JPS6235868B2 - - Google Patents

Info

Publication number
JPS6235868B2
JPS6235868B2 JP19453681A JP19453681A JPS6235868B2 JP S6235868 B2 JPS6235868 B2 JP S6235868B2 JP 19453681 A JP19453681 A JP 19453681A JP 19453681 A JP19453681 A JP 19453681A JP S6235868 B2 JPS6235868 B2 JP S6235868B2
Authority
JP
Japan
Prior art keywords
bonding
base material
melting point
temperature
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19453681A
Other languages
Japanese (ja)
Other versions
JPS5897485A (en
Inventor
Ryoichi Kajiwara
Juzo Kozono
Takao Funamoto
Satoshi Ogura
Kosei Nagayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19453681A priority Critical patent/JPS5897485A/en
Publication of JPS5897485A publication Critical patent/JPS5897485A/en
Publication of JPS6235868B2 publication Critical patent/JPS6235868B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 本発明は金属の接合方法に係り、特に融接困難
な耐熱合金や異種材料の薄板又はパイプ等をそれ
ぞれ張り合せ溶接又は突合せ溶接するのに好適な
金属の接合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for joining metals, and in particular to a method for joining metals suitable for bond welding or butt welding of heat-resistant alloys, thin plates or pipes made of different materials that are difficult to fusion weld, respectively. .

従来、融接困難な部材の接合方法の代表例とし
て、ろう付法と溶融拡散接合法がある。両者の基
本的な接合装置は同じであつて、部材の接合を真
空中と不活性ガス中で行う2通りの方法がある。
第1図は真空中の接合装置である。
Conventionally, typical examples of joining methods for members that are difficult to fusion-weld include brazing and fusion-diffusion joining. The basic bonding equipment for both methods is the same, and there are two methods for bonding the members: one in vacuum and one in inert gas.
FIG. 1 shows a bonding apparatus in vacuum.

ろう付法の接合手順は、第1図において真空チ
ヤンバ1内の固定治具2及び加圧治具3に取り付
けられた接合部材4の接合界面に低融点のろう材
からなるインサート材5を箔やメツキの形で挿入
し、真空ポンプ6で真空チヤンバ1内を排気した
後、低加圧下で高周波誘導コイル7により加熱
し、ろう材のみを溶融させて接合する。なお図中
8,9,10及び12はそれぞれ熱電対、高周波
電源、電流制御回路及び加圧軸を示している。こ
の時の接合メカニズムは第2図Aに示すようにろ
う材12が溶融した状態(2)の時母材(接合部材)
13表面はろう材12と反応してわずかに溶解し
て溶融層14を形成する。同時にろう材元素は母
材中に拡散して拡散層15を形成し接合が進行す
る(3)。しかし、ろう材組成が母材組成と大きく異
なること及び、高い加圧力がかけられずろう材溶
融層を薄くできないこと等のために、数時間程度
の接合時間では接合部を母材と同質にすることが
できない。従つて接合層16は機械的及び物理的
性質において母材より劣り、ろう付法の欠点とな
つている。
In the joining procedure of the brazing method, as shown in FIG. After evacuating the inside of the vacuum chamber 1 with a vacuum pump 6, it is heated with a high frequency induction coil 7 under low pressure to melt only the brazing material and join. Note that 8, 9, 10, and 12 in the figure indicate a thermocouple, a high-frequency power source, a current control circuit, and a pressurizing shaft, respectively. The joining mechanism at this time is as shown in Figure 2A, when the brazing filler metal 12 is in the molten state (2), the base material (joining member)
The surface of the brazing material 13 reacts with the brazing material 12 and slightly melts to form a molten layer 14. At the same time, the brazing filler metal element diffuses into the base material to form a diffusion layer 15, and the bonding progresses (3). However, because the composition of the brazing filler metal is significantly different from that of the base metal, and because high pressure cannot be applied and the molten layer of the filler metal cannot be thinned, the bonding time is only a few hours, making the joint part the same as the base metal. I can't. Therefore, the bonding layer 16 is inferior to the base material in mechanical and physical properties, which is a disadvantage of the brazing method.

