JPS6098985A - Preparation of immobilized mold of microorganism for enzyme - Google Patents

Preparation of immobilized mold of microorganism for enzyme

Info

Publication number
JPS6098985A
JPS6098985A JP20489283A JP20489283A JPS6098985A JP S6098985 A JPS6098985 A JP S6098985A JP 20489283 A JP20489283 A JP 20489283A JP 20489283 A JP20489283 A JP 20489283A JP S6098985 A JPS6098985 A JP S6098985A
Authority
JP
Japan
Prior art keywords
enzyme
silica sol
microorganism
gel
enzymes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20489283A
Other languages
Japanese (ja)
Other versions
JPS6321475B2 (en
Inventor
Hiroshi Motai
茂田井 宏
Yaichi Fukushima
弥一 福島
Kazutaka Imai
今井 一隆
Katsutoshi Okamura
岡村 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI DEBUISON KAGAKU KK
Kikkoman Corp
Fuji-Davison Chemical Ltd
Original Assignee
FUJI DEBUISON KAGAKU KK
Kikkoman Corp
Fuji-Davison Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI DEBUISON KAGAKU KK, Kikkoman Corp, Fuji-Davison Chemical Ltd filed Critical FUJI DEBUISON KAGAKU KK
Priority to JP20489283A priority Critical patent/JPS6098985A/en
Publication of JPS6098985A publication Critical patent/JPS6098985A/en
Publication of JPS6321475B2 publication Critical patent/JPS6321475B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To prepare an immobilized mold of microorganism or enzyme having improved mechanical strength of gel, low pollution of microorganism and reduction in enzymatic activity, by releasing silica sol containing a mold of microorganism or enzyme to a gaseous phase, so that it is instantly gelatinized. CONSTITUTION:A mold of microorganism, enzyme, enzyme insolubilzed with tannin or a polyfunctional crosslinking reagent, or enzyme adsorbed on an insolubilized carrier is suspended in water, buffer solution (e.g., buffer solution of phosphoric acid), or hydrophilic organic solvent (e.g., ethyl alcohol). The suspension is added to silica sol obtained by blending an aqueous solution of alkali silicate with an acid solution, they are blended as rapidly as possible, the mixed silica sol is adjusted to 70-210g/l SiO2 concentration and 3-10pH, released to an gaseous phase as early as possible, so that it is gelatinized in a short time, to give an immobilized mold of microorganism or enzyme having <=500mu average particle diameter.

Description

【発明の詳細な説明】 本発明は固定11Zされた微生物菌体もしくは酵素の製
造法に関し、その目的とするところは、微生物汚染並び
に酵素活性低下の著しく少ない、しかも機械的ゲル強度
の強い球状ゲルの固定化された微生物菌体もしくは酵素
を簡易な操作で、効率良く得る方法を提供することにあ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing immobilized microbial cells or enzymes, and its purpose is to produce a spherical gel with significantly less microbial contamination and reduction in enzyme activity, and with high mechanical gel strength. An object of the present invention is to provide a method for efficiently obtaining immobilized microbial cells or enzymes by simple operations.

従来、微生物図体もしくは酵素含有ゲルの包括固定1ヒ
担体としては、有機物質では一般にアルギン酸塩、カラ
ギーナン、ゼラチン、寒天等の天然高分子物質、ポリウ
レタン等の光硬1し性樹脂等が用いられているが、これ
らの担体を用いた場合、ゲル骨格が有機物質であるため
、細菌に汚され易いことの他、ゲルの機械的強度が弱く
、変形膨潤し易い等の欠点がある。
Conventionally, organic substances such as natural polymeric substances such as alginate, carrageenan, gelatin, and agar, and photocurable resins such as polyurethane have been used as carriers for entrapping and immobilizing microbial bodies or enzyme-containing gels. However, when these carriers are used, since the gel skeleton is an organic substance, there are drawbacks such as being easily contaminated by bacteria, and the gel having low mechanical strength and being easily deformed and swollen.

そして固定化担体として、無機物質、特にシリカゲルを
用いる方法としては、次のような方法が知られている。
The following method is known as a method using an inorganic substance, particularly silica gel, as an immobilization carrier.

例えば英国特許第1ユ1,76g1号の方法は、ケイ酸
ナトリウム水溶液に塩酸を加えPH/ 、 &のシリカ
ゾルを調製し、これを透析により食塩等の塩を除去して
安定なシリカゾルを得、該ゾルのpHを!〜g程度に調
整後、これに微生物菌体もしくは酵素を加えてゲル1し
させるものであり、又特開昭!コーlコ0190号及び
特開昭!グー4t9J9−号の方法においては、コロイ
ド状シリカ(シリカゾル)に酵素を吸着させた後、塩を
加えてゲル化させ、ついで凍結、解凍操作を経て無定形
の破砕状の固定化ゲルを得ている。
For example, in the method of British Patent No. 1 U1,76g1, hydrochloric acid is added to an aqueous sodium silicate solution to prepare a silica sol with pH/, &, and salts such as common salt are removed by dialysis to obtain a stable silica sol. The pH of the sol! After adjusting the amount to about ~g, microbial cells or enzymes are added to it to form a gel. Call number 0190 and Tokukai Sho! In the method of Gu 4t9J9-, an enzyme is adsorbed onto colloidal silica (silica sol), and then salt is added to gel it, followed by freezing and thawing operations to obtain an amorphous, crushed immobilized gel. There is.

しかしながら、これらの方法は、ベースとなるシリカゾ
ルの調製に時間がかかること、包括固定化(ゲル化)操
作が複雑であること、さらにこれらをバイオリアクター
として用いる場合、無定形のシリカゲルであるため、こ
れらを基質反応容器忙光項するには該容器に適した形状
のゲルに調製しなければ充分な充填効果が得られない等
の欠点がある。
However, these methods require time to prepare the base silica sol, the entrapping immobilization (gelation) operation is complicated, and when using these as a bioreactor, since the silica gel is amorphous, In order to use these materials in a substrate reaction container, there are drawbacks such as a sufficient filling effect cannot be obtained unless the gel is prepared in a shape suitable for the container.

