JPH0679771B2 - Joining method for high chromium-nickel alloy steel - Google Patents

Joining method for high chromium-nickel alloy steel

Info

Publication number
JPH0679771B2
JPH0679771B2 JP1260929A JP26092989A JPH0679771B2 JP H0679771 B2 JPH0679771 B2 JP H0679771B2 JP 1260929 A JP1260929 A JP 1260929A JP 26092989 A JP26092989 A JP 26092989A JP H0679771 B2 JPH0679771 B2 JP H0679771B2
Authority
JP
Japan
Prior art keywords
alloy steel
joining
chromium
temperature
nickel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1260929A
Other languages
Japanese (ja)
Other versions
JPH03124370A (en
Inventor
伸悟 野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP1260929A priority Critical patent/JPH0679771B2/en
Publication of JPH03124370A publication Critical patent/JPH03124370A/en
Publication of JPH0679771B2 publication Critical patent/JPH0679771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、高クロム−ニッケル系合金鋼(以下では高Cr
-Ni系合金鋼と記す)からなる部材の接合方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial field of application" The present invention relates to a high chromium-nickel alloy steel (hereinafter referred to as high Cr
-Ni-based alloy steel) for joining members made of steel.

「従来の技術」 近年、ステンレス鋼より耐熱性、耐腐食性に優れる金属
材料として、Cr(クロム)の組成比率が19〜32%程度、
Ni(ニッケル)の組成比率が18〜37%程度といずれもス
テンレス鋼より高い高Cr-Ni系合金鋼、すなわちASTM規
格A351に規定されているHK材やHP材、あるいはインコロ
イ800(インターナショナル・ニッケル・カンパニー社
の商品名)等、が注目されており、たとえば、ナフサを
1,000〜1,100℃程度の高温下で加熱分解することによっ
てエチレンを製造するための加熱炉においては、ナフサ
を高速で流通させて加熱するためのラジアントチューブ
やそれらの集合部であるヘッダー部を、それらの高Cr-N
i系合金鋼により形成することが行なわれている。
"Prior art" In recent years, as a metal material that has better heat resistance and corrosion resistance than stainless steel, the composition ratio of Cr (chromium) is about 19 to 32%,
The composition ratio of Ni (nickel) is about 18 to 37%, which is higher than stainless steel, and is high Cr-Ni alloy steel, that is, HK material and HP material defined in ASTM standard A351, or Incoloy 800 (International Nickel).・ Company company's product name) etc. are attracting attention. For example, naphtha
In a heating furnace for producing ethylene by heating and decomposing at a high temperature of about 1,000 to 1,100 ° C, a radiant tube for heating naphtha at a high speed and a header part which is a collective part thereof are High Cr-N
It is formed of i-based alloy steel.

そして、上記のような高Cr-Ni系合金鋼からなる部材ど
うしが接合する場合、従来においては融接法の一種であ
るティグ溶接法が採用されることが一般的である。
When the members made of the high Cr-Ni alloy steel as described above are joined together, the TIG welding method, which is a kind of fusion welding method, is generally used in the past.

「発明が解決しようとする課題」 ところが、高Cr-Ni系合金鋼からなるラジアントチュー
ブ等の管材をティグ溶接により接合した場合には、接合
部にいわゆる裏波部が形成されて管内面に形状不連続部
が生じてしまうことが避けられないものである。したが
って、そのような形状不連続部が生じた管材をラジアン
トチューブとして用いた場合には、接合部においてエロ
ージョンが生じ易く、また、容易に浸炭が生じてしま
い、その結果、接合部に割れ等の欠陥が早期に生じてし
まう、という問題を有していた。
"Problems to be solved by the invention" However, when pipe materials such as radiant tubes made of high Cr-Ni alloy steel are joined by TIG welding, so-called back wave portions are formed at the joints to form the inner surface of the pipe. It is unavoidable that discontinuity occurs. Therefore, when a tubing material having such a shape discontinuity is used as a radiant tube, erosion is likely to occur in the joint portion, and carburization easily occurs, and as a result, cracks or the like occur in the joint portion. There was a problem that defects would occur early.