次に溶融拡散接合法は米国特許第3678570によ
つて提案された方法であり、その接合手順は、第
1図においてインサート材を母材組成へ拡散性の
融点低下元素を添加した合金とした点以外はろう
付法の手順と同じである。その接合メカニズムは
第2図Bに示す通り、インサートした合金粉末1
7が溶融した状態(2)の時、インサート材の中の融
点低下元素が母材(接合部材)13中へ拡散して
拡散層15を形成し接合が進行する。接合中に溶
融層は等温凝固するが、最終的には接合部が母材
と同質になつた時点で接合が完了する。従つてこ
の接合法では母材並の諸性質をもつ高品質な接合
部が得られる。しかし、この接合法は、接合温度
が母材融点に近いような高い温度であるため材質
によつては母材の劣化が著しいこと、高い加圧力
をかけられないため液相の強制排出ができず初期
の不純物がそのまゝ残留すること、接合に長時間
を要すること等の問題がある。
Next, the melt diffusion bonding method is a method proposed by U.S. Pat. Other than that, the procedure is the same as the brazing method. The bonding mechanism is as shown in Figure 2B.
When 7 is in the molten state (2), the melting point lowering element in the insert material diffuses into the base material (joining member) 13 to form a diffusion layer 15 and the joining progresses. During bonding, the molten layer solidifies isothermally, but ultimately the bonding is completed when the bonded area becomes homogeneous with the base material. Therefore, with this joining method, a high-quality joint with properties comparable to that of the base material can be obtained. However, with this joining method, the joining temperature is high, close to the melting point of the base material, so depending on the material, the base material may deteriorate significantly, and the liquid phase cannot be forcibly discharged because high pressure cannot be applied. There are problems such as initial impurities remaining as they are and a long time required for bonding.

また両接合法に共通する問題として、炉中の全
体加熱による接合であるため、製品寸法が限定さ
れ、また大気中では健全な接合部が得られない。
Furthermore, a problem common to both bonding methods is that since the bonding is performed by heating the entire product in a furnace, product dimensions are limited, and a sound bond cannot be obtained in the atmosphere.

本発明の目的は、一般の溶融溶接が困難な耐熱
超合金や異種金属の接合において接合時の母材温
度を低くでき、しかも大気中で短時間に接合で
き、接合部の機械的及び物理的性質を母材と同等
にし得る金属の接合方法を提供することである。
The purpose of the present invention is to lower the temperature of the base metal during joining of heat-resistant superalloys and dissimilar metals, which are difficult to weld by general fusion welding, to join in a short time in the atmosphere, and to improve the mechanical and physical properties of the joint. An object of the present invention is to provide a method for joining metals that can have properties equivalent to those of the base metal.

本発明者らは、接合界面の電気抵抗を母材の固
有抵抗の数倍以上に高め、かつ熱拡散が充分には
進行し得ない程の短時間に大電流を通電すれば接
合界面のみ集中的に加熱することができ、適当な
接合条件によつて接合界面の温度が母材融点付近
であつても、接合界面から例えば数百μm以上離
れた接合部材の温度がその融点の1/2程度以下
となるような急峻な温度分布を形成することがで
きるため、薄い溶融層による接合が可能であるこ
とを見出した。
The present inventors have found that by increasing the electrical resistance of the bonding interface to more than several times the specific resistance of the base metal, and by applying a large current for a short time that heat diffusion cannot sufficiently proceed, the heat is concentrated only at the bonding interface. Even if the temperature of the bonding interface is around the melting point of the base material under appropriate bonding conditions, the temperature of the bonding member located several hundred μm or more away from the bonding interface will be 1/2 of the melting point. It has been found that bonding using a thin molten layer is possible because it is possible to form a steep temperature distribution that is less than or equal to 100%.

本発明は、このような知見に基づいてなされた
ものである。本発明は、母材に近い組成の合金、
又は母材と健全な合金属を形成しうる金属からな
るインサート材を、接合すべき両母材間の間隙に
挿入し、加圧力を加えた状態で通電加熱する加熱
工程と、接合界面の温度を検出し、当該検出温度
が母材の融点に達した時点で、前記通電電流を減
少させ、当該接合界面温度を母材融点より小さく
インサート材の融点より大きい値に維持して拡散
処理する拡散処理工程と、前記両母材の接合界面
の融液を接合部外に押出す押出し工程と、からな
ることを特徴とする金属の接合方法である。
The present invention has been made based on such knowledge. The present invention provides an alloy with a composition close to that of the base material,
Alternatively, an insert material made of a metal that can form a sound alloy with the base metal is inserted into the gap between the two base materials to be joined, and a heating process is performed in which the insert material is heated with electricity while applying pressure, and the temperature at the joining interface is is detected, and when the detected temperature reaches the melting point of the base material, the applied current is reduced, and the bonding interface temperature is maintained at a value lower than the melting point of the base material and higher than the melting point of the insert material, and diffusion processing is performed. This metal joining method is characterized by comprising a treatment step and an extrusion step of extruding the melt at the joining interface between the two base materials to the outside of the joint.

