JPS63294783A - Immobilization of cell of microorganism - Google Patents

Immobilization of cell of microorganism

Info

Publication number
JPS63294783A
JPS63294783A JP13209687A JP13209687A JPS63294783A JP S63294783 A JPS63294783 A JP S63294783A JP 13209687 A JP13209687 A JP 13209687A JP 13209687 A JP13209687 A JP 13209687A JP S63294783 A JPS63294783 A JP S63294783A
Authority
JP
Japan
Prior art keywords
microorganism
mixture
microbial cells
microorganisms
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13209687A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Kitano
清之 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP13209687A priority Critical patent/JPS63294783A/en
Publication of JPS63294783A publication Critical patent/JPS63294783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To form a microorganism immobilized carrier having high treating activity, by blending a cell of microorganism with a first material to hydrate and to gelatinize by after-treatment, adding a second material to be solubilized by physiological action of the cell of microorganism to give a mixture and gelatinizing. CONSTITUTION:A cell of microorganism is blended with a first material to hydrate and to gelatinize by after-treatment and mixed with a second material to be solubilized by physiological action of the cell of microorganism to form a mixture, which is gelatinized to form a microorganisms immobilized carrier. As another method, a small amount of a substance to be a substrate for the gelatinized cell of microorganism and at least part of the second material is decomposed so that the microorganism immobilized carrier can be formed. Protein, starch and lipid are suitable as the second material.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、微生物菌体の固定化方法に係り、特に微生物
菌体の活性度を高める方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for immobilizing microbial cells, and particularly to a method for increasing the activity of microbial cells.

〔従来技術およびその問題点〕[Prior art and its problems]

医薬品工業、食品工業等の限られた産業分野でのみ研究
開発が進められてきた各種微生物は、近年、半導体工業
から排水処理システムに至るまで広範囲の分野での利用
が注目されている。
Various microorganisms, which have been researched and developed only in limited industrial fields such as the pharmaceutical industry and the food industry, have recently attracted attention for their use in a wide range of fields, from the semiconductor industry to wastewater treatment systems.

そこで問題となるのが微生物の固定化方法であり、微生
物の種類あるいは使用条件等、必要とされる条件を考慮
しているいろな微生物固定化方法が提案されている。
Therefore, the problem is how to immobilize microorganisms, and various methods for immobilizing microorganisms have been proposed that take into consideration the required conditions such as the type of microorganisms and usage conditions.

例えば特開昭57−141292号公報、特公昭59−
37丹公報等にみられるような有機性高分子を主成分と
するゲルの中に微生物を固定化する方法、あるいは、“
千畑著「固定化酵素」東京化学同人”に示されている、
アクリルアミドの重合を利用する方法、カラギーナンを
利用する方法、更には高分子の光重合を利用する方法等
がある。
For example, JP-A-57-141292, JP-A-59-
A method of immobilizing microorganisms in a gel whose main component is an organic polymer, as seen in the 37tan publication, or “
As shown in "Immobilized Enzyme" by Chibata, published by Tokyo Kagaku Doujin,
There are methods that utilize polymerization of acrylamide, methods that utilize carrageenan, and methods that utilize photopolymerization of polymers.

また、その強度、安定性を向上する目的で、2種以上の
材料を組み合わせる方法(特開昭60−153794号
公報)あるいは、鉱物等の生物により分解代謝されない
とされる物質を上記材料に混合する方法(特開昭57−
141291>、更には、固定化担体の反応に寄与する
表面積を増大せしめる方法として、突起を有する型にゲ
ル原料と菌体の混合物とを流し込む方法(特開昭57−
159826>、ゲルを多孔化するためにゲル化工程に
おいてゲル材料凍結物を真空乾燥する方法(特開昭6O
−180587)等も提案されている。
In addition, in order to improve its strength and stability, it is possible to combine two or more materials (Japanese Unexamined Patent Publication No. 153794/1982), or to mix substances such as minerals that are not decomposed and metabolized by living organisms with the above materials. Method of
141291>, and furthermore, as a method of increasing the surface area of the immobilization carrier that contributes to the reaction, a method of pouring a mixture of gel raw material and bacterial cells into a mold having protrusions (Japanese Unexamined Patent Application Publication No. 1983-1999)
159826>, a method of vacuum drying a frozen gel material in the gelling process in order to make the gel porous (Japanese Patent Application Laid-open No.
-180587) etc. have also been proposed.