また、管内面に対してはティグ溶接の自動化を図ること
が困難であって手作業に頼らざるを得ず、このため、作
業効率が良くないことは勿論のこと、作業者の技量に影
響されて溶接欠陥を生じる恐れがあり、しかも、ラジア
ントチューブとヘッダー部とを接合する場合にあって
は、多数のラジアントチューブが接近する狭小な箇所で
の溶接作業となるので極めて作業性が良くない、という
問題もあった。
In addition, it is difficult to automate TIG welding on the inner surface of the pipe, and it is necessary to rely on manual work, so that work efficiency is not good and it is affected by the skill of the worker. There is a risk that welding defects will occur, and when joining the radiant tube and the header part, the work is extremely poor because it is a welding operation at a narrow place where many radiant tubes approach. There was also a problem.

本発明は上記の事情に鑑みてなされたもので、高クロム
−ニッケル系合金鋼からなる部材を十分な強度でかつ良
好な状態で接合し得るとともに、クリープ特性面でも十
分な強度で接合できる接合方法を提供することを目的と
している。
The present invention has been made in view of the above circumstances, and it is possible to join members made of high chromium-nickel alloy steel with sufficient strength and in a good state, and to join with sufficient strength in terms of creep characteristics. It is intended to provide a way.

「課題を解決するための手段」 本発明は、ステンレス鋼に比してクロムおよびニッケル
の組成比率がいずれも高い合金鋼である高クロム−ニッ
ケル系合金鋼からなる部材どうしを接合するに際し、接
合すべき部材どうしを不活性ガス雰囲気下でNi-Cr-Si系
あるいはNi-Cr-B系などのニッケル−クロム系のアモル
ファス材料製のインサート金属を介して突き合わせて押
圧するとともに、突き合わせ部を1275℃以上の温度で高
クロム−ニッケル系合金鋼の融点よりも低い温度に300
秒以上高周波加熱して前記インサート金属を溶融させる
ことにより、前記部材どうしを液相拡散接合することを
特徴とするものである。
"Means for Solving the Problem" The present invention, when joining members made of high chromium-nickel alloy steel, which is an alloy steel having a higher composition ratio of chromium and nickel than stainless steel, the joining is performed. The members to be pressed are pressed against each other through an insert metal made of a nickel-chromium-based amorphous material such as Ni-Cr-Si system or Ni-Cr-B system under an inert gas atmosphere, and the butted part is pressed at 1275. At a temperature of ℃ or higher, the temperature is lower than the melting point of the high chromium-nickel alloy steel.
It is characterized in that the members are liquid phase diffusion-bonded by melting the insert metal by high-frequency heating for more than a second.

「作用」 本発明方法では、接合部を1275℃以上の温度で高クロム
−ニッケル系合金鋼の融点よりも低い温度に300秒以上
高周波加熱することによってニッケル−クロム系のアモ
ルファス材料製のインサート金属が溶融して液相とな
り、液相となったインサート金属によって両管材の端面
間に微視的に多数存在している凹凸が埋められて両管材
の先端面どうしが完全に密着するとともに、インサート
金属の元素が母材に拡散していって両管材が接合され
る。
"Operation" In the method of the present invention, the insert metal made of an amorphous material of nickel-chromium type by high-frequency heating the joint part at a temperature of 1275 ° C or more to a temperature lower than the melting point of the high chromium-nickel alloy steel for 300 seconds or more. Melts into a liquid phase, and the insert metal that has become a liquid phase fills up many microscopic irregularities between the end faces of both pipe materials, and the tip surfaces of both pipe materials are in close contact with each other. The metal element diffuses into the base material to join the two pipe materials.

「実施例」 以下、本発明の実施例を図面を参照しながら説明する。[Examples] Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図は高Cr-Ni系合金鋼からなる管材1A,1Bの一端どう
しを接合している状態を示す図であって、図中、符号2
は内部を不活性ガスたとえばArやN2に置換可能なチャン
バー、3は高周波加熱発生装置、4は加熱コイル、5は
加熱温度制御装置、6は熱電対温度計の検出端である。
また、符号7は接合される両管材1A,1Bの先端相互間に
挟み込まれたインサート金属である。
FIG. 1 is a view showing a state in which one ends of pipe materials 1A and 1B made of high Cr-Ni alloy steel are joined, and reference numeral 2
Is a chamber in which the inside can be replaced with an inert gas such as Ar or N 2 , 3 is a high frequency heating generator, 4 is a heating coil, 5 is a heating temperature control device, and 6 is a detection end of a thermocouple thermometer.
Reference numeral 7 is an insert metal sandwiched between the tips of the two pipe materials 1A and 1B to be joined.