一方、ゲル成形を考慮した方法として、特開昭!!−l
コ2タタθ号の方法があるが、これは、ケイ酸す) I
Jウムと微生物菌体もしくは酵素の混合水溶液をトルエ
ン、シクロヘキサン等の疎水性M機成体に懸濁させ、そ
の状態でばと接触することによりゲル化させて、微生物
菌体もしくは酵素を包括固定化した球状シリカヒドロゲ
ルを得る方法である。
On the other hand, as a method that takes gel molding into consideration, Tokukai Sho! ! -l
There is a method called KO2TATAθ, which uses silicic acid) I
A mixed aqueous solution of Jum and microbial cells or enzymes is suspended in a hydrophobic M-organic material such as toluene or cyclohexane, and in this state it is brought into contact with barium to form a gel, thereby entrapping and immobilizing the microbial cells or enzymes. This is a method for obtaining spherical silica hydrogel.

しかしながら、この方法に用いるトルエン、シクロヘキ
サン等の疎水性M機成体(懸濁剤)は、微生物菌体もし
くは酵素の活性を低下させ、又このような懸濁剤をシリ
カヒドロゲルから分離除去する操作も著しく繁雑である
ことの他、得られる球状シリカゲルの細孔構造が不均一
であるため、ゲルの機械的強度も弱い等の欠点がある。
However, hydrophobic M agents (suspending agents) such as toluene and cyclohexane used in this method reduce the activity of microbial cells or enzymes, and also require an operation to separate and remove such suspending agents from the silica hydrogel. In addition to being extremely complicated, the pore structure of the resulting spherical silica gel is non-uniform, resulting in disadvantages such as weak mechanical strength of the gel.

又特開昭33−/313り3号の方法は、コロイド状シ
リカ懸濁液、多孔性充填剤及び微生物菌体の混合物を押
出し成型機で成形するものであるが、この方法において
は、工程が複雑であることの他、処理時間も長くなp1
又得られるゲルの機械的強度も弱い等の欠点がある。
The method of JP-A-33-313-3 involves molding a mixture of a colloidal silica suspension, a porous filler, and microbial cells using an extrusion molding machine. In addition to being complicated, the processing time is also long.
Furthermore, the resulting gel has drawbacks such as low mechanical strength.

そこで、本発明者等は、このような従来技術の欠点を解
消すべく鋭意検討した結果、微生物菌体もしくは酵素含
有シリカゾルを気相中に放出することにより瞬時にゲル
化させれば、包括固定化及びゲル成形を同時、かつ効率
的に行なうことが出いものであること等を知り、本発明
を完成した0即ち、本発明は、微生物菌体、酵素、酵素
をタンニンもしくは多官能性架橋試薬で不溶化したもの
、又は酵素を不溶化担体に吸着したものを水、緩衝液も
しくは親水性有機溶媒に懸濁したものを、ケイ酸アルカ
リ水溶液と酸溶液とを混合して得られるシリカゾルに加
え混合して該混合シリカゾル中のSin、濃度を70−
ユ10f/Jl、pI(を3〜IQとし、ついでこれを
可及的速やかに気相中に放出しきわめて短時間にゲル化
させて球状のシリカゲルとすることを特徴とする固定化
された微生物菌体もしくは酵素の製造法である。
Therefore, as a result of intensive studies to resolve these drawbacks of the conventional technology, the present inventors found that if microbial cells or enzyme-containing silica sol were released into the gas phase to instantaneously gel, it would be possible to achieve comprehensive immobilization. The present invention was completed based on the realization that it is an advantage to simultaneously and efficiently perform gel formation and gel formation.That is, the present invention is based on the invention. or an enzyme adsorbed onto an insolubilized carrier suspended in water, a buffer solution, or a hydrophilic organic solvent is added to the silica sol obtained by mixing an alkaline silicate aqueous solution and an acid solution and mixed. The concentration of Sin in the mixed silica sol was set to 70-
An immobilized microorganism characterized by setting U10f/Jl, pI (3 to IQ), and then releasing it into the gas phase as soon as possible and gelling it in an extremely short time to form a spherical silica gel. This is a method for producing bacterial cells or enzymes.

以下、本発明について詳述する。The present invention will be explained in detail below.

先ず、本発明に用いられる微生物菌体としては、m菌、
酵母、黴、放線菌等、如何なる種別の菌体でも良い。又
酵素も如何なる種別のものでも良(、例えばアルコール
脱水素酵素、グルコースオキシダーゼ、乳酸脱水素酵素
等の酸化還元酵素、D−グルタミルトランスフェラーゼ
、グルタミントランスアミネース、ヘキソキナーゼ等の
転移酵素、ロイシンアミノペプチダーゼ、カルボキシ!
ペプチダーゼ、ベニンリナーゼ等の加水分解酵素、フマ
ラーゼ、アスパルターゼ、β−チロシナーゼ等のリアー
ゼ酵素、グルコースイソメラーゼ、マンノースイソメラ
ーゼ等の異性化酵素、グルタチオンシンターゼ、NAD
シンターゼ等のりガーゼ酵素等が代表例として挙げられ
る。
First, the microorganisms used in the present invention include m bacteria,
Any type of bacterial cells such as yeast, mold, actinomycetes, etc. may be used. Furthermore, any type of enzyme may be used (e.g., oxidoreductases such as alcohol dehydrogenase, glucose oxidase, lactate dehydrogenase, transferases such as D-glutamyl transferase, glutamine transaminase, hexokinase, leucine aminopeptidase, Carboxy!
Hydrolytic enzymes such as peptidase and beninlinase, lyase enzymes such as fumarase, aspartase and β-tyrosinase, isomerase enzymes such as glucose isomerase and mannose isomerase, glutathione synthase, NAD
Typical examples include glue gauze enzymes such as synthase.