このような含水ゲルで微生物を固定化する方法では、微
生物菌体をゲルでおおう(包括する)ことから微生物を
高濃度で保持できる反面、ゲルの基質透過性が低いため
ゲル内部の微生物の活動は停止し、その結果固定化した
微生物のうちごく一部しか利用できないという問題があ
った。
In this method of immobilizing microorganisms with a water-containing gel, microorganisms can be retained at a high concentration by covering (enclosing) the microbial cells in the gel. The problem was that only a small portion of the immobilized microorganisms could be used.

また、突起を有する型を用いたり、凍結乾燥を行なった
りして表面積を増す方法は、固定化した微生物を有効に
使うという点では効果があるが、担体の製造作業性が悪
く、コストの高騰を招くことから大量生産向きではない
。特に、排水51!L31のように多量の担体を安価に
必要とする場合には不向きであるという問題があった。
In addition, methods to increase the surface area by using molds with protrusions or by freeze-drying are effective in effectively using immobilized microorganisms, but they are difficult to manufacture and increase costs. It is not suitable for mass production because it invites Especially drainage 51! There is a problem in that it is not suitable for cases where a large amount of carrier is required at low cost, such as L31.

本発明は前記実情に鑑みてなされたもので、ゲル強度を
低下させることなく、処理活性の高い微生物固定化担体
を提供することを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a microorganism-immobilized carrier with high treatment activity without reducing gel strength.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明の1つでは、微生物菌体を後処理により含
水グル化できる第1の材料(以下ゲル化材料)と混合す
るに際し、該微生物国体の作用により分解可能な第2の
材料を添加しておき、ゲル化運ることにより、微生物固
定化担体を形成するようにしている。
Therefore, one aspect of the present invention is to add a second material that can be decomposed by the action of the microbial cells when mixing the microbial cells with a first material (hereinafter referred to as gelling material) that can be hydrogelized by post-treatment. A microorganism-immobilized carrier is formed by allowing the gel to form.

また、本発明の他の1つでは、微生物国体を後処理によ
り含水ゲル化できる第1の材n(以下ゲル化材料)と混
合するに際し、該微生物菌体の作用により分解可能な第
2の材料を添加しておき、ゲル化した後微生物菌体の基
質となる物質を少量添加し微生物菌体の作用により前記
第2の材料の少なくとも1部を分解せしめることにより
微生物固定化担体を形成している。
In addition, in another aspect of the present invention, when mixing the microbial body with the first material n (hereinafter referred to as gelling material) that can be turned into a water-containing gel by post-treatment, a second material that can be decomposed by the action of the microorganism body is added. A microorganism-immobilized carrier is formed by adding a material, gelling it, adding a small amount of a substance that becomes a substrate for microorganism cells, and causing at least a part of the second material to be decomposed by the action of the microorganism cells. ing.

〔作 用〕[For production]

本発明は、微生物菌体の作用により溶解される第2の材
料をゲル化材料と一緒にあらかじめ添加しておき、ゲル
化すると、微生物菌体の作用により該第2の材料が溶解
されて孔が生じるという現象に着目してなされたもので
、この分解によって生じる多数の孔の存在により、基質
透過性の高い微生物固定化担体となる。
In the present invention, a second material that is dissolved by the action of microorganism cells is added in advance together with the gelling material, and when gelled, the second material is dissolved by the action of the microorganism cells and becomes pore-formed. This was developed by paying attention to the phenomenon of the formation of microorganisms, and the presence of numerous pores created by this decomposition makes it a microorganism-immobilized carrier with high substrate permeability.

また、ゲル化優、微生物の基質となる物質を少量添加し
て培養することにより、溶解を促進するようにすれば、
更に基質透過性の高い微生物固定化担体を得ることがで
きる。
In addition, if a small amount of a substance that is a substrate for microorganisms is added and cultured to promote gelation, dissolution can be promoted.
Furthermore, a microorganism-immobilized carrier with high substrate permeability can be obtained.