上記の管材1A,1Bは、Crの組成比率が19〜32%、Niの組
成比率が18〜37%、Cの組成比率が0.05〜0.75%の範囲
内となっている高Cr-Ni系合金鋼が、屈伸あるいは鋳造
もしくは遠心鋳造により管状に形成されたものであっ
て、たとえばナフサを加熱分解してエチレンを製造する
加熱炉のラジアントチューブとして用いられるものであ
る。なお、必要に応じて適宜の添加元素を加えることは
差し支えない。
The above pipe materials 1A and 1B are high Cr-Ni alloys in which the composition ratio of Cr is 19 to 32%, the composition ratio of Ni is 18 to 37%, and the composition ratio of C is 0.05 to 0.75%. Steel is formed into a tubular shape by bending, stretching, casting or centrifugal casting, and is used as a radiant tube of a heating furnace for producing ethylene by thermally decomposing naphtha, for example. It should be noted that it is possible to add an appropriate additive element as necessary.

上記の管材1A,1Bどうしを接合するに当たっては、予め
双方の管材1A,1Bの先端を平滑に加工しておき、それら
管材1A,1Bの先端部をそれぞれ上記チャンバー2内に挿
入し、インサート金属7をそれら相互間に挟み込んで突
き合わせ、突き合わせ部の外側に加熱コイル4を配す
る。
In joining the above-mentioned pipe materials 1A and 1B, the tips of both pipe materials 1A and 1B are processed beforehand to be smooth, and the tip portions of these pipe materials 1A and 1B are inserted into the chamber 2 respectively, and the insert metal 7 are sandwiched between them and abutted against each other, and the heating coil 4 is arranged outside the abutted portion.

上記のインサート金属7としては、Ni-Cr-Si−B系もし
くはNi-Cr-B系のアモルファス材料(市販品ではたとえ
ばアライド・ケミカル社の商品名MBF-50、MBF-80相当
品)を用いると良く、それを、厚さが数十μm、幅寸法
が管材1A,1Bの肉厚に等しくされたリング形状に加工し
ておく。
As the insert metal 7, a Ni-Cr-Si-B-based or Ni-Cr-B-based amorphous material (commercially available products, for example, MBF-50, MBF-80 equivalent products of Allied Chemical Co., Ltd.) is used. It is good to process it into a ring shape having a thickness of several tens of μm and a width dimension equal to the wall thickness of the pipe materials 1A and 1B.

そして、一方の管材1Aをクランプ治具10によりクランプ
して固定するとともに、他方の管材1Bはローラ11を備え
た支持治具12により長手方向に移動可能に支持し、その
他方の管材1Bを一方の管材1Aに対して0.01〜1Kg/mm
2(約0.1〜約10MPa)程度の押圧力で押し付ける。
Then, one pipe material 1A is clamped and fixed by a clamp jig 10, while the other pipe material 1B is supported movably in the longitudinal direction by a support jig 12 provided with a roller 11, and the other pipe material 1B is 0.01-1Kg / mm for 1A of pipe material
2 Press with a pressing force of about 0.1 to about 10 MPa.

続いて、チャンバー2内を不活性ガスたとえばArやN2
置換した後、高周波加熱発生装置3により加熱コイル4
に通電して接合部を高周波加熱するとともに、熱電対温
度計により接合部の温度を検出し、その検出値に基づい
て高周波加熱発生装置3の出力を制御して加熱温度を設
定値に保持し、その状態を所定時間保持する。この場
合、加熱温度を1,200℃以上とし、加熱時間を300秒以上
とする。加熱温度が1,200以下であり、加熱時間が300秒
以下であると、後述する実験例に示されるように十分な
接合強度が得られないからである。
Subsequently, after replacing the inside of the chamber 2 with an inert gas such as Ar or N 2 , the heating coil 4 is heated by the high frequency heating generator 3.
Is energized to heat the joint at high frequency, the temperature of the joint is detected by a thermocouple thermometer, and the output of the high-frequency heating generator 3 is controlled based on the detected value to maintain the heating temperature at the set value. , That state is maintained for a predetermined time. In this case, the heating temperature is 1,200 ° C. or higher and the heating time is 300 seconds or longer. This is because if the heating temperature is 1,200 or less and the heating time is 300 seconds or less, sufficient bonding strength cannot be obtained as shown in the experimental examples described later.