本発明において、接合界面の電気抵抗を高める
ために接合すべき両母材間の間隙に挿入されるイ
ンサート材は、母材に近い組成からなる合金又は
母材と健全な合金層を形成しうる金属であり、こ
れらの合金又は金属は粉末状でもよく、箔状であ
つてもよい。合金又は金属が粉末状の場合、界面
抵抗が大きく本発明に特に有効であり、また合金
又は金属が箔の場合、接合界面が、2界面となり
界面抵抗が大きくなる。粉末状の合金又は金属の
場合、20〜170μm程度の粒径の粉末を接合すべ
き母材面に均一に載置し、これらの層を1層乃至
2層とすることが望ましい。このような粉末の載
置状態によつて界面抵抗を大きくし、集中加熱を
効率的に行うことができる。
In the present invention, the insert material inserted into the gap between the base materials to be joined in order to increase the electrical resistance of the joint interface can form an alloy having a composition close to that of the base materials or a healthy alloy layer with the base materials. These alloys or metals may be in the form of powder or foil. When the alloy or metal is in the form of powder, it has a high interfacial resistance and is particularly effective in the present invention, and when the alloy or metal is a foil, the bonding interface becomes two interfaces, resulting in a high interfacial resistance. In the case of powdered alloys or metals, it is desirable to uniformly place powder with a particle size of about 20 to 170 μm on the surface of the base material to be joined, and form one or two layers. By placing the powder in this manner, the interfacial resistance can be increased and concentrated heating can be performed efficiently.

さらにインサート材の融点は、母材の融点と同
等又はそれ以下でもよく、母材の融点より高くと
もよい。
Further, the melting point of the insert material may be equal to or lower than the melting point of the base material, or may be higher than the melting point of the base material.

インサート材の融点が、母材の融点と同等又は
それ以下の場合、接合界面における局部発熱によ
つてインサート材が容易に溶融し、薄い溶融層に
よつて均質化が容易となる。インサート材の融点
が、母材の融点より高い場合、接合界面における
局部発熱によつて母材が溶融し、インサート材の
溶融層が接合部外に押し出されやすくなるため、
接合層は母材組成に近いものとなる。このような
母材とインサート材の組合せとしては、例えば耐
熱超合金としてインコネル625、インサート材と
してTi又はBNi―2ろう材を挙げることができ、
また耐熱超合金としてIN―738、インサート材と
してBNi―2ろう材を挙げることができる。
When the melting point of the insert material is equal to or lower than the melting point of the base material, the insert material easily melts due to local heat generation at the bonding interface, and homogenization is facilitated by a thin molten layer. If the melting point of the insert material is higher than the melting point of the base material, the base material will melt due to local heat generation at the joint interface, and the molten layer of the insert material will be easily pushed out of the joint.
The bonding layer has a composition close to that of the base material. Examples of such a combination of base material and insert material include Inconel 625 as the heat-resistant superalloy, Ti or BNi-2 brazing material as the insert material,
In addition, IN-738 can be used as a heat-resistant superalloy, and BNi-2 brazing material can be used as an insert material.

以下、本発明の実施例を図を用いてさらに詳細
に説明する。
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.

