JPH0468912B2 - - Google Patents

Info

Publication number
JPH0468912B2
JPH0468912B2 JP59180086A JP18008684A JPH0468912B2 JP H0468912 B2 JPH0468912 B2 JP H0468912B2 JP 59180086 A JP59180086 A JP 59180086A JP 18008684 A JP18008684 A JP 18008684A JP H0468912 B2 JPH0468912 B2 JP H0468912B2
Authority
JP
Japan
Prior art keywords
cellulose acetate
microorganisms
porous particles
immobilized
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59180086A
Other languages
Japanese (ja)
Other versions
JPS6158588A (en
Inventor
Shiro Nagai
Michio Ozaki
Kunio Fukunishi
Kazuhiro Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP18008684A priority Critical patent/JPS6158588A/en
Publication of JPS6158588A publication Critical patent/JPS6158588A/en
Publication of JPH0468912B2 publication Critical patent/JPH0468912B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は固定化微生物に関する。更に詳しくは
酢酸セルロース多孔質粒子を固定化の担体として
用いることを特徴とする固定化微生物に関するも
のである。 (従来の技術) 近年固定化微生物の研究はますます盛んとな
り、工業的に重要な技術として着目されはじめて
いる。固定化微生物の製造法としては従来から
種々の方法が知られており、その代表的な方法と
してポリアクリルアミド、アルギン酸、カラギー
ナン、ポリビニールアルコールなどのゲル内に微
生物を包括して固定化する方法が知られている。
(「固定化酸素」千畑一郎編、講談社1975)。中で
もアルギン酸、カラギーナンを用いる方法は簡単
な固定化微生物の製造法であり、しかも種々の微
生物の固定化に利用できるため広く用いられてい
る。 (発明が解決しようとする問題点) 併しながらこれらのゲルを用いる方法では、通
常実施される加熱殺菌の条件を適用すると、得ら
れるゲルの強度が低下すること、あるいはゲル内
における微生物の増殖に基因するゲルの膨潤化及
び強度低下が認められること、更にカルシウムイ
オン、アルミニウムイオン等のゲル化剤共存下で
微生物反応をおこさせる必要があり、リン酸イオ
ンのごとき脱ゲル化剤が共存する場合にはゲルの
溶解がおこると、更にはまた微生物反応により有
機酸製造を実施する場合においては必然的にその
カルシウム塩あるいはアルミニウム塩の状態とな
るため、例えば有機酸のナトリウム塩を得る場合
などにおいてはこれらのゲルを用いる方法は不可
能であること、等の工業的に重大な問題が存在し
ていた。 (問題点を解決するための手段) 本発明者らは従来固定化担体として使用されて
いるアルギン酸、カラギーナンなどの基本的な欠
点を克服すべく種々検討をくわえた結果、固定化
担体として酢酸セルロース多孔質粒子を用いる事
により、微生物の固定化が容易であり、又加熱殺
菌が可能であり、担体強度も高く、しかも脱ゲル
化剤共存下でも使用出来るなど、上記欠点を克服
出来ることを見い出し本発明を完成した。 即ち、本発明は特定の物性を有する酢酸セルロ
ース多孔質粒子に微生物を固定化せしめてなる固
定化微生物を提供するものである。本発明で使用
される酢酸セルロースとしては水酸基と酢酸エス
テル基を有する酢化度48〜62%の酢酸セルロース
が適当であり、特願昭59−10535(特開昭60−
155245号)で示すように、酢酸セルロースのアセ
トンや酢酸溶液などを適当な凝固溶剤、例えばア
セント水溶液や酢酸水溶液中に押出して凝固さ
せ、水で洗滌することにより多孔質粒子とするこ
とが出来る。粒子形状としては粒状、球状、円柱
状、卵形など種々の形状が取りうるが、球状が、
流動性や、強度、表面積などの点から有利であ
り、粒子径としては0.5〜10mmが好ましい。この
方法で製造した酢酸セルロース多孔質粒子は細孔