以上により、インサート金属7が溶融して液相となり、
両管材1A,1Bは液相拡散接合される。すなわち、液相と
なったインサート金属7によって両管材1A,1Bの端面間
に微視的に多数存在している凹凸が埋められ、これによ
って、両管材1A,1Bどうしをそれほど大きな押圧力で押
圧せずとも両管材1A,1Bの先端面どうしが完全に密着す
るとともに、インサート金属7の元素が母材(管材1A,1
B)に拡散していき、これによって両管材1A,1Bは強固に
接合され、一体化される。
As a result of the above, the insert metal 7 melts into a liquid phase,
Both pipe materials 1A and 1B are liquid phase diffusion bonded. That is, the insert metal 7 that has become a liquid phase fills the microscopic unevenness between the end faces of the two pipe materials 1A and 1B, thereby pressing the two pipe materials 1A and 1B with such a large pressing force. Even without doing so, the tip surfaces of both pipe materials 1A and 1B are completely adhered to each other, and the element of insert metal 7 is the base metal (tube materials 1A and 1B).
B) and the two pipes 1A and 1B are firmly joined and integrated.

上記の接合方法によれば、既に述べたように接合温度を
1,200℃以上、接合時間を300秒以上とし、それらの接合
条件を適宜組み合わせることによって、たとえば接合温
度が低いときは接合時間を長くし、接合温度が高いとき
は接合時間を短くする等によって、十分な接合強度が確
保されることは勿論のこと、従来のティグ溶接による場
合には生じることが避けられないものであった裏波部が
生じることがない。したがって、上記方法により接合し
た管材1A,1Bをラジアントチューブとして用いた場合に
は、従来のようにエロージョンや浸炭が生じることがな
く、したがってその寿命を十分に長いものとできる。
According to the above bonding method, as described above,
Sufficiently by setting the bonding time to 1,200 ° C or more and the bonding time to 300 seconds or more, and combining these bonding conditions appropriately, for example, to lengthen the bonding time when the bonding temperature is low and to shorten the bonding time when the bonding temperature is high. In addition to ensuring a sufficient joint strength, there is no occurrence of a back wave portion which was inevitable in the case of conventional TIG welding. Therefore, when the pipe materials 1A and 1B joined by the above method are used as a radiant tube, erosion and carburization do not occur unlike in the conventional case, and therefore the life can be made sufficiently long.

また、接合部を高周波加熱するようにしたので、接合作
業の自動化を容易に図ることができ、したがって、従来
のティグ溶接による場合に比して作業効率を大幅に改善
できるとともに、作業員の技量に影響されることもな
く、また、狭小な箇所での作業も容易となるので、常に
最適な条件下での接合がなされる。
Further, since the joining portion is heated at high frequency, it is possible to easily automate the joining work. Therefore, the work efficiency can be significantly improved as compared with the conventional TIG welding, and the skill of the worker can be improved. Is not affected and the work in a narrow space is facilitated, so that the joining is always performed under the optimum conditions.

さらに、チャンバー2内を不活性ガスに置換して、その
雰囲気下で接合を行うので、接合の際に大気中の酸素に
よる酸化反応が生じてしまうことがなく、その悪影響を
受けることがない。
Furthermore, since the inside of the chamber 2 is replaced with an inert gas and the bonding is performed in that atmosphere, an oxidation reaction due to oxygen in the atmosphere does not occur at the time of bonding, and there is no adverse effect.