上記した酵素は、タンニンもしくは多官能性架橋試薬で
不溶化させるか、又は該酵素を不溶化担体に吸着させて
用いてもよい。
The above-mentioned enzyme may be used by insolubilizing it with tannin or a polyfunctional crosslinking reagent, or by adsorbing the enzyme onto an insolubilizing carrier.

先ず、タンニンで不溶化させる場合は、酵素量に対し/
、−10倍量(W/W)のタンニンを含有する溶液を加
え、PHg以下、好ましくはPHJ〜2で攪拌しつつ反
応させ、得られた酵素沈澱物より例えば遠心分離、r過
等の通常の分離手段を用いて不溶化酵素を得る。
First, when insolubilizing with tannin, the amount of enzyme should be
, a solution containing -10 times the amount (W/W) of tannin is added, and the reaction is carried out with stirring at PHg or below, preferably PHJ~2, and the resulting enzyme precipitate is subjected to conventional methods such as centrifugation, The insolubilized enzyme is obtained using the following separation means.

なお上記タンニンとしては、タンニン酸の他、ピロガロ
ールタンニン例えば没食子タンニン又は五倍子タンニン
、カテコールタンニン例えば茶、カカオ等から得られる
タンニン質分〔カテコール重合体〕等が用いられる。こ
れらのタンニンはタンニン作用を有する限υ精製されて
いないものでも良く、例えは市販の柿渋タンニン等も用
いられる。これらは単独でも1種以上のタンニン混合物
としても用いることが出来る。
In addition to tannic acid, the tannins used include pyrogallol tannins such as gallic tannins or pentadol tannins, and catechol tannins such as tannin substances (catechol polymers) obtained from tea, cacao, etc. These tannins may be those that have tannin action and have not been purified to the limit; for example, commercially available persimmon tannins may also be used. These can be used alone or as a mixture of one or more tannins.

又、多官能性架橋剤で不溶化させる場合は、前記酵素を
7一−〇%(W/V)の多官能性架橋剤を含有する液に
加え、!〜aoCでIO分〜16時間反応させ、得られ
た酵素沈澱物より例えば遠心分離、r過等の通常の分離
手段を用いて不溶化酵素を得る。
When insolubilizing with a polyfunctional crosslinking agent, add the enzyme to a solution containing 71-0% (W/V) of the polyfunctional crosslinking agent. The reaction is carried out at ~aoC for 10 minutes to 16 hours, and the insolubilized enzyme is obtained from the resulting enzyme precipitate using conventional separation means such as centrifugation and r-filtration.

なお、多官能性架橋剤としては、ポリアルデヒド類、イ
ンシアネート類等が適しておジ、例えばジアルデヒドデ
ンプングリオキザール、マロンアルデヒド、コハク酸ア
ルデヒド、グルタルアルデヒド、ピメリジアルデヒド、
ヘキサメチレンインシアネ−)、p−トルイレンジイン
シアネート等が挙げられ、特にグルタルアルデヒドが望
ましい。
Suitable polyfunctional crosslinking agents include polyaldehydes, incyanates, etc., such as dialdehyde starch glyoxal, malonaldehyde, succinic aldehyde, glutaraldehyde, pimeridialdehyde,
Hexamethylene incyanate), p-toluylene diincyanate, etc., and glutaraldehyde is particularly desirable.

そして、酵素を不溶化担体に吸着させる手段としては、
通常の吸着剤、例えば活性炭、シリカゲル、散性白土、
多孔質ガラス等、又DEAE−七ファデツクス、CM−
セファデックス、DEAE−セルロース、CM−セルロ
ース、アンバーライトIR−Qj、ダウエックス−!θ
等のイオン交換体等の不溶化担体をカラムに詰めて前記
#紫を通i−fるか、又は該不溶化担体を酵素と混合、
攪拌して “吸着させた後、これを必要により例えば遠
心分離、r過等の分離手段により不溶化担体に吸着した
酵素を得る。なおその後、必要により、該酵素を吸着し
た不溶化担体に前記多官能性架橋剤を加えて反応させて
もよい。
As a means of adsorbing the enzyme to the insolubilizing carrier,
Common adsorbents such as activated carbon, silica gel, dispersible clay,
Porous glass, etc., DEAE-7Fadex, CM-
Sephadex, DEAE-Cellulose, CM-Cellulose, Amberlite IR-Qj, Dowex! θ
Pack an insolubilizing carrier such as an ion exchanger into a column and pass the # purple through i-f, or mix the insolubilizing carrier with an enzyme,
After stirring and adsorption, the enzyme is adsorbed on the insolubilized carrier by separation means such as centrifugation or r-filtration, if necessary.After that, if necessary, the polyfunctional A cross-linking agent may be added and the reaction may be carried out.

上記した微生物菌体、騨累、酵素をタンニンもしくは多
官能性架橋試薬で不溶化したもの、又は酵素を不溶化担
体に吸着したものは、水、緩衝液もしくII′i親水性
有機溶媒に懸濁して使用する。
The above-mentioned microbial cells, starch, and enzymes insolubilized with tannins or polyfunctional crosslinking reagents, or enzymes adsorbed onto insolubilized carriers, can be suspended in water, buffer solution, or II'i hydrophilic organic solvent. and use it.

これに用いる緩衝液としては、例えば酔眼緩衝液、マツ
キルグエイン緩衝液、リン酸緩衝液、トリス緩衝液、ベ
ロナール緩衝液等が挙げられ、父親水性有機溶媒として
は、メチルアルコール、エチルアルコール、プロピルア
ルコール、アセトン等が挙げられ、これらの有機溶媒は
通常はio〜コO%(%’V )程度で用いられる。
Buffers used for this purpose include, for example, intoxicant buffer, pine kilguane buffer, phosphate buffer, Tris buffer, veronal buffer, etc., and examples of aqueous organic solvents include methyl alcohol, ethyl alcohol, propyl alcohol, Examples include acetone, and these organic solvents are usually used in an amount of about io to 0% (%'V).