第5図は、ブロツク状部材の接合に対する一実
施例を示す。また第6図は、第5図の接合プロセ
スを説明するための模式図である。第5図におい
て接合部材4は、母材と健全な合金層を形成しか
つ母材融点以下の融点を有する金属粉末19を接
合界面にはさみ、電極20により加圧されてい
る。接合電流は、電流制御回路21よりトランス
22及び電極20を介して接合部材4に供給され
る。この時の接合界面の温度は、赤外レンズ23
を内蔵する赤外線集光ヘツド24と光フアイバー
25及び赤外線検出回路26によつて検出され、
その検出値の大小を温度判定回路27で判定し、
接合電流にフイードバツクされる。この時の接合
プロセスは第6図Aに示す通り、まず初定の加圧
力P1で接合部材4を加圧し、次に非常に高く設定
した一定の接合電流を通電する。この時界面の温
度は急激に上昇するが、温度検出により界面温度
が母材融点に達したことを確認した後直ちに接合
電流を制御し界面温度を下げる。以後は界面温度
が母材融点θmより低く、インサート材の融点よ
り高い一定温度θcに保たれるように接合電流を
制御するとともに冷却水28によつて電極20を
冷却しつつ所定の時間が経過した後全工程を終了
する。第6図Bは各接合時点における接合状態及
び電気抵抗分布及び温度分布を模式的に示したも
のである。通電開始時点(1)では金属粉末19のた
め接合界面の電気抵抗は母材に比べ非常に高い状
態である。この状態で大電流を通電すると瞬間的
に界面のみが集中的に加熱され、(2)に示す温度分
布となる。この時点でインサート材及び母材界面
は完全に溶融し(溶融層29)、加圧力によつて
不要な融液層が排出される。(3)の時点では拡散進
行中であり固相の接合層はまだ完全に母材と識別
される。拡散工程が終了する時点(4)では溶融層2
8は消失し、拡散層30が形成され両部材は完全
に一体化している。
FIG. 5 shows an embodiment for joining block-like members. Moreover, FIG. 6 is a schematic diagram for explaining the joining process of FIG. 5. In FIG. 5, the bonding member 4 is pressurized by an electrode 20 with a metal powder 19 that forms a sound alloy layer with the base material and has a melting point lower than the melting point of the base material sandwiched at the bonding interface. The bonding current is supplied from the current control circuit 21 to the bonding member 4 via the transformer 22 and the electrode 20. The temperature of the bonding interface at this time is the temperature of the infrared lens 23.
Detected by an infrared condensing head 24, an optical fiber 25, and an infrared detection circuit 26,
A temperature determination circuit 27 determines the magnitude of the detected value,
Feedback is given to the junction current. As shown in FIG. 6A, the bonding process at this time is to first pressurize the bonding member 4 with an initial pressure P1 , and then to apply a constant bonding current set to a very high value. At this time, the temperature at the interface rises rapidly, but after confirming by temperature detection that the interface temperature has reached the melting point of the base material, the bonding current is immediately controlled to lower the interface temperature. Thereafter, the bonding current is controlled so that the interface temperature is maintained at a constant temperature θc that is lower than the melting point of the base material θm and higher than the melting point of the insert material, and a predetermined time elapses while cooling the electrode 20 with the cooling water 28. After that, complete the entire process. FIG. 6B schematically shows the bonding state, electrical resistance distribution, and temperature distribution at each bonding point. At the start of energization (1), the electrical resistance of the bonding interface is much higher than that of the base material due to the metal powder 19. When a large current is applied in this state, only the interface is instantaneously heated intensively, resulting in the temperature distribution shown in (2). At this point, the interface between the insert material and the base material is completely melted (molten layer 29), and the unnecessary melt layer is discharged by the pressing force. At point (3), diffusion is in progress and the solid bonding layer is still completely distinguishable from the base material. At the point (4) when the diffusion process ends, the molten layer 2
8 disappears, a diffusion layer 30 is formed, and both members are completely integrated.

本実施例によれば、界面集中発熱により接合界
面近傍を薄い層で溶融させて接合できるため、初
期の母材表面に酸化皮膜や汚れがある場合でもこ
れらは融液層中に分散されるため良好に接合で
き、このため大気中における接合が可能となる。
According to this example, the area near the bonding interface can be melted and bonded in a thin layer due to the concentrated heat generation at the interface, so even if there is an oxide film or dirt on the initial base material surface, these will be dispersed in the melt layer. Good bonding is possible, and therefore bonding in the atmosphere is possible.

また本実施例によれば、高い加圧力により不要
な融液層を排出できるため、接合層を非常に薄く
でき、接合部均質化のため拡散処理時間を短縮で
きる。
Further, according to this embodiment, since the unnecessary melt layer can be discharged with a high pressure, the bonding layer can be made extremely thin, and the diffusion treatment time can be shortened to homogenize the bonded portion.

また本実施例によれば、融液層の強制排出を行
つているため、初期の母材表面の酸化皮膜や不純
物が同時に排出され、これらの接合層中への残存
量が少なくなるため接合層の機械的性質を向上で
きる。
In addition, according to this example, since the melt layer is forcibly discharged, the oxide film and impurities on the initial base material surface are simultaneously discharged, and the amount of these remaining in the bonding layer is reduced, so that the bonding layer is can improve the mechanical properties of