以上で管材1A,1Bどうしを接合する場合の実施例を説明
したが、管材をヘッダー部に対して接合する場合には第
2図に示すようにすると良い。この場合、ヘッダー部15
をクランプして固定し、そのヘッダー部15に各管材1…
…を上記と同様の手順により順次接合していけば良い。
このようにすることにより、上記実施例の場合と全く同
様に、管材1とヘッダー部15とを確実に接合できるとと
もに、管材1が互いに接近していることから従来におい
ては作業が困難であった箇所における接合作業を容易に
行うことができる。
Although the embodiment in which the pipe materials 1A and 1B are joined to each other has been described above, when joining the pipe materials to the header portion, it is advisable to perform as shown in FIG. In this case, the header part 15
Clamp and fix, and attach each pipe 1 to the header part 15 ...
It suffices to successively join the ... By the same procedure as above.
By doing so, the pipe material 1 and the header portion 15 can be surely joined to each other exactly as in the case of the above-described embodiment, and since the pipe material 1 is close to each other, it is difficult to perform the work in the related art. It is possible to easily perform the joining work at the place.

なお、上記実施例では、管材どうし、および管材とヘッ
ダー部とを接合するようにしたのであるが、接合するべ
き部材の形態は管状に限るものではなく、たとえば棒状
の部材どうしであっても全く同様に接合することができ
る。
In the above embodiment, the pipe members are joined together, and the pipe member and the header portion are joined together. However, the form of the members to be joined together is not limited to a tubular form; for example, even rod-like members are completely joined together. It can be joined in the same way.

次に、第3図ないし第9図を参照して、本発明方法の有
効性を実証するために行った試験について説明する。
Next, with reference to FIG. 3 to FIG. 9, the test conducted for demonstrating the effectiveness of the method of the present invention will be described.

なお、以下で説明する各試験においては、いずれも、試
験片20,20として第3図に示す組成のインコロイ800を第
4図に示すように断面寸法が10mm×10mmの角柱状とした
ものを用い、インサート金属21として第3図に示す2種
のうち、MBF-50を用いた。また、試験装置として第5図
に示すものを用いた。第5図において符号22は真空容
器、23は高周波加熱発生装置、24は加熱コイル、25は熱
電対温度計の検出端、26は試験片20,20を押圧するため
にロッド、27は真空排気ポンプ、28はロードセル、29は
記録計である。そして、上記試験装置の真空容器22内を
4×10-1Torr(約50Pa)以下となるまで真空排気した後
にArガスに置換し、ロッド26により試験片20,20に0.05K
g/mm2(約0.5MPa)の荷重を加えつつ接合を行った。
In each of the tests described below, incoloy 800 having the composition shown in FIG. 3 was used as the test pieces 20 and 20 in the form of a prism having a cross-sectional dimension of 10 mm × 10 mm as shown in FIG. Of the two kinds shown in FIG. 3, MBF-50 was used as the insert metal 21. The test device shown in FIG. 5 was used. In FIG. 5, reference numeral 22 is a vacuum container, 23 is a high-frequency heating generator, 24 is a heating coil, 25 is a detection end of a thermocouple thermometer, 26 is a rod for pressing the test pieces 20, 20, and 27 is vacuum exhaust. A pump, 28 is a load cell, and 29 is a recorder. Then, the inside of the vacuum container 22 of the above test equipment was evacuated to 4 × 10 -1 Torr (about 50 Pa) or less, and then replaced with Ar gas, and the rod 26 was used to test the test piece 20, 20 to 0.05 K.
Welding was performed while applying a load of g / mm 2 (about 0.5 MPa).

(試験例1) 第4図に示すように試験片20,20間にインサート金属7
およびスペーサとしてのタングステン製の線材30を挟み
込んで押圧し、接合時間を600秒に設定し、接合温度の
みを変えて複数回の接合を行い、接合された試験片を切
断してミクロ組織を顕微鏡観察した。接合温度は1,448K
〜1,598K(1,175℃〜1,325℃)の範囲内で25Kごとに設
定した。
(Test Example 1) As shown in FIG. 4, the insert metal 7 is placed between the test pieces 20 and 20.
And the tungsten wire rod 30 as a spacer is sandwiched and pressed, the joining time is set to 600 seconds, the joining temperature is changed and the joining is performed a plurality of times, and the joined test piece is cut to obtain a microstructure with a microscope. I observed. Junction temperature is 1,448K
It was set every 25K within the range of ~ 1,598K (1,175 ℃ ~ 1,325 ℃).