すなわち、添加された第2の材料が、担体内の微生物あ
るいは外部の微生物により分解されついには代謝される
かあるいはゲル中に拡散溶解する。
That is, the added second material is decomposed by microorganisms within the carrier or external microorganisms, and is eventually metabolized or diffused and dissolved into the gel.

その結果、ゲル中のこの第2の材料の存在した空間は空
孔となり、溶媒によってこの空孔が満されていく。こう
してゲル中に細孔が多数生成され、担体内の物質移動性
が向上し、固定化した微生物の基質透過性も向上して、
担体内の微生物の大半を活発に活動せしめることができ
るようになり、微生物固定化担体の処理活性が高められ
る。
As a result, the spaces in the gel where the second material existed become pores, and these pores are filled with the solvent. In this way, many pores are generated in the gel, improving mass transfer within the carrier and improving substrate permeability of immobilized microorganisms.
Most of the microorganisms in the carrier can be made active, and the processing activity of the microorganism-immobilized carrier is enhanced.

このように、ゲル内部にミクロな孔を多数設け、その孔
内を水を満すことによりゲルマトリックスの強度及び基
質透過係数を変えることなく、担体全体としての基質透
過性を大幅に改善することができかつ安価で天吊生産の
容易な微生物固定化担体が形成される。
In this way, by providing a large number of microscopic pores inside the gel and filling the pores with water, the substrate permeability of the entire carrier can be significantly improved without changing the strength and substrate permeability coefficient of the gel matrix. A microorganism immobilization carrier is formed that is inexpensive and easy to produce by hanging from the ceiling.

この方法を適用することのできる微生物としては特に制
限はなく、嫌気性微生物および好気性微生物のいずれに
も適用可能であり、その微生物が溶解できてかつゲル中
に溶解、分解、変質することのない物質があればよい。
There are no particular restrictions on the microorganisms to which this method can be applied, and it can be applied to both anaerobic and aerobic microorganisms, as long as the microorganisms are capable of dissolving and are resistant to dissolution, decomposition, or alteration in the gel. All you need is a substance that doesn't exist.

〔実施例〕〔Example〕

以下、本発明の実施例について詳細に説明する。 Examples of the present invention will be described in detail below.

実験例1 まず、PVA−HCという名称で市販されているクラレ
製の20%のポリビニルアルコール(PVA)100g
に対し、活性汚泥を遠心分離機にかけ回転数2500 
rpiで10分間濃縮して形成した活性汚泥湿菌体20
gを混合する。
Experimental Example 1 First, 100 g of 20% polyvinyl alcohol (PVA) manufactured by Kuraray, which is commercially available under the name PVA-HC.
In contrast, the activated sludge is centrifuged at a rotation speed of 2500.
Activated sludge wet bacterial cells formed by concentrating for 10 minutes with RPI 20
Mix g.

次いで、この混合物に更にあらかじめ少量の水に懸濁し
たトイレットペーパー10gを混合しよく撹拌する。
Next, 10 g of toilet paper previously suspended in a small amount of water is further mixed into this mixture and stirred well.

この後、この混合物を飽和ホウ酸水中に滴下することに
より、ポリビニルアルコールをゲル化し、直径6Mの球
形の微生物固定化担体を作成した。
Thereafter, this mixture was dropped into saturated boric acid water to gel the polyvinyl alcohol, thereby creating a spherical microorganism-immobilized carrier with a diameter of 6M.

このようにして作成した微生物固定化担体を5等分し1
00−の容器に入れ、20日間にわたって培養した。培
養液としては、酵母エキス、肉エキス、ヘプトン等を材
料として作成した人工下水を用い、この人工下水中に前
記微生物固定化担体を入れ、空気を送りながら培養した
The microorganism immobilization carrier prepared in this way was divided into 5 equal parts.
00- container and cultured for 20 days. As the culture solution, artificial sewage prepared from yeast extract, meat extract, hepton, etc. was used, and the microorganism-immobilized carrier was placed in this artificial sewage and cultured while blowing air.