次に、第7図は本発明の他の実施例であつて、
溝付部材と薄板部材の張り合せ接合例を示す。ま
た第8図は本実施例の接合プロセスを説明するた
めのタイムチヤートを示す。第7図において、薄
板部材31と溝付部材32は接合界面に金属粉末
19を挿入した状態で電極20間にセツトされ
る。そして加圧装置33により加圧軸34を介し
て両接合部材31,32は加圧される。接合電流
は電源35より電流制御回路36及びトランス3
7を介して電極20に供給される。この時の接合
界面の温度は、薄板部材31側に小さな計測孔3
8を設けそこに光フアイバヘツド39を挿入する
ことにより赤外線検出回路40で検出している。
なお図中41は絶縁層、42は支持台である。接
合は第8図にそのタイムチヤートを示しているよ
うに、まず高い加圧力P1をかけた状態で設定大電
流I1の通電を開始する。次に界面温度が所定の最
高到達温度θmaxに達したか否かを、最高到達温
度設定回路43の出力と赤外線検出回路40の出
力とを比較回路44で比較することにより判定
し、界面温度がθmaxに達した時点で加圧制御回
路45により加圧力をP2に変える。一方、同時に
ゲート回路46のゲートを開き、拡散処理温度設
定回路47と比較回路48により接合界面の温度
が一定温度θconstになるよう接合電流の制御を
開始する。この時の拡散処理温度θconstは、母
材融点θm1により低くしかも挿入した金属粉末
19の融点θm2より高い温度に設定する。θ
costがθm1より高いと母材が溶け加圧により母
材が変形するおそれがあるからである。θcostが
θm2より低いとインサート材が溶融せず拡散処
理が十分進行しないからである。拡散処理はイン
サート材が液状になつた方がより望ましい。
Next, FIG. 7 shows another embodiment of the present invention, in which
An example of bonding a grooved member and a thin plate member is shown. Further, FIG. 8 shows a time chart for explaining the bonding process of this embodiment. In FIG. 7, a thin plate member 31 and a grooved member 32 are set between electrodes 20 with metal powder 19 inserted at the bonding interface. Then, both joining members 31 and 32 are pressurized by the pressurizing device 33 via the pressurizing shaft 34. The junction current is transferred from the power supply 35 to the current control circuit 36 and the transformer 3.
7 to the electrode 20. At this time, the temperature of the bonding interface is determined by the small measurement hole 3 on the thin plate member 31 side.
8 and inserting an optical fiber head 39 therein, the infrared rays are detected by an infrared detection circuit 40.
In the figure, 41 is an insulating layer, and 42 is a support base. As shown in the time chart of FIG. 8, the welding process begins with application of a set large current I1 while applying a high pressure P1 . Next, it is determined whether the interface temperature has reached a predetermined maximum temperature θmax by comparing the output of the maximum temperature setting circuit 43 and the output of the infrared detection circuit 40, and the interface temperature is When θmax is reached, the pressurizing force is changed to P 2 by the pressurizing control circuit 45. On the other hand, at the same time, the gate of the gate circuit 46 is opened, and the control of the junction current is started by the diffusion treatment temperature setting circuit 47 and the comparison circuit 48 so that the temperature of the junction interface becomes a constant temperature θconst. The diffusion treatment temperature θconst at this time is set to a temperature lower than the melting point θm 1 of the base material and higher than the melting point θm 2 of the inserted metal powder 19. θ
This is because if the cost is higher than θm 1 , the base material may melt and be deformed by pressurization. This is because if θcost is lower than θm 2 , the insert material will not melt and the diffusion process will not progress sufficiently. It is more desirable for the insert material to be in a liquid state during the diffusion treatment.

一方、温度がθmaxに到達した時点で、第8図
に示すように加圧力をP1からP2に減少させる。こ
れは、次の理由による。インサート材を界面から
押出すときは高い加圧力が必要であるが、インサ
ート材を押出した後は、高い加圧力が必要でな
い。しかも、加圧力を低くすることにより母材の
変形するのをより防ぐことができる。
On the other hand, when the temperature reaches θmax, the pressurizing force is decreased from P 1 to P 2 as shown in FIG. This is due to the following reason. Although a high pressure force is required when extruding the insert material from the interface, a high pressure force is not required after the insert material is extruded. Furthermore, by lowering the pressing force, deformation of the base material can be further prevented.

なお、インサート材の融点が母材の融点よりも
高い場合であつても、母材とインサート材との間
の拡散処理によつて、インサート材が母材の融点
より低い温度で溶融することにより、θcostをθ
m1とθm2の間に維持することができる。
Even if the melting point of the insert material is higher than that of the base material, the insert material melts at a temperature lower than the melting point of the base material due to the diffusion process between the base material and the insert material. , θcost θ
It can be maintained between m 1 and θm 2 .

本実施例によれば、加圧力をP1→P2に切換える
2段切換え加圧機構の採用しているので拡散処理
工程時の加圧を低く設定できるため、拡散処理温
度θconstをインサート金属粉未の融点より高い
母材融点近くに上げられるため、各元素の拡散速
度が早くなり、拡散工程時間を短縮できる。
According to this example, since a two-stage switching pressure mechanism is adopted that switches the pressure from P 1 to P 2 , the pressure during the diffusion treatment process can be set low, so that the diffusion treatment temperature θconst can be adjusted to Since the melting point of the base material is raised to near the melting point of the base material, which is higher than the melting point of the raw material, the diffusion rate of each element becomes faster and the diffusion process time can be shortened.