その結果、第6図(a)〜(g)の顕微鏡写真のよう
に、接合温度を1,523K(1,250℃)以下としたものにつ
いては、接合部に機械的特性を劣化させるシリコン化合
物等の生成物が認められたが、接合温度を1,548K(1,27
5℃)以上としたものについてはそのような生成物は認
められず、接合部がほぼ完全に一体化したことが認めら
れた。
As a result, as shown in the micrographs of FIGS. 6 (a) to 6 (g), when the bonding temperature is 1,523 K (1,250 ° C.) or less, the formation of silicon compound or the like that deteriorates the mechanical properties at the bonding part. However, the bonding temperature was 1,548K (1,27K).
No such product was observed for those above 5 ° C), indicating that the joint was almost completely integrated.

(試験例2) 接合温度1,548K(1,275℃)に設定し、接合時間のみを
変化させて複数回の接合を行い、試験例1と同様に接合
試験片を切断してミクロ組織を顕微鏡観察した。接合時
間は60秒〜180秒の範囲内で適宜設定した。
(Test Example 2) The bonding temperature was set to 1,548K (1,275 ° C), the bonding time was changed, and the bonding was performed a plurality of times. The bonding test piece was cut in the same manner as in Testing Example 1 and the microstructure was microscopically observed. . The joining time was appropriately set within the range of 60 seconds to 180 seconds.

その結果、第7図(a)〜(d)の顕微鏡写真のよう
に、接合時間を300秒以上としたものについては接合部
がほぼ完全に一体化したことが認められた。(試験例
3) 試験例2の条件下により接合した各接合試験片の引っ張
り強度試験を行い、第8図に示す結果を得た。
As a result, as shown in the micrographs of FIGS. 7 (a) to 7 (d), it was confirmed that the joints were almost completely integrated with the joint time of 300 seconds or more. (Test Example 3) A tensile strength test was performed on each bonded test piece bonded under the conditions of Test Example 2, and the results shown in FIG. 8 were obtained.

第8図に示されるように、接合時間が60秒のものでは接
合面で破断したが、接合時間を300秒以上としたものに
ついては母材で破断し、十分な接合強度を有することが
判明した。また、いずれの場合も、JISに規定されてい
るインコロイ800の引っ張り強度の最小値(JIS G 3467
中のNCF 800 HCF の引張り強度の最小値:450N/mm2)を
十分に越える強度を有していることが判明した。
As shown in Fig. 8, when the joining time was 60 seconds, it broke at the joining surface, but when the joining time was 300 seconds or more, it broke at the base metal, and it was found that the joining strength was sufficient. did. In all cases, the minimum tensile strength of Incoloy 800 specified in JIS (JIS G 3467
It was found that the tensile strength of NCF 800 HCF is 450 N / mm 2 ).

(試験例4) 接合温度1,273K(1,000℃)、接合時間600秒の条件下で
接合した試験片、および母材のクリープ特性をそれぞれ
調査し、第9図に示す結果を得た。
(Test Example 4) Creep characteristics of a test piece and a base material joined under the conditions of a joining temperature of 1,273K (1,000 ° C) and a joining time of 600 seconds were investigated, and the results shown in Fig. 9 were obtained.

第9図に示されるように、接合試験片のクリープ特性は
母材試験片と同等あるいはそれ以上の破断寿命を有する
ことが判明した。
As shown in FIG. 9, it was found that the creep characteristics of the bonded test piece had a fracture life equivalent to or higher than that of the base material test piece.