このようにして培養した後、全有機性炭素(TOC>1
20ppmの人工下水100rd中に培養後の担体を2
0%充填し、空気を送りながら2時間にわたって処理し
た後のTOCを測定した結果は、次の第1表a2にも示
す通り、TOCは181)I)11となっており、TO
C除去率は85%と極めて良好な結果を示している。
After culturing in this way, total organic carbon (TOC>1
The carrier after culture was added to 100rd of 20ppm artificial sewage.
The results of measuring TOC after 0% filling and processing for 2 hours while supplying air were 181) I) 11, as shown in Table 1 a2 below.
The C removal rate was 85%, showing an extremely good result.

また、添加材料として、トイレットペーパーに代えて、
同量の小麦粉を入れ、他は全く上記のものと同様にした
場合および全く何も添加しなかった場合は第1表のal
、a3にも示すように夫々TOC除去率は87%と75
%となっており、これらの比較から、微生物によって溶
解されるトイレットペーパーや小麦粉を添加した場合処
理活性の高い微生物固定化担体を得ることができること
がわかる。
In addition, as an additive material, instead of toilet paper,
If the same amount of flour is added and everything else is the same as above, or if nothing is added at all, follow al in Table 1.
, the TOC removal rates are 87% and 75%, respectively, as shown in a3.
%, and from these comparisons, it can be seen that a microorganism-immobilized carrier with high treatment activity can be obtained when toilet paper or flour that is dissolved by microorganisms is added.

また、この方法は極めて安価でかつ大金生産も容易であ
る。
Moreover, this method is extremely inexpensive and easy to produce large sums of money.

次に、(被分解材料として小麦粉10gを添加してなる
)実施例1と全く同様にしてゲル化までを行なった担体
に対し、培養条件を第2表の如く変化させて、培養条件
b1〜b6(培養液のTOCと培養時間)と処理活性と
の関係を測定した。
Next, the culture conditions were changed as shown in Table 2 for the carrier (with 10 g of wheat flour added as the material to be decomposed) that had been gelled in exactly the same manner as in Example 1, and the culture conditions were b1 to b1. The relationship between b6 (TOC of culture solution and culture time) and treatment activity was measured.

なお、処理活性の測定についても実験例1の場合と同様
1.−TOCI 20ppn ノ人工下水100dを1
1d/hで流しつつ処理を行ない、試験開始後10〜1
4日目のT自重を測定し、TOC除去率を求めている。
The treatment activity was also measured in the same manner as in Experimental Example 1. - TOCI 20ppn 100d of artificial sewage 1
The treatment was carried out while flowing at a rate of 1 d/h, and 10-1 after the start of the test.
The T self-weight on the 4th day was measured to determine the TOC removal rate.

b6は比較のために行なった例で、被溶解材料としての
小麦粉を添加しない場合についての例である。
b6 is an example conducted for comparison, and is an example in which wheat flour as a material to be dissolved is not added.

この第2表の結果から、培養工程の導入によりTOC除
去率は大幅に向上しており、培養液のTOCについては
、通常の処理条件において用いられるTOCよりも低い
約5/12どなっている。
From the results in Table 2, the introduction of the culture process has significantly improved the TOC removal rate, and the TOC of the culture solution is approximately 5/12 lower than the TOC used under normal processing conditions. .

なお、培養条件については、実験例に限定されることな
く、用いた微生物が死滅しない程度に低い基質量で適当
な時間培養し、添加材料を溶解するようにすればよく通
常の培養条件における基質量の1/10〜3/4程度で
1週間から1力月間程度が良好な効果を呈する。
The culture conditions are not limited to those in the experimental examples; it is sufficient that the microorganisms used are cultured for an appropriate amount of time with a low amount of substrate so as not to die, and the added materials are dissolved. A good effect is exhibited for about 1 week to 1 month at about 1/10 to 3/4 of the mass.

これは9凶の基質に接触することにより微生物がより多
くの酵素を出しより活性が高められるためである。
This is because the microorganisms produce more enzymes when they come into contact with the 9-layered substrate, increasing their activity.