一方、ケイ酸アルカリ水溶液と酸溶液とを混合してシリ
カゾルを調製する。
On the other hand, a silica sol is prepared by mixing an aqueous alkali silicate solution and an acid solution.

このケイ酸アルカリ水浴液としては、ケイ酸す等の水溶
液が挙げられ、又酸溶液としては硫酸、塩酸−硝#筒の
慨榊i!@−酢−笛の窟鳥層丞妨充田いられる。
Examples of the alkali silicate water bath solution include aqueous solutions of silicic acid, and examples of acid solutions include sulfuric acid, hydrochloric acid, and nitric acid. @-Vinegar-Flute Cave Bird Layer Jojajamuda Iireru.

次に、ケイ酸アルカリ水溶液と酸溶液とを混合して得た
シリカゾルに、上記した微生物菌体、酵素、酵素をタン
ニンもしくは多官能性架橋試薬で不溶化したもの、又は
酵素を不溶化担体に吸着したものを水、緩衝液もしくは
親水性有機溶媒に懸濁したものを加え、可及的速やかに
微生物菌体もしくは酵素を該混合シリカゾル中で均一と
なるように混合して該混合シリカゾル中のSin、濃度
を20〜コ10iP/I、、好ましくFiiJo−ig
oy7!、かつpHを3〜IO1好ましくは6〜gとす
る0 なお、上記混合シリカゾルを調製する際、コロイド状シ
リカ、アルミナシリカゾル及びアルミナゾルより撰ばれ
た少なくとも1種のゾルを、上記混合シリカゾルに添加
すれば、シリカゲル構造を補強させる意味で有利となる
Next, the above-mentioned microbial cells, enzymes, and enzymes were insolubilized with tannin or a polyfunctional crosslinking reagent, or the enzymes were adsorbed onto an insolubilized carrier into the silica sol obtained by mixing an aqueous alkali silicate solution and an acid solution. Add the suspended substance in water, a buffer solution, or a hydrophilic organic solvent, and mix the microbial cells or enzymes as soon as possible so that they are homogeneous in the mixed silica sol. The concentration is 20 to 10 iP/I, preferably FiiJo-ig.
oy7! , and the pH is set to 3 to IO1, preferably 6 to 0 g. In addition, when preparing the mixed silica sol, at least one sol selected from colloidal silica, alumina silica sol, and alumina sol is added to the mixed silica sol. This is advantageous in terms of reinforcing the silica gel structure.

又、上記の如く混合シリカゾル中のSin、濃度を20
〜コioP/i、pHJ〜10とすることは、混合シリ
カゾルをきわめて短時間でゲル化させ、かつ微生物菌体
もしくは酵素含有シリカゲルの機械的強度を増大させる
上で、極めて重要である。
Also, as mentioned above, the concentration of Sin in the mixed silica sol was set to 20
Setting the ioP/i and pHJ to 10 is extremely important in gelling the mixed silica sol in a very short time and increasing the mechanical strength of the microbial cells or enzyme-containing silica gel.

ついで、上記の如くして得た混合シリカゾルを、放出口
より可及的速やかに気相中に放出し、きわめて短時間、
通常は5秒以内、好ましくI/′iλ秒以内にゲル化さ
せることにより、球状の固定化された微生物菌体もしく
は酵素含有シリカゲルを得る。
Next, the mixed silica sol obtained as described above is released into the gas phase from the outlet as soon as possible, and is left in the gas phase for a very short period of time.
Gelation is usually carried out within 5 seconds, preferably within I/'iλ seconds, to obtain spherical immobilized microbial cells or enzyme-containing silica gel.

ここに用いられる気相媒体としては、通常は空気である
が、所望によっては窒素ガスのような不活性ガスを用い
てもよい。
The gas phase medium used here is usually air, but if desired, an inert gas such as nitrogen gas may be used.

そして、上記気相中におけるゲル化はきわめて短時間で
完了するため、微生物、特に雑菌等に汚染される可能性
が少な(、しかも目的とする微生物菌体もしくに酵素の
活性低下を実質的に防止することが出来る。
Since the gelation in the gas phase is completed in an extremely short time, there is little possibility of contamination with microorganisms, especially miscellaneous bacteria (and, moreover, there is no substantial reduction in the activity of the target microorganism or enzyme. can be prevented.

なお、上記ゲル化操作によV得られるゲルの形状が球形
であるため、ゲルの機械的強度が高まり、該ゲルを基質
接触塔に充填して基質と反応させた場合、ゲル間相互の
空隙率をtlぼ一定に保持することが出来、これにより
基質反応効率の低下な実質的に防止し得る等の利点があ
る。
In addition, since the gel obtained by the gelling operation described above has a spherical shape, the mechanical strength of the gel is increased, and when the gel is packed in a substrate contact tower and reacted with a substrate, the voids between the gels are reduced. This has the advantage that the rate can be kept constant at about tl, thereby substantially preventing a decrease in substrate reaction efficiency.

又、本発明により得られる球状の固定化された微生物菌
体もしくは酵素含有ゲルの粒径は、気相中へ放出させる
ための放出ノズルの口径等を調節することにより、to
μ〜1OWrIk程度の粒径のものが得られるが、特に
平均粒子径が!00μ程度以下の細粒のゲルとすれば、
基質との反応効率を著しく高めることが出来、有利とな
る。
Furthermore, the particle size of the spherical immobilized microbial cells or enzyme-containing gel obtained by the present invention can be adjusted to
Particles with a particle size of about μ~1OWrIk can be obtained, but especially the average particle size! If it is a gel with fine particles of about 00μ or less,
This is advantageous because the reaction efficiency with the substrate can be significantly increased.