「発明の効果」 以上で詳細に説明したように、本発明は、接合するべき
高クロム−ニッケル合金鋼製どうしを不活性ガス雰囲気
下でNi-Cr-Si系あるいはNi-Cr-B系などのニッケル−ク
ロム系のアモルファス材料製の薄層のインサート金属を
介して突き合わせて押圧するとともに、突き合わせ部を
1275℃以上の温度で高クロム−ニッケル系合金鋼の融点
よりも低い温度に300秒以上高周波加熱することによっ
て前記インサート金属を溶融させ、前記部材どうしを液
相拡散接合するものであり、前記の温度と時間で接合す
ることで、機械的特性を劣化させるシリコン化合物など
の生成物を接合部分に生じさせることなく接合できるの
で、母材自体の強度と同等以上の十分な接合強度を確保
できる。更に、本発明方法で接合した場合にクリープ特
性にも優れ、母材と同等以上のクリープ特性を得ること
ができる。
"Effects of the Invention" As described in detail above, the present invention is a high chromium-nickel alloy steel to be joined between Ni-Cr-Si system or Ni-Cr-B system under an inert gas atmosphere. Butt and press through the thin-layer insert metal made of nickel-chromium amorphous material of
Melting the insert metal by high-frequency heating for 300 seconds or more at a temperature lower than the melting point of the high chromium-nickel alloy steel at a temperature of 1275 ° C. or higher, and performing liquid phase diffusion bonding between the members. By joining at a temperature and for a time, it is possible to join without producing a product such as a silicon compound that deteriorates the mechanical properties in the joined portion, so that sufficient joining strength equal to or higher than the strength of the base material itself can be secured. Further, when joined by the method of the present invention, the creep characteristics are also excellent, and the creep characteristics equivalent to or higher than those of the base material can be obtained.

また、本発明を実施すると、ティグ溶接による場合のよ
うに裏波部を生じることもなく、従って特にラジアント
チューブとして用いる管材を接合する際に本発明を適用
して好適である。
Further, when the present invention is carried out, a back wave portion is not generated unlike in the case of TIG welding, and therefore, the present invention is particularly suitable for joining pipe materials used as radiant tubes.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はそれぞれ本発明方法の実施例を示
すもので、第1図は高Cr-Ni系合金鋼からなる管材どう
しを接合している状態を示す図、第2図は管材とヘッダ
ー部とを接合している状態を示す図である。第3図ない
し第9図は本発明方法の有効生を実証するために行った
試験を説明するための図であって、第3図は試験片およ
びインサート金属の組成を示す図、第4図は試験片およ
びインサート金属の拡大図、第5図は試験装置の概略構
成図、第6図(a)〜(g)はそれぞれ接合時間を一定
とし接合温度のみを変えた場合の接合部の金属組織を示
す顕微鏡写真、第7図(a)〜(d)はそれぞれ接合温
度を一定とし接合時間を変えた場合の接合部の金属組織
を示す顕微鏡写真、第8図は接合試験片の引っ張り強度
を示す図、第9図は接合試験片のクリープ特性を示す図
である。 1,1A,1B……管材(部材)、2……チャンバー、3……
高周波加熱発生装置、4……加熱コイル、5……加熱温
度制御装置、6……熱電対温度計の検出端、7……イン
サート金属、10……クランプ治具、12……ローラ、13…
…支持治具、15……ヘッダー部(部材)。
1 and 2 each show an embodiment of the method of the present invention. FIG. 1 is a view showing a state in which pipe materials made of high Cr-Ni alloy steel are joined together, and FIG. 2 is a pipe material. It is a figure which shows the state which has joined the header part. FIG. 3 to FIG. 9 are views for explaining a test conducted for demonstrating the effectiveness of the method of the present invention, and FIG. 3 is a view showing a composition of a test piece and an insert metal, and FIG. Is an enlarged view of the test piece and the insert metal, FIG. 5 is a schematic configuration diagram of the test apparatus, and FIGS. 6 (a) to (g) are metal of the joint portion when the joint time is constant and only the joint temperature is changed. Micrographs showing the structure, Figs. 7 (a) to 7 (d) are micrographs showing the metal structure of the joint when the joining temperature is kept constant and the joining time is changed, and Fig. 8 is the tensile strength of the joining test piece. FIG. 9 is a diagram showing the creep characteristics of the bonded test piece. 1,1A, 1B …… Pipe material (member), 2 ... Chamber, 3 ...
High-frequency heating generator, 4 ... Heating coil, 5 ... Heating temperature control device, 6 ... Thermocouple thermometer detection end, 7 ... Insert metal, 10 ... Clamp jig, 12 ... Roller, 13 ...
… Support jig, 15… Header part (member).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ステンレス鋼に比してクロムおよびニッケ
ルの組成比率がいずれも高い合金鋼である高クロム−ニ
ッケル系合金鋼からなる部材どうしを接合するに際し、
接合すべき部材どうしを不活性ガス雰囲気下でNi-Cr-Si
系あるいはNi−Cr−B系などのニッケル−クロム系のア
モルファス材料製の薄層のインサート金属を介して突き
合わせて押圧するとともに、突き合わせ部を1275℃以上
の温度で高クロム−ニッケル系合金鋼の融点よりも低い
温度に300秒以上高周波加熱して前記インサート金属を
溶融させることにより、前記部材どうしを液相拡散接合
することを特徴とする高クロム−ニッケル系合金鋼の接
合方法。
1. When joining members made of high chromium-nickel alloy steel, which is an alloy steel in which both the composition ratio of chromium and nickel is higher than that of stainless steel,
The members to be joined should be Ni-Cr-Si in an inert gas atmosphere.
Of the high chromium-nickel alloy steel at a temperature of 1275 ° C or higher, as well as by pressing through a thin-layer insert metal made of a nickel-chromium amorphous material such as Ni-Cr-B or Ni-Cr-B A method for joining high chromium-nickel alloy steel, characterized in that the members are liquid phase diffusion joined by melting the insert metal by high-frequency heating at a temperature lower than the melting point for 300 seconds or more.
JP1260929A 1989-10-05 1989-10-05 Joining method for high chromium-nickel alloy steel Expired - Lifetime JPH0679771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1260929A JPH0679771B2 (en) 1989-10-05 1989-10-05 Joining method for high chromium-nickel alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1260929A JPH0679771B2 (en) 1989-10-05 1989-10-05 Joining method for high chromium-nickel alloy steel