容積が大きい割に圧壊強度が大きい。本発明に使
用するものは細孔容積としては、0.65c.c./g以
上、圧壊強度10Kg以上の多孔質粒子で、細孔分布
幅としては75〓〜10μ位のものであり、細孔の大
きさは凝固溶剤、例えば酢酸水溶液の濃度を変え
ることにより調節出来る。これらの細孔は一部独
立気泡も含まれるが、大部分は連続気泡を形成し
ている。使用される酢酸セルロースは酢化度とし
て40〜62%、より好ましくは48〜58%の酢酸セル
ロースであり、このものは親水基と親油基が適当
にバランスして固定化を強固にする作用があると
考えられる。又連続した細孔が微細孔と数μの細
孔が適当に分布して形成され、上記の親水基と親
油基のバランスと相まつて固定化微生物の生育を
良くする作用を奏すると考えられる。細孔容積が
0.65c.c./g未満であれば微生物の担持量が少なく
て実用的でない。又圧壊濃度10Kg未満のものでは
使用中に粒子がくずれるなどして実用的でない。
又粒子径0.5mm以下や10mm以上では製造時に洗滌
などに問題があるが、必要に応じて酢酸セルロー
ス多孔質粒子を粉砕することによりスキン層を破
壊したものや粒子径を0.5mm以下にしたものを使
用することが出来る。 本発明で使用される微生物はカビ、酵母、細
菌、放射菌などに分類される微生物である。 これらの微生物は栄養培地で生育せしめられた
のち、生きた状態で使用される。 本発明について更に詳細に説明すると、例えば
通常の方法で調製される培地に対し酢酸セルロー
ス多孔質粒子を加えた後に加熱滅菌を実施する。
酢酸セルロース多孔質粒子は250℃においても安
定であるため、一般の滅菌温度である120℃で何
ら問題はない。その後に固定化したい微生物を接
種し、常法通り培養するだけで酢酸セルロース多
孔質粒子内でも微生物が増殖するため目的とする
固定化微生物を得ることができる。より好ましく
は微生物を接種した後培養液を減圧に保つことに
より酢酸セルロース多孔質粒子内への微生物の移
行を促進させることができる。更には通常の培養
により得られる培養液を遠心分離等により濃厚な
微生物懸濁液となしそれに殺菌した酢酸セルロー
ス多孔質粒子を加え、減圧に保つことにより固定
化の時間はより短縮される。このようにして得ら
れる固定化微生物は一般の攪拌混合槽、充填塔形
式の反応器を用いて目的とする反応を行なわせる
ことができる。 〔実施例〕 以下実施例について本発明を更に説明するが、
本発明はこれらの実施例に限定されるものではな
い。 実施例 1 スポロラクトバチラスイヌリナスTUA343Lを
表−1に示す液体培地で37℃、24時間培養した。
この培養液20mlに対し120℃、15分間殺菌した
(表2に示した酢酸セルロース多孔質粒子)0.25
gを無菌的に加え、減圧化(40mmHg)で2時間
保持した。次で培養液から酢酸セルロース多孔質
粒子を取り出し、水洗後140mlの表1に示すグル
コース培地に移し、攪拌しながら37℃で乳酸を生
産させた。 以下一定時間毎に酢酸セルロース多孔質粒子を
取り出し、水洗し、同様の方法で反応をくり返し
た。 表−2に示した結果から明らかなように酢酸セ
ルロース多孔質粒子は微生物の有効な固定化担体
である事が明らかである。
(Industrial Application Field) The present invention relates to immobilized microorganisms. More specifically, the present invention relates to an immobilized microorganism characterized by using cellulose acetate porous particles as a carrier for immobilization. (Conventional technology) Research on immobilized microorganisms has become more and more popular in recent years, and is beginning to attract attention as an industrially important technology. Various methods have been known for producing immobilized microorganisms, and a typical method is to enclose and immobilize microorganisms in a gel made of polyacrylamide, alginic acid, carrageenan, polyvinyl alcohol, etc. Are known.