なお、上記した固定化された微生物菌体もしくは酵素を
得るのに用いられる装置としては、本発明の目的が達成
されるものであれば、如何なる形状、構造のものでもよ
いが、例えば容器の上部にケイ酸アルカリ水溶液及び酸
溶液の導入口を育し、該容器の下部に微生物菌体もしく
は酵素の導入口を備え、かつ該容器内に混合翼を設け、
又該容器底部より微生物菌体もしくは酵素含有シリカゲ
ルを気相中へ放出するための放出ノズルを具備した容器
が、本発明を効率的に実施する土で望ましい0以上の如
く、本発明によれば、微生物菌体もしくは酵素含有シリ
カゾルの包括固定11Z及びゲル成形をきわめて短時間
に、同時かつ効率的に行なうことが出来、得られるゲル
は微生物汚染並びに酵素活性の低下が著しく少なく、し
かも機械的ゲル強度の著しく強いものである。
The device used to obtain the above-mentioned immobilized microbial cells or enzymes may be of any shape or structure as long as the object of the present invention is achieved. an inlet for an aqueous alkali silicate solution and an acid solution, an inlet for microbial cells or enzymes is provided at the bottom of the container, and a mixing blade is provided in the container;
According to the present invention, a container equipped with a discharge nozzle for discharging microorganism cells or enzyme-containing silica gel into the gas phase from the bottom of the container is preferable for carrying out the present invention efficiently. , the comprehensive immobilization 11Z of microbial cells or enzyme-containing silica sol and gel formation can be carried out simultaneously and efficiently in an extremely short period of time, and the resulting gel has significantly less microbial contamination and decrease in enzyme activity, and is moreover a mechanical gel. It is extremely strong.

以下、実施例によg本発明をさらに具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 ケイ酸ナトリウム水溶液(5i02/ Na2Oのモル
比=3.グ、Sin、含有濃度Hig%−W/V)及び
<zN−硫酸水溶液を、定量用ポンプを用いて攪拌翼並
びに放出口を有する各器内に別個の導入口より夫々圧送
し、更に該容器内の別の導入口よジサツカロミセス・セ
レビシェエFO0−2aaを培養、集菌、0.0!Mリ
ン酸緩衝液(1)H4,77)に懸濁させた液(酵母生
菌体数: / 、 OX / D′。/mb )を一定
の割合で加えて混合しく容器内混合シリカゾル中の5i
OJ1度: l 、? oiP/L、 pHニア−j)
、該容器底部の放出口(ノズル口径ニー211II11
)より該混合シリカゾルを連続的に空気中へ放出しくゲ
ル化時間:l−5秒)−酢酸綬衝沿(nせクク)含有受
皿で酵母菌体含有シリカヒドロゲルを捕集した0 得られた固定化酵母菌体は、球状で平均粒子径λ〜、7
 m (r)もの(乾量基準の含水率:エコ〇%)であ
った〇 次にこの固定化酵母菌体のエタノール生産性を次のよう
にして測定した。
Example 1 A sodium silicate aqueous solution (5i02/Na2O molar ratio = 3.g, Sin, content concentration Hig%-W/V) and <zN-sulfuric acid aqueous solution were mixed with a stirring blade and a discharge port using a metering pump. The microorganisms were fed under pressure into each container through a separate inlet port, and Disatucharomyces cerevisiae FO0-2aa was cultured and collected through another inlet port in the container. Add a solution (yeast viable cell count: /, OX / D'. / mb) suspended in M phosphate buffer (1) H4, 77) at a constant ratio and mix. 5i
OJ 1 degree: l,? oiP/L, pH near-j)
, the outlet at the bottom of the container (nozzle diameter knee 211II11
), the mixed silica sol was continuously released into the air, and the silica hydrogel containing yeast cells was collected in a saucer containing acetic acid. The immobilized yeast cells are spherical and have an average particle diameter of λ~, 7
m (r) (moisture content on dry weight basis: ECO 0%) Next, the ethanol productivity of the immobilized yeast cells was measured as follows.

上記固定化酵母菌体6!ノを30Cに保温したジャケッ
ト付カラム(内径=3cm1高さ:i6cm)に充填し
、該カラムにグルコースg%(W/V)、硫安O1λ%
(W/V)、酵母エキス。、1%(W/V)を含む液体
培地(p、Fi、7..7)を上昇法(SV=o、λ〕
でコλ日間通過させつつエタノール発酵を行なった。そ
の結果を第1表に示す。
The above immobilized yeast cells 6! was packed in a jacketed column (inner diameter = 3 cm, height: i6 cm) kept at 30C, and the column was filled with glucose g% (W/V) and ammonium sulfate O1λ%.
(W/V), yeast extract. , a liquid medium (p, Fi, 7..7) containing 1% (W/V) in an ascending method (SV = o, λ)
Ethanol fermentation was carried out while passing for λ days. The results are shown in Table 1.

第 1 表 第1表より、実施例1で得た固定化酵母菌体のエタノー
ル発酵能は、長期間の保持にも係らず著しく優れたもの
であることが認められた。
Table 1 From Table 1, it was found that the ethanol fermentation ability of the immobilized yeast cells obtained in Example 1 was extremely excellent despite being kept for a long period of time.

実施例 2 ケイ酸ナトリウム水溶液(5i02/ Na2Oのモル
比:J、y、5in2含有*pi 二s s%−W/V
)及びgN−硫酸水溶液を、定量用ポンプを用いて攪拌
翼韮びに放出口を有する容器内に別個の導入口より夫々
圧送し、更に該容器内の別の導入口よりウレアーゼ(タ
イブタ、シグマ社製)の1%−W/■水溶液を一定の割
合で加えて混合(容器内混合シリカゾル中の5i02濃
度:コ。りf/II、pH:1.2)、該容器底部の放
出口(ノズル口径ニーm)より該混合シリカゾルを連続
的に空気中へ放出しくゲル化時間二i、0秒)、固定1
しウレアーゼ含有シリカヒドロゲルを捕集した。。
Example 2 Sodium silicate aqueous solution (5i02/Na2O molar ratio: J, y, 5in2 containing *pi 2s s%-W/V
) and gN-sulfuric acid aqueous solution were pumped into a container with a stirring blade and a discharge port using a metering pump through separate inlets, and then urease (Taibuta, Sigma Co., Ltd. Add and mix a 1%-W/■ aqueous solution of silica sol (manufactured by Mimaki Co., Ltd.) at a fixed ratio (concentration of 5i02 in the mixed silica sol in the container: Co. f/II, pH: 1.2), and then open the outlet (nozzle) at the bottom of the container. The mixed silica sol is continuously released into the air from the diameter knee (m), and the gelation time is 2 (i, 0 seconds), fixed 1.
The urease-containing silica hydrogel was collected. .

