material as Example 1,
Welded by furnace heating in a vacuum atmosphere.

室温から1250℃までの昇温には5時間を要し
た。引続いて1250℃で10時間保持し、冷却した。
It took 5 hours to raise the temperature from room temperature to 1250°C. Subsequently, it was held at 1250°C for 10 hours and cooled.

得られた継手は、ボイドが残存し、品質が不良
であつた。
The resulting joint had residual voids and was of poor quality.

比較例 2 実施例3と同じ接合材とインサート材を用い、
第3図Aの態様で真空雰囲気下の高周波誘導加熱
を行なつて溶接した。
Comparative Example 2 Using the same bonding material and insert material as Example 3,
Welding was performed by high-frequency induction heating in a vacuum atmosphere in the manner shown in FIG. 3A.

室温から1200℃までの昇温には10分を要し、引
続き1200℃で20時間保持し、冷却した。
It took 10 minutes to raise the temperature from room temperature to 1200°C, and then the temperature was maintained at 1200°C for 20 hours and cooled.

得られた継手は、欠陥なく、成分の均質化も充
分であつたが、高周波誘導加熱装置を20時間もの
長時間にわたつて使用しなければならず、効率の
点に問題がある。
Although the obtained joint had no defects and the components were sufficiently homogenized, the high-frequency induction heating device had to be used for a long time of 20 hours, and there was a problem in terms of efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は液相拡散溶接法の接合サイクルを示す
図表、第2図〜は第1図に示す接合サイクル
の各ステツプ〜における接合材とインサート
材の接合状態を模式的に示す図、第3図A〜Cは
本発明方法における集中高温加熱による急速加熱
法を説明するための図である。
Fig. 1 is a diagram showing the joining cycle of the liquid phase diffusion welding method, Fig. 2 - is a diagram schematically showing the joining state of the joining material and insert material at each step - of the joining cycle shown in Fig. 1, and Fig. 3 Figures A to C are diagrams for explaining the rapid heating method using concentrated high-temperature heating in the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 接合材間にインサート材を挿入して行なう液
相拡散溶接方法において、溶接温度までの昇温を
高周波誘導加熱、電気抵抗加熱、電子ビーム加
熱、レーザビーム加熱等により急速加熱し、引続
き該溶接温度に溶融した前記インサート材が消滅
するまで保持し、しかる後炉加熱を行ない継手部
の組成を均質化させることを特徴とする液相拡散
溶接方法。
1 In the liquid phase diffusion welding method in which an insert material is inserted between the joining materials, the temperature is rapidly raised to the welding temperature by high-frequency induction heating, electric resistance heating, electron beam heating, laser beam heating, etc., and then the welding is continued. A liquid phase diffusion welding method characterized in that the molten insert material is held at a temperature until it disappears, and then furnace heating is performed to homogenize the composition of the joint part.
JP15696180A 1980-11-10 1980-11-10 Liquid phase diffusion welding method Granted JPS5781978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15696180A JPS5781978A (en) 1980-11-10 1980-11-10 Liquid phase diffusion welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15696180A JPS5781978A (en) 1980-11-10 1980-11-10 Liquid phase diffusion welding method

Publications (2)

Publication Number Publication Date
JPS5781978A JPS5781978A (en) 1982-05-22
JPS6329630B2 true JPS6329630B2 (en) 1988-06-14

Family

ID=15639093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15696180A Granted JPS5781978A (en) 1980-11-10 1980-11-10 Liquid phase diffusion welding method

Country Status (1)

Country Link
JP (1) JPS5781978A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262474A (en) * 1985-05-16 1986-11-20 Agency Of Ind Science & Technol Electron beam joining method
JPH0679771B2 (en) * 1989-10-05 1994-10-12 株式会社新潟鐵工所 Joining method for high chromium-nickel alloy steel
WO2007100152A1 (en) * 2006-03-02 2007-09-07 PONTI NONAKA, Yukiko Device and method for cutting tension member in buried anchor
TW200831215A (en) * 2006-12-22 2008-08-01 Chubu Ueringu Co Ltd Heat treatment apparatus

Also Published As

Publication number Publication date
JPS5781978A (en) 1982-05-22

Similar Documents

Publication Publication Date Title
GB740474A (en) Improvements in or relating to the cladding of metal plates
JPS5813487A (en) Diffusion bonding method
US2095807A (en) Fusion welding or brazing of metals
JPS6329630B2 (en)
JPH06234082A (en) Method for liquid phase diffusion bonding using insert material higher in melting temperature than base metal
US3680197A (en) Diffusion bonding method
JPS6235868B2 (en)
US2933594A (en) Metals joining apparatus
JPS6016876A (en) Ceramic welding method by laser
JPH04288983A (en) Pressure welding method for aluminum material and copper material
KR100241032B1 (en) Welding method of gamma titanium aluminides
JPH04236732A (en) Method for controlling oxygen content in melting titanium and titanium alloy with electron beam
US2886687A (en) Electrically heated appliances and method of their manufacture
US2545877A (en) Method for sheathing electric conductors
US1943123A (en) Process of welding
JPH01148760A (en) Method for bonding ceramics
JPS60144932A (en) Molecular beam growth method of compound semiconductor crystal
JPH0357575A (en) Electron beam welding method for conductor
SU496123A1 (en) The method of induction heating of steel products during high-temperature brazing
JPH03110455A (en) Method for measuring melting point
JPH10110204A (en) Method for repairing metallic material
JPS61232059A (en) Brazing method
SU1183321A1 (en) Method of welding by molybdenum fusion
JPH0386366A (en) Diffusion joining method for dispersion-reinforced copper and joining part
JPH03294099A (en) Manufacture of welding material