(“Fixed Oxygen” edited by Ichiro Chibata, Kodansha 1975). Among them, the method using alginic acid and carrageenan is a simple method for producing immobilized microorganisms, and is widely used because it can be used for immobilizing various microorganisms. (Problems to be Solved by the Invention) However, in the methods using these gels, if the commonly used heat sterilization conditions are applied, the strength of the gel obtained may decrease or the growth of microorganisms within the gel may occur. In addition, it is necessary to cause a microbial reaction in the presence of gelling agents such as calcium ions and aluminum ions, and degelling agents such as phosphate ions are also present. In some cases, when gel dissolution occurs, furthermore, when organic acids are produced by microbial reactions, they are inevitably in the form of their calcium salts or aluminum salts, such as when obtaining sodium salts of organic acids. There were serious industrial problems such as the impossibility of methods using these gels. (Means for Solving the Problems) The present inventors have conducted various studies in order to overcome the basic drawbacks of alginic acid, carrageenan, etc. that have been conventionally used as immobilization carriers, and have found that cellulose acetate can be used as an immobilization carrier. It was discovered that the above-mentioned drawbacks could be overcome by using porous particles, as it is easy to immobilize microorganisms, heat sterilization is possible, the carrier strength is high, and it can be used in the presence of a degelling agent. The invention has been completed. That is, the present invention provides an immobilized microorganism in which microorganisms are immobilized on cellulose acetate porous particles having specific physical properties. As the cellulose acetate used in the present invention, cellulose acetate having a degree of acetylation of 48 to 62% and having a hydroxyl group and an acetate ester group is suitable.
155245), porous particles can be obtained by extruding a solution of cellulose acetate, such as acetone or acetic acid, into a suitable coagulating solvent, such as an aqueous ascent solution or an acetic acid solution, coagulating it, and washing it with water. Particles can take various shapes such as granules, spheres, cylinders, and oval shapes, but spherical shapes are
It is advantageous in terms of fluidity, strength, surface area, etc., and the particle size is preferably 0.5 to 10 mm. Cellulose acetate porous particles produced by this method have high crushing strength in spite of their large pore volume. The particles used in the present invention are porous particles with a pore volume of 0.65 cc/g or more and a crushing strength of 10 kg or more, and a pore distribution width of about 75〓 to 10μ, and the pore size can be adjusted by changing the concentration of the coagulating solvent, such as an acetic acid aqueous solution. Although some of these pores include closed cells, most of them form open cells. The cellulose acetate used is cellulose acetate with an acetylation degree of 40 to 62%, more preferably 48 to 58%, which has an appropriate balance of hydrophilic and lipophilic groups to strengthen immobilization. It is thought that there is. In addition, continuous pores are formed with fine pores and pores of several micrometers in size, which together with the above-mentioned balance of hydrophilic groups and lipophilic groups are thought to have the effect of improving the growth of immobilized microorganisms. . Pore volume
If it is less than 0.65 cc/g, the amount of microorganisms supported is too small to be practical. Also, if the crushing density is less than 10 kg, the particles may break during use, making it impractical.
Also, if the particle size is less than 0.5 mm or more than 10 mm, there will be problems with cleaning during production, but if necessary, the cellulose acetate porous particles may be crushed to destroy the skin layer or the particle size may be reduced to 0.5 mm or less. can be used. The microorganisms used in the present invention are classified into molds, yeasts, bacteria, actinobacteria, and the like. These microorganisms are grown in a nutrient medium and then used in a live state. To explain the present invention in more detail, for example, cellulose acetate porous particles are added to a medium prepared by a conventional method and then heat sterilized.
Cellulose acetate porous particles