得られた固定化ウレアーゼは、球状で平均粒子径!〜4
wmのもの〔乾量基準の含水率:4I。θ係〕であった
The obtained immobilized urease is spherical and has an average particle size! ~4
wm [moisture content on dry basis: 4I. θ].

実施例 3 ケイ酸ナトリウム水溶液(5102/ NazOのモル
比:3.グ、5t(h含有濃度:1g%−W/VL&び
tN−塩酸水溶液を、定量用ポンプを用いて攪拌翼並び
に放出口を肩する容器内に別個の導入口より夫々圧送し
た。
Example 3 A sodium silicate aqueous solution (5102/NazO molar ratio: 3.g, 5t (h concentration: 1g%) - W/VL & tN - hydrochloric acid aqueous solution was mixed with a stirring blade and a discharge port using a metering pump. They were each pumped into a container overlapping each other through separate inlets.

一方、タンニン醒〔オU光純薬(株)裂〕コ0θ?をλ
oooabのo、ozMトリス緩衝7(1(pH7,0
)に溶解したものと、アスペルギルス・オリゼーFER
M P−t iグ2の皺培養物より硫安分画しDEAE
−セルロースを用いてf[したロイシン・アミノペプチ
ダーゼ標品ユOfをユooombの0.0IMhリス緩
衝液(pH7−0)に溶解したものとを混合し、これよ
p遠心分離して得た不溶化酵素に、o、osMトリス緩
@液(pH7,+1toombを加え、不溶化酵素液を
調装した。
On the other hand, tannin awakening [OU Hikari Junyaku Co., Ltd.] Ko 0θ? λ
oooab o, ozM Tris buffer 7 (1 (pH 7,0
) dissolved in Aspergillus oryzae FER
Ammonium sulfate was fractionated from the wrinkle culture of M P-t Ig 2 and DEAE
- Insolubilized leucine aminopeptidase prepared using cellulose was mixed with 0.0 IMh Lys buffer (pH 7-0) of Yuooomb and centrifuged. An insolubilized enzyme solution was prepared by adding o, osM Tris solution (pH 7, +1 toomb) to the enzyme.

次に上記容器内の別の導入口より、この不溶化酵素液を
一定の割合で加えて混合しく容器内混合シリカゾル中の
5i02濃度HiJo?/A、pH:り、り、該容器底
部の放出口(ノズル径:コttrrh)より該混合シリ
カゾルを連続的に空気中へ放出しくゲル化時間:t、z
秒)、トリス緩衝液(pH2、θ)含有受皿でロイシン
・アミノペプチダーゼ含Mシリカヒドロゲルを捕集しり
O 得られた固定化ロイシン・アミノペプチダーゼは、球状
で平均粒子径l−コ勧のもの(乾量基準の含水率:13
0%)であった0 なお、上記操作より得られた固定化ゲル1個(約0 、
 J j’ 7個)当りのロイシン命アミノペプチダー
ゼ活性に、ロイシン−p−ニトロアニリドを基質として
中台の方法〔中台忠信、日本醤油研究所報告j、9り(
1974年)〕で測定した結果、lλOOθ単位であっ
た。
Next, add this insolubilized enzyme solution at a constant rate from another inlet in the container and mix. /A, pH: ri, ri, the mixed silica sol is continuously released into the air from the outlet (nozzle diameter: ttrrh) at the bottom of the container.Gelification time: t, z
The leucine aminopeptidase-containing M silica hydrogel was collected in a saucer containing Tris buffer (pH 2, θ). Moisture content on dry basis: 13
In addition, one immobilized gel obtained from the above procedure (approximately 0%) was 0%.
Nakadai's method using leucine-p-nitroanilide as a substrate [Tadanobu Nakadai, Japan Soy Sauce Research Institute Report J, 9ri (
(1974)], the result was a unit of lλOOθ.

実施例 4 ケイ酸ナトリウム水浴液(5if2/ Na2Oのモル
比: J 、 l、 Sin、含有濃度:1g%・W/
v)及びグN−硫酸水溶液を、定量用ポンプを用いて攪
拌翼並びに放出口をMする容器内に別個の導入口より夫
々圧送し、更に該容器内の別の導入口よりペディオコッ
カス・ハロフィラスFERM P−6aa。
Example 4 Sodium silicate water bath solution (5if2/ Na2O molar ratio: J, l, Sin, content concentration: 1g% W/
v) and N-sulfuric acid aqueous solution are each pumped into a container equipped with a stirring blade and a discharge port using a metering pump through separate inlets, and Pediococcus sulfuric acid is further injected into the container from another inlet in the container. Halophilus FERM P-6aa.

を培養、集菌し、コロイド状シリカゾル(Sin、濃度
30%水溶液、スノーテックス30.日産1tS学株式
会社製)に懸濁させた液(PH: 7 、0、乳酸菌生
菌体数:!0×/(17I7mJ、)を一定の割合で加
えて混合しく容器内混合シリカゾル中の5iOz濃度:
/ A g sP/ A、pHニア、j)、該容器の底
部の放出口(ノズル口径:i、3mx+)より該混合シ
リカゾルを連続的に空気中へ放出しくゲル化時間:i、
3秒)、0,1Mリン酸緩衝液(p)I7.θ)含有受
皿で乳酸菌画体含有シリカヒドロゲルを捕集した。
were cultured, collected, and suspended in colloidal silica sol (Sin, 30% aqueous solution, Snowtex 30, manufactured by Nissan 1tS Gaku Co., Ltd.) (PH: 7, 0, number of viable lactic acid bacteria: !0) ×/(17I7mJ,) is added at a constant rate and mixed. 5iOz concentration in the mixed silica sol in the container:
/ A g sP/ A, pH near, j), the mixed silica sol is continuously released into the air from the outlet at the bottom of the container (nozzle diameter: i, 3 mx+), gelling time: i,
3 seconds), 0.1M phosphate buffer (p) I7. θ) The silica hydrogel containing lactic acid bacteria was collected in a saucer containing the lactic acid bacteria.