衷」U1旦 まず、アクリルアミドモノマー16%に架橋剤としての
N、N−メチレンビスアクリルアミド1.1%を加えて
なる水溶液100gに対し、含水率90%の消化汚泥湿
菌体20gと消化汚泥の乾燥粉末109とを混合する。
First, to 100 g of an aqueous solution prepared by adding 1.1% of N,N-methylenebisacrylamide as a crosslinking agent to 16% of acrylamide monomer, 20 g of digested sludge wet bacterial cells with a water content of 90% and the digested sludge were added. and dry powder 109.

この混合物に更に5%重合促進剤としてのβ−ジメチル
アミノプロピオントリル10gと重合開始剤としての2
.5%ベルオキソニ硫酸カリウム10gとを添加した後
、厚さ2JuIの板状体を形成する金型に入れ35℃に
加熱して重合させる(ゲル化)ことにより、微生物固定
化担体を青る。
To this mixture was added 10 g of β-dimethylaminopropiontolyl as a 5% polymerization accelerator and 2% as a polymerization initiator.
.. After adding 10 g of 5% potassium peroxonisulfate, the microorganism-immobilized carrier is turned blue by placing it in a mold for forming a plate-like body with a thickness of 2 JuI and heating it to 35° C. to polymerize (gelatinize).

そしてこのようにして形成した微生物固定化担体を直径
8s+の円板形に打ち抜いたもの50gを100dの円
筒容器に入れ、前記と同様のTOC120EIElll
の人工下水を連続的に11d/hの速度で流ett、、
めながら処理し、処理開始後31〜35日目のTOC除
去率を測定した結果を、第3表にC1として示す。
Then, 50 g of the microorganism immobilization carrier formed in this way was punched out into a disk shape with a diameter of 8 s+, and placed in a 100 d cylindrical container.
of artificial sewage was continuously flowed at a rate of 11 d/h.
The TOC removal rate was measured 31 to 35 days after the start of treatment, and the results are shown as C1 in Table 3.

第3表 ここでC2は、消化汚泥の乾燥粉末10gを添加しない
で他はC1と全く同様にしたものである。
Table 3 Here, C2 was prepared in the same manner as C1 except that 10 g of dry powder of digested sludge was not added.

このclと02の比較からも、添加材料として消化汚泥
の乾燥粉末の添加により処理活性の^い微生物固定化担
体となっていることがわかる。
A comparison between cl and 02 also shows that the addition of dry powder of digested sludge as an additive material results in a microorganism immobilization carrier with low treatment activity.

なお、添加材料としては、小麦粉、トイレットベーパ、
消化汚泥の乾燥粉末の他、穀物粉、セルロース繊維、酵
母粉末粉末化した下水汚泥のような微生物の乾燥物、植
物性のあるいは動物性油脂等、炭水化物、たん白質、脂
質等を主成分とするもの等があげられる。
In addition, the additive materials include flour, toilet vapor,
In addition to dried powder of digested sludge, the main components are grain flour, cellulose fiber, yeast powder, dried microorganisms such as powdered sewage sludge, vegetable or animal fats and oils, carbohydrates, proteins, lipids, etc. I can give you things.

この添加材料は、微生物菌体とゲル化材料との混合物の
1〜80%程度が有効である。少ないと添加効果が十分
に表れず、多過ぎると担体全体の強度が低下してしまう
This additive material is effective in an amount of about 1 to 80% of the mixture of microbial cells and gelling material. If the amount is too small, the effect of addition will not be sufficiently exhibited, and if it is too large, the strength of the entire carrier will decrease.

また、添加材料は粒径(油脂等の液体の場合は分散径)
5M以下が望ましく、小さい程良好な結果を得ることが
できる。
In addition, the particle size of the additive material (dispersion diameter in the case of liquids such as oils and fats)
A value of 5M or less is desirable, and the smaller the value, the better the results.

また、実施例では、包括固定化材料(ゲル化材料)とし
てのアクリルアミドモノマー、N、N’−メチレンビス
アクリルアミドにケイ酸ノJルシウムを添加したもの等
に菌体を混合したが、菌体と包括固定化材料の他に鉱物
、セメント、木、合成樹脂等、微生物で溶解されないか
もしくは溶解されにくい物質を添加してもよい。
In addition, in the examples, bacterial cells were mixed with acrylamide monomer, N,N'-methylenebisacrylamide, and lucium silicate as an entrapping immobilization material (gelling material). In addition to the entrapping immobilization material, substances such as minerals, cement, wood, synthetic resins, etc. that are not dissolved or are difficult to be dissolved by microorganisms may be added.