なお、ガスタービン翼等では接合後、液体化処
理及び時効処理を行う必要があるが、このような
場合、本発明における拡散処理時に同時に液体化
処理及び時効処理を行うようにしてもよい。
Note that gas turbine blades and the like require liquefaction treatment and aging treatment after joining, but in such a case, liquefaction treatment and aging treatment may be performed simultaneously during the diffusion treatment in the present invention.

上記第7図の装置を用いて実際に金属の接合を
行つた。以下詳説する。ステンレス鋼の突合わ接
合界面に融点960℃のBNi―2ろう材粉末を挿入
し、電流密度68A/mm2、加圧力4Kg/mm2、通電時
間1秒の接合条件で接合した時の状況を高速度カ
メラで観察した。その結果、接合部材が暗示赤色
すなわち約700℃程度の状態において、接合界面
から溶融したろう材が押し出される現象を確認し
た。つまり、この接合条件では母材温度に比べ接
合界面の温度を少なくとも260℃以上は高くでき
たわけである。
Metals were actually joined using the apparatus shown in FIG. 7 above. The details are explained below. The situation when BNi-2 brazing filler metal powder with a melting point of 960℃ is inserted into the butt joint interface of stainless steel, and the welding is performed under the following conditions: current density 68A/mm 2 , pressing force 4Kg/mm 2 , and energization time 1 second. Observed with a high-speed camera. As a result, we confirmed a phenomenon in which molten brazing filler metal was extruded from the bonding interface when the bonded members were in a dark red color, i.e., at approximately 700°C. In other words, under these bonding conditions, the temperature at the bonding interface could be increased by at least 260°C compared to the base material temperature.

そこで次に、耐熱超合金(インコネル625)に
BNi―2ろう材粉末を挿入して接合を試みた。そ
の結果、第3図に見られるような接合層厚20μm
以下の接合部が得られることが明らかとなつた。
この時EPMA分析によると、母材元素がかなり接
合層中へ溶解していることもわかつた。また、こ
の時の母材部は、接合層から5μm以上離れた所
では接合前の母材組織と同じであつた。また第4
図は第3図の接合部を真空炉中で母材融点下100
℃の高温に20分間保持した時の組織写真を示す
が、その組織は結晶粒の大きさを除けば母材と同
じ組織を呈しており、短時間に均質化できること
が明らかである。このように接合時の部材温度を
低くすることができるので、部材の変形をおこさ
ず高い加圧力をかけることができるため薄い接合
層により短い拡散時間で接合層を母材組成と均質
にすることができる。
Next, we turned to a heat-resistant superalloy (Inconel 625).
We tried joining by inserting BNi-2 brazing filler metal powder. As a result, the bonding layer thickness was 20 μm as shown in Figure 3.
It has become clear that the following joint can be obtained.
At this time, EPMA analysis revealed that a considerable amount of base metal elements had dissolved into the bonding layer. Moreover, the base material portion at this time had the same structure as the base material before bonding at a distance of 5 μm or more from the bonding layer. Also the fourth
The figure shows the joint shown in Figure 3 in a vacuum furnace at 100°C below the melting point of the base material.
A photograph of the structure obtained when the material was held at a high temperature of ℃ for 20 minutes is shown, and the structure is the same as the base material except for the size of the crystal grains, and it is clear that it can be homogenized in a short time. In this way, the temperature of the parts during bonding can be lowered, so high pressure can be applied without deforming the parts, so the thinner bonding layer allows for a shorter diffusion time to make the bonding layer homogeneous with the base material composition. Can be done.

以上本発明によれば、接合すべき両母材間に間
隙にインサート材を挿入し、加圧力を加えた状態
で通電加熱し、接合界面における局部発熱によつ
て接合するので、接合時の部材温度を低くするこ
とができ、部材の変形を起こすことなく高い加圧
力を加えることができるため薄い接合層によつて
健全に接合でき、さらに接合界面の部材表面を溶
融させるため、フラツクス等を用いることなく大
気中で接合できる。また大気中で処理できる結
果、接合装置を簡略化することができる。
As described above, according to the present invention, the insert material is inserted into the gap between the two base materials to be joined, and the insert material is heated with electricity while applying pressure, and the parts are joined by local heat generation at the joining interface. Since the temperature can be lowered and high pressure can be applied without causing deformation of the parts, sound bonding can be achieved with a thin bonding layer, and flux etc. is used to melt the parts surface at the bonding interface. Can be bonded in the atmosphere without any problems. Furthermore, since the process can be carried out in the atmosphere, the bonding apparatus can be simplified.