得られた固定化酵母菌体は、球状で平均粒子径2〜3謡
−のもの(乾量基準の含水率:soθ%)であった0 次に、この固定1し乳酸菌菌体の乳酸発酵性の測定を次
のようにして行った0 上記固定化乳酸菌菌体13JfをaoCに保温したジャ
ケット付カラム(内径:Jcrn、高さ130cm)に
充填し、該カラムに肉エキス/%(W/V)、ポリペプ
トン/%(W/V)、I!母エキス1%(W/V)、グ
ルコース1%(W/V)、チオグリコレート0.1%(
W/V )、NaC1/ 3%(W/V)を含む液体培
地(pH7,コ)を上昇法(SV=o、i)で30日間
通過させつつ乳散発酵を行なった。その結果を第2表に
示す。
The obtained immobilized yeast cells were spherical and had an average particle diameter of 2 to 3 mm (water content on a dry weight basis: soθ%).Next, the immobilized lactic acid bacteria cells were subjected to lactic acid fermentation. The above immobilized lactic acid bacteria cells 13Jf were packed into a jacketed column (inner diameter: Jcrn, height 130cm) kept at aoC, and meat extract/% (W/ V), polypeptone/% (W/V), I! Mother extract 1% (W/V), glucose 1% (W/V), thioglycolate 0.1% (
Milk powder fermentation was carried out while passing through a liquid medium (pH 7, co) containing NaCl 1/3% (W/V) and NaCl 1/3% (W/V) in an ascending method (SV=o, i) for 30 days. The results are shown in Table 2.

第2表 第2表より、実施例4で得た固定1し乳酸菌菌体の乳酸
発酵能は長期間の保持にも係らず著しく優れたものであ
ることが認められた。
Table 2 From Table 2, it was found that the lactic acid fermentation ability of the immobilized lactic acid bacteria cells obtained in Example 4 was extremely excellent despite being kept for a long period of time.

実施例 5 ケイ酸ナトリウム水溶液(5if2/ Na、0のモル
比:3.グ、Sin、含有濃度:1g%・W/V)及び
&N−硫酸水浴液を定量用ポンプを用いて攪拌翼並びに
放出口を有する容器内に別個の導入口より夫々圧送し、
更に該容器内の別の導入口よりサツカロミセス・セレビ
シェIFOO−−g ヲ培養、集菌し、酢酸緩衝液(p
Hj、t)に懸濁させた液(酵母生菌体数: / 、 
OX / 0”/11b)を一定の割合で加えて混合し
く容器内混合シリカゾル中のSin、濃度; i J 
o j’ / Ik、pHニア、り、該容器底部の放出
口(ノズル口径:/、jwa)より該混合シリカゾルを
連続的に空気中へ放出し、該飛翔中のシリカゾルに横方
向より圧縮空気を吹き付けて微粒化しくゲル化時間:1
.!秒)、酢酸緩衝液(pHj、j)含有受皿で酵母菌
体含有シリカヒドロゲルを捕集した。
Example 5 A sodium silicate aqueous solution (5if2/Na, 0 molar ratio: 3.g, Sin, content concentration: 1 g% W/V) and &N-sulfuric acid water bath solution were mixed with a stirring blade and released using a metering pump. Each is pressure-fed from a separate inlet into a container having an outlet,
Furthermore, Saccharomyces cerevisiae IFOO--g was cultured and collected from another inlet in the container, and acetate buffer (p
Hj, t) (number of viable yeast cells: / ,
Add and mix OX/0''/11b) at a constant ratio. Sin, concentration in the mixed silica sol in the container; i J
The mixed silica sol is continuously released into the air from the outlet (nozzle diameter: /, jwa) at the bottom of the container, and the flying silica sol is injected with compressed air from the side. Spray to atomize and gel time: 1
.. ! sec), and the silica hydrogel containing yeast cells was collected in a saucer containing an acetate buffer (pHj, j).

得られた固定化酵母菌体は、球状で平均粒子径aooミ
クロンのもの(乾量基準の含水率:520%)であった
The obtained immobilized yeast cells were spherical and had an average particle diameter of aoo microns (water content on a dry weight basis: 520%).

出願人 キッコーマン株式会社Applicant: Kikkoman Corporation

Claims (4)