Publications (2)

Publication Number Publication Date
JPH03124370A JPH03124370A (en) 1991-05-27
JPH0679771B2 true JPH0679771B2 (en) 1994-10-12

Family

ID=17354730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1260929A Expired - Lifetime JPH0679771B2 (en) 1989-10-05 1989-10-05 Joining method for high chromium-nickel alloy steel

Country Status (1)

Country Link
JP (1) JPH0679771B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544662B2 (en) * 1999-10-25 2003-04-08 Alliedsignal Inc. Process for manufacturing of brazed multi-channeled structures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335655A (en) * 1976-09-15 1978-04-03 Mitsubishi Heavy Ind Ltd Method of connecting heat resisting alloy member
JPS5781978A (en) * 1980-11-10 1982-05-22 Mitsubishi Heavy Ind Ltd Liquid phase diffusion welding method

Also Published As

Publication number Publication date
JPH03124370A (en) 1991-05-27

Similar Documents

Publication Publication Date Title
EP1584398B1 (en) Two tier brazing process for joining copper tubes to a fitting
JP3511749B2 (en) Method of joining Ti alloy members
JP2011177790A (en) Horizontal welding method and joint structure therefor
SU772471A3 (en) Method of producing bimetals
JPH0679771B2 (en) Joining method for high chromium-nickel alloy steel
KR100787929B1 (en) Method of low temperature joining between ti-cu dissimilar metals using amorphous filler material
US5284290A (en) Fusion welding with self-generated filler metal
JP4281881B2 (en) Heating furnace tube and manufacturing method of heating furnace tube
JPH11315973A (en) Welding method for steel products whose compositions are different from each other
JPS607591B2 (en) Clad pipe production method
FR2670147A1 (en) Method for the dynamic diffusion welding of steel and device for the implementation of the method
JPH08276281A (en) Method and device for joining titanium material or titanium alloy material
US20200316666A1 (en) System and method for connecting metal workpieces
JPH0663741A (en) Method for joining pipes
RU2359792C2 (en) Soldering method of refractory metal with corrosion-resistant, heat-resistant steels or nickel alloys
JP2002280152A (en) Method of manufacturing metal structure body for heating and/or cooling
JP2010247194A (en) Method of joining metallic tube
JP3369610B2 (en) Method for manufacturing bonded body of silicon carbide and austenitic steel
RU2221679C2 (en) Method for soldering telescopic constructions
JP2002001424A (en) Method for manufacturing component for super critical water oxidization treatment
JP3447891B2 (en) How to join the end of the strip to a flat surface
JP2023039175A (en) Method for producing steel material conjugant
JP2021053674A (en) Manufacturing method and manufacturing device of joined body
JPH04286935A (en) Method for estimating residual life of actual machine using minute sample and method for collecting minute sample
Hamid et al. Microstructure Studies of Nickel Base Super Alloy Braze Joints