また本発明は上記の局部発熱処理のための通電
加熱後、拡散処理するに際しては、母材間の接合
界面温度を母材の融点より小さくインサート材の
融点より大きい値に維持されているために、母材
の変形をおこすことなく拡散が十分進行し、母材
間の接合界面を均一にすることができる。さら
に、接合層が薄いので拡散処理時間を短縮し、生
産効率を向上させることができる。
In addition, the present invention maintains the bonding interface temperature between the base materials at a value lower than the melting point of the base material and higher than the melting point of the insert material when performing the diffusion treatment after the electrical heating for the above-mentioned local heat generation treatment. , diffusion proceeds sufficiently without causing deformation of the base material, and the bonding interface between the base materials can be made uniform. Furthermore, since the bonding layer is thin, the diffusion treatment time can be shortened and production efficiency can be improved.

さらに本発明は上記の局部発熱のための通電加
熱後、両部材の接合界面の融液を接合部外に押出
すので、母材とインサート材が異種材料であつて
も、接合層は母材組成に近いものとなり接合強度
が向上する。
Furthermore, in the present invention, after the above-mentioned electrical heating for local heat generation, the melt at the joint interface between both members is pushed out of the joint, so even if the base material and the insert material are different materials, the joint layer will not overlap with the base material. The composition will be similar to that of the previous one, and the bonding strength will improve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の接合法を実施するための装置
の概略図、第2図A,Bは従来の接合法における
接合部の模式図、第3図は本発明による接合法で
接合した接合部のSEM像写真、第4図は接合部
拡散処理後の光学写真、第5図及び第7図は本発
明による接合法を実施するための装置の概略図、
第6図Aは第5図の装置の動作を示すタイムチヤ
ート図、第6図Bは接合部の模式図及び電気抵抗
と温度の分布図、第8図は第7図の装置の動作を
示すタイムチヤート図である。 4,31,32…接合部材、19…金属粉末、
20…電極、24…赤外線集光ヘツド、25…光
フアイバー、26,40…赤外線検出回路、27
…温度判定回路、22,37…トランス、21,
36…電流制御回路、33…加圧装置、34…加
圧軸、38…計測孔、39…光フアイバヘツド、
41…絶縁層、42…支持台、43…最高到達温
度設定回路、44,48…比較回路、45…加圧
制御回路、46…ゲート回路、47…拡散処理温
度設定回路。
Fig. 1 is a schematic diagram of an apparatus for carrying out the conventional joining method, Fig. 2 A and B are schematic diagrams of the joining part in the conventional joining method, and Fig. 3 is a joint joined by the joining method according to the present invention. FIG. 4 is an optical photograph of the bonded portion after diffusion treatment, FIG. 5 and FIG. 7 are schematic diagrams of the apparatus for carrying out the bonding method according to the present invention,
Fig. 6A is a time chart showing the operation of the device shown in Fig. 5, Fig. 6B is a schematic diagram of the joint and a distribution diagram of electric resistance and temperature, and Fig. 8 shows the operation of the device shown in Fig. 7. It is a time chart. 4, 31, 32...Joining member, 19...Metal powder,
20... Electrode, 24... Infrared focusing head, 25... Optical fiber, 26, 40... Infrared detection circuit, 27
...Temperature judgment circuit, 22, 37...Transformer, 21,
36... Current control circuit, 33... Pressure device, 34... Pressure shaft, 38... Measurement hole, 39... Optical fiber head,
41... Insulating layer, 42... Support stand, 43... Maximum temperature setting circuit, 44, 48... Comparison circuit, 45... Pressure control circuit, 46... Gate circuit, 47... Diffusion treatment temperature setting circuit.

Claims (1)