【特許請求の範囲】[Claims] (1)微生物菌体、酵素、酵素をタンニンもしくは多官
能性架橋試薬で不溶化したもの、又は酵素を不溶111
.担体に吸着したものを水、緩衝液もしくは親水性有機
溶媒に懸濁したものを、ケイ醒アルカリ水溶液とr11
1溶液とを混合して得られるシリカゾルに加え混合して
該混合シリカゾル中の5in2濃度を70−2 / o
 f / 7、pHを、7− / 0とし、ついでこれ
を可及的速やかに気相中に放出しきわめて短時間にゲル
化させて球状のシリカゲルとすることを特徴とする固定
化された微生物菌体もしくは酵素の製造法。
(1) Microbial cells, enzymes, enzymes insolubilized with tannins or polyfunctional crosslinking reagents, or enzymes insoluble 111
.. The adsorbed material on the carrier is suspended in water, a buffer solution, or a hydrophilic organic solvent, and then mixed with a silica aqueous alkaline solution and R11.
1 solution and mixed to make the 5in2 concentration in the mixed silica sol 70-2/o.
An immobilized microorganism characterized by setting the pH to 7-/0, then releasing it into the gas phase as soon as possible and gelling it in a very short time to form a spherical silica gel. Method for producing bacterial cells or enzymes.
(2)混合シリカゾルに、コロイド状シリカ、アルミナ
シリカゾル、及びアルミナゾルより選ばれた少な(とも
1種のゾルを添加することを特徴とする特許請求の範囲
第1項記載の方法。
(2) The method according to claim 1, characterized in that at least one sol selected from colloidal silica, alumina silica sol, and alumina sol is added to the mixed silica sol.
(3)ゲル11時間が!秒以内である特許請求の範囲第
7項記載の方法。
(3) Gel 11 hours! 8. The method according to claim 7, wherein the method is within seconds.
(4)固定化された微生物菌体もしくは酵素のゲル平均
粒子径が500ミクロン以下である特許請求の範囲!/
項記載の方法。 (5〕混合シリカゾル中の5in2濃度を130〜/g
Oi!−/A、pHを6〜gに夫々調整することを特徴
とする特許請求の範囲第1項記載の方法。
(4) Claims in which the gel average particle diameter of the immobilized microbial cells or enzymes is 500 microns or less! /
The method described in section. (5) 5in2 concentration in mixed silica sol 130~/g
Oi! 2. The method according to claim 1, characterized in that -/A and pH are adjusted to 6 to 6 g, respectively.
JP20489283A 1983-11-02 1983-11-02 Preparation of immobilized mold of microorganism for enzyme Granted JPS6098985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20489283A JPS6098985A (en) 1983-11-02 1983-11-02 Preparation of immobilized mold of microorganism for enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20489283A JPS6098985A (en) 1983-11-02 1983-11-02 Preparation of immobilized mold of microorganism for enzyme

Publications (2)

Publication Number Publication Date
JPS6098985A true JPS6098985A (en) 1985-06-01
JPS6321475B2 JPS6321475B2 (en) 1988-05-07

Family

ID=16498120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20489283A Granted JPS6098985A (en) 1983-11-02 1983-11-02 Preparation of immobilized mold of microorganism for enzyme

Country Status (1)

Country Link
JP (1) JPS6098985A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173541A (en) * 1987-01-14 1988-07-18 Kirin Brewery Co Ltd Fermentation of liquid food
JPH03266985A (en) * 1990-03-16 1991-11-27 Agency Of Ind Science & Technol Inorganic carrier for immobilizing enzyme
JP2001158743A (en) * 1999-12-02 2001-06-12 Wakamoto Pharmaceut Co Ltd Lactobacillus-containing composition, medicament and food
US11001867B2 (en) 2016-06-17 2021-05-11 Nissan Chemical Industries, Ltd. Saccharification reaction mixture, saccharification enzyme composition, sugar production method, and ethanol production method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3178939B1 (en) 2014-08-07 2020-02-26 Nissan Chemical Corporation Saccharifying enzyme composition, saccharifying reaction solution, and sugar production method
CN108463562B (en) 2016-10-14 2022-05-03 日产化学工业株式会社 Saccharification reaction liquid, saccharifying enzyme composition, method for producing sugar, and method for producing ethanol

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173541A (en) * 1987-01-14 1988-07-18 Kirin Brewery Co Ltd Fermentation of liquid food
JPH0255014B2 (en) * 1987-01-14 1990-11-26 Kirin Brewery
JPH03266985A (en) * 1990-03-16 1991-11-27 Agency Of Ind Science & Technol Inorganic carrier for immobilizing enzyme
JP2001158743A (en) * 1999-12-02 2001-06-12 Wakamoto Pharmaceut Co Ltd Lactobacillus-containing composition, medicament and food
JP4603116B2 (en) * 1999-12-02 2010-12-22 わかもと製薬株式会社 Lactic acid bacteria-containing composition, medicine and food
US11001867B2 (en) 2016-06-17 2021-05-11 Nissan Chemical Industries, Ltd. Saccharification reaction mixture, saccharification enzyme composition, sugar production method, and ethanol production method

Also Published As

Publication number Publication date
JPS6321475B2 (en) 1988-05-07

Similar Documents

Publication Publication Date Title
US4504582A (en) Vermiculite as a carrier support for immobilized biological materials
US4797358A (en) Microorganism or enzyme immobilization with a mixture of alginate and silica sol
Arica et al. Covalent immobilization of α-amylase onto pHEMA microspheres: preparation and application to fixed bed reactor
Kayastha et al. Pigeonpea (Cajanus cajan L.) urease immobilized on glutaraldehyde-activated chitosan beads and its analytical applications
JPH0234B2 (en)
EP0105736B1 (en) Immobilization of proteins on polymeric supports
Vojtíšek et al. Immobilized cells
GB2036032A (en) Enzyme immobilised in starch gel
JPS6098985A (en) Preparation of immobilized mold of microorganism for enzyme
Flink et al. A novel method for immobilization of yeast cells in alginate gels of various shapes by internal liberation of Ca-ions
US4411999A (en) Immobilization of enzymes on granular gelatin
JPS6331538A (en) Immobilizing carrier
JPS5974984A (en) Preparation of immobilized enzyme or microorganism
CN1970747A (en) Process for preparing spherical immobilized cell and enzyme particulate
HU204084B (en) Process for producing enzymes bonded to a carrier
EP0340378B1 (en) Method for microbial immobilization
Klein et al. Polymers for the immobilization of whole cells and their application in biotechnology
JPS6349996B2 (en)
JPS60221089A (en) Preparation of immobilized microbial cell or enzyme
SU744002A1 (en) Method of preparing immobilized enzymes
Klein et al. [21] Immobilization of microbial cells in an epoxy carrier system
JPH0327198B2 (en)
JPH0468912B2 (en)
SU883175A1 (en) Method of producing immobilized glucosoisomerase
JPH0371880B2 (en)