また、包括固定化材料そのものについても、実施例に限
定されることなく、ポリビニルアルコール(PVA)、
アクリルアミド、アルギン酸ナトリウム、アルギン酸カ
リウム、アルギン酸アンモニウム、に−カラギーナン、
ポリウレタン、光硬化性樹脂等から適宜選択可能である
In addition, the entrapping immobilization material itself is not limited to the examples, but may include polyvinyl alcohol (PVA),
Acrylamide, sodium alginate, potassium alginate, ammonium alginate, carrageenan,
It can be appropriately selected from polyurethane, photocurable resin, etc.

更に、ゲル化工程についても、実施例に限定されること
なく、添加材料を考慮して適宜選択可能である。例えば
、包括固定化材料としてポリビニルアルコールを用いる
場合には、−6℃以下に冷却し凍結せしめた後乾燥する
か、ホウ酸と接触せしめるとよい。また、アルギンMm
を用いる場合には、カルシウムあるいはアルミニウム塩
と接触せしめることによって固定化する。
Furthermore, the gelling step is not limited to the examples, and can be appropriately selected in consideration of the additive materials. For example, when polyvinyl alcohol is used as the entrapping immobilization material, it may be cooled to -6° C. or lower and frozen, then dried or brought into contact with boric acid. Also, algin Mm
When used, it is immobilized by contacting with calcium or aluminum salts.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明の方法によれば、微生
物固定化担体の形成に際し、ゲル化に先立ち微生物の生
理作用で溶解され得る物質を添加しておくようにしてい
るため、多数の孔を有するゲルが形成され、処理活性の
高い微生物固定化担体が容易に形成される。
As explained above, according to the method of the present invention, when forming a microorganism-immobilized carrier, a substance that can be dissolved by the physiological action of microorganisms is added prior to gelation, so that a large number of pores are formed. A microorganism-immobilized carrier with high treatment activity is easily formed.

また、使用に先立ち、少母の基質の存在下で培養する工
程を導入することにより、更に処理活性が向上せしめら
れる。
In addition, the treatment activity can be further improved by introducing a step of culturing in the presence of a small matrix substrate prior to use.

Claims (6)

【特許請求の範囲】[Claims] (1)微生物菌体と、後処理により含水ゲル化可能な第
1の材料とを混合し混合物を形成する混合工程と、 この混合物をゲル化するゲル化工程とを含む、微生物菌
体の固定化方法において、 前記混合工程が、前記微生物菌体の生理作用により溶解
可能な第2の材料を添加する工程を含むことを特徴とす
る微生物菌体の固定化方法。
(1) Immobilization of microbial cells, including a mixing step of mixing microbial cells and a first material that can be turned into a hydrogel by post-treatment to form a mixture, and a gelling step of turning this mixture into a gel. A method for immobilizing microorganism cells, wherein the mixing step includes a step of adding a second material that can be dissolved by the physiological action of the microorganism cells.
(2)前記第2の材料は、セルロースであることを特徴
とする特許請求の範囲第(1)項記載の微生物菌体の固
定化方法。
(2) The method for immobilizing microorganism cells according to claim (1), wherein the second material is cellulose.
(3)前記第2の材料は、たん白質、でんぷん、脂質又
はこれらの混合物であることを特徴とする特許請求範囲
第(1)項記載の微生物菌体の固定化方法。
(3) The method for immobilizing microorganism cells according to claim (1), wherein the second material is protein, starch, lipid, or a mixture thereof.
(4)微生物菌体と、後処理により含水ゲル化可能な第
1の材料とを混合し混合物を形成する混合工程と、 この混合物をゲル化するゲル化工程とを含む微生物菌体
の固定化方法において、 前記混合工程が、更に、前記微生物菌体の生理作用によ
り溶解可能な第2の材料を添加する工程を含むと共に、 前記ゲル化工程後、前記微生物菌体の基質となる物質が
少量存在する条件下で培養する培養工程を含むことを特
徴とする微生物菌体の固定化方法。
(4) Immobilization of microbial cells, including a mixing step of mixing microbial cells and a first material that can be turned into a hydrous gel by post-treatment to form a mixture, and a gelling step of turning this mixture into a gel. In the method, the mixing step further includes the step of adding a second material that can be dissolved by the physiological action of the microbial cells, and after the gelling step, a small amount of the substance that becomes a substrate for the microbial cells is added. 1. A method for immobilizing microbial cells, comprising a culturing step of culturing under existing conditions.
(5)前記第2の材料は、セルロースであることを特徴
とする特許請求の範囲第(4)項記載の微生物菌体の固
定化方法。
(5) The method for immobilizing microbial cells according to claim (4), wherein the second material is cellulose.
(6)前記第2の材料はたん白質、でんぷん、脂質又は
これらの混合物であることを特徴とする特許請求の範囲
第(4)項記載の微生物菌体の固定化方法。
(6) The method for immobilizing microbial cells according to claim (4), wherein the second material is protein, starch, lipid, or a mixture thereof.
JP13209687A 1987-05-28 1987-05-28 Immobilization of cell of microorganism Pending JPS63294783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13209687A JPS63294783A (en) 1987-05-28 1987-05-28 Immobilization of cell of microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13209687A JPS63294783A (en) 1987-05-28 1987-05-28 Immobilization of cell of microorganism