【特許請求の範囲】 1 母材に近い組成の合金、又は母材と建全な合
金属を形成しうる金属からなるインサート材を、
接合すべき両母材間の間隙に挿入し、加圧力を加
えた状態で通電加熱する加熱工程と、 接合界面の温度を検出し、当該検出温度が母材
の融点に達した時点で、前記通電電流を減少さ
せ、当該接合界面温度を母材融点より小さくイン
サート材の融点より大きい値に維持して拡散処理
する拡散処理工程と、 前記両母材の接合界面の融液を接合部外に押出
す押出し工程と、 からなることを特徴とする金属の接合方法。 2 特許請求の範囲第1項において、前記検出温
度が母材の融点に達した時点で、前記加圧力を低
くすることを特徴とする金属の接合方法。 3 特許請求の範囲第1項または第2項におい
て、前記インサート材は、金属粉末であることを
特徴とする金属の接合方法。
[Scope of Claims] 1. An insert material made of an alloy having a composition close to that of the base material, or a metal that can form an integral alloy with the base material,
A heating step of inserting it into the gap between the two base materials to be joined and heating it with electricity while applying pressure, and detecting the temperature of the joining interface, and when the detected temperature reaches the melting point of the base materials, the above-mentioned a diffusion treatment step of reducing the applied current and maintaining the temperature of the bonding interface at a value lower than the melting point of the base material and greater than the melting point of the insert material for diffusion treatment; A metal joining method characterized by comprising an extrusion step of extruding. 2. The method of joining metals according to claim 1, wherein the pressing force is lowered when the detected temperature reaches the melting point of the base material. 3. The metal joining method according to claim 1 or 2, wherein the insert material is metal powder.
JP19453681A 1981-12-04 1981-12-04 Joining method for metals Granted JPS5897485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19453681A JPS5897485A (en) 1981-12-04 1981-12-04 Joining method for metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19453681A JPS5897485A (en) 1981-12-04 1981-12-04 Joining method for metals

Publications (2)

Publication Number Publication Date
JPS5897485A JPS5897485A (en) 1983-06-09
JPS6235868B2 true JPS6235868B2 (en) 1987-08-04

Family

ID=16326160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19453681A Granted JPS5897485A (en) 1981-12-04 1981-12-04 Joining method for metals

Country Status (1)

Country Link
JP (1) JPS5897485A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325719Y2 (en) * 1984-12-26 1991-06-04
JPS61289964A (en) * 1985-06-18 1986-12-19 Fuji Electric Co Ltd Brazing method
JPS6453763A (en) * 1987-08-22 1989-03-01 Komatsu Mfg Co Ltd Resistance diffusing junction method
DE69104845T2 (en) * 1990-07-24 1995-04-06 Komatsu Mfg Co Ltd HOT DIFFUSION WELDING.
DE69112807T2 (en) * 1990-10-03 1996-05-30 Daihen Corp METHOD FOR ELECTRICALLY CONNECTING ARTICLES TO BE CONNECTED, CERAMIC INCLUDED.
JP2678723B2 (en) * 1993-06-30 1997-11-17 清宏 宮城 Method for producing alloy by electric heating added to solid material to be alloyed and filled metal powder
JP4535739B2 (en) * 2004-01-29 2010-09-01 富士重工業株式会社 Spot welding equipment
JP5432866B2 (en) * 2010-09-06 2014-03-05 トヨタ自動車株式会社 Liquid phase diffusion bonding method and bonded product
JPWO2021210518A1 (en) * 2020-04-13 2021-10-21
JP2023118134A (en) * 2020-06-15 2023-08-25 ニデック株式会社 Thermally conductive member

Also Published As

Publication number Publication date
JPS5897485A (en) 1983-06-09

Similar Documents

Publication Publication Date Title
US4224499A (en) Laser welding aluminum to copper
JPS6235868B2 (en)
CN108883488A (en) Method for improving the quality of aluminium resistance spot welding
CN105108257B (en) A kind of transition liquid-phase assisted Solid-state connection method
JP2016535679A (en) Multistage resistance welding of sandwich panels
JPS58187285A (en) Method of welding metallic part
JP4328622B2 (en) Method and apparatus for joining light metal parts
JP2021079416A (en) Resistance spot welding method
US3851138A (en) Diffusion bonding of butt joints
Shi et al. Laser micro-welding technology for Cu–Al dissimilar metals and mechanisms of weld defect formation
JP4066433B2 (en) Method and apparatus for joining dissimilar materials by laser irradiation
US5382769A (en) Resistance brazed joints for carbon/carbon structures
JP3757506B2 (en) Joining method of heat-resistant alloys
JPS60170907A (en) Wound magnetic core and manufacture of the same
US3693243A (en) Method and apparatus for cladding metals
JP2585654B2 (en) Ceramic joining method
JPH04288983A (en) Pressure welding method for aluminum material and copper material
JPS60124463A (en) Resistance press-welding method of different metals
JP2018114536A (en) Joining method and joined body
JPH0368721A (en) Manufacture of gradient material
JPH01148760A (en) Method for bonding ceramics
WO2022190956A1 (en) Dissimilar material solid-phase bonding method and dissimilar material solid-phase bonded structure
Markovits et al. Investigation of laser-material interaction in case of aluminium brazing process
KR102059551B1 (en) Laser welding method
JPS5897480A (en) Brazing method for pipe material