Publications (1)

Publication Number Publication Date
JPS63294783A true JPS63294783A (en) 1988-12-01

Family

ID=15073383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13209687A Pending JPS63294783A (en) 1987-05-28 1987-05-28 Immobilization of cell of microorganism

Country Status (1)

Country Link
JP (1) JPS63294783A (en)

Similar Documents

Publication Publication Date Title
Kayastha et al. Pigeonpea (Cajanus cajan L.) urease immobilized on glutaraldehyde-activated chitosan beads and its analytical applications
US4226938A (en) Method for immobilizing enzymes
CN110482715A (en) A method of synchronous nitration denitrification denitrogenation is realized using immobilized microorganism technique
Zain et al. Hydrolysis of liquid pineapple waste by invertase immobilized in PVA–alginate matrix
CN109956563B (en) Preparation method and application of efficient aerobic denitrification phosphorus-accumulating bacteria immobilized pellet
PT83746B (en) PROCESS FOR THE PREPARATION OF NEW IMMOBILIZED BIOCATALYZERS AND FOR THE PRODUCTION OF ETHANOL BY FERMENTATION
JPS60120987A (en) Production of immobilized microbial cell or enzyme
JPS63177791A (en) Production of immobilized enzyme or immobilized microorganism
ES8707763A1 (en) A method for immobilizing enzymes, and in particular, to a method for converting cell bound enzymes into cell mass particles.
Iyengar et al. Urease bound to chitin with glutaraldehyde
JPS63294783A (en) Immobilization of cell of microorganism
Arslan et al. The effect of gel composition on the adsorption of invertase on poly (acrylamide/maleic acid) hydrogels
JPS6331538A (en) Immobilizing carrier
Öztop et al. Poly (acrylamide/maleic acid)–sepiolite composite hydrogels for immobilization of invertase
JPS63294785A (en) Immobilization of cell of microorganism
JPS6098985A (en) Preparation of immobilized mold of microorganism for enzyme
CN109055347A (en) Immobilized microorganism and preparation method thereof and removal waste water in nitrogen phosphorus application
JPS61139385A (en) Production of immobilized microorganism and/or immobilized microorganism group
JPH08308570A (en) Production of organism carrier for immobilizing fine particle of magnetic material
JPS63294786A (en) Immobilization of cell of microorganism
JPH0218910B2 (en)
JPS62279887A (en) Surface immobilized anaerobic bacteria granule and treatment of waste water using same
JPS59206095A (en) Process for preserving activated sludge by drying
CN108892798B (en) Preparation method of intelligent polymer embedded particles
JPH01128787A (en) Carrier for immobilizing microbial cell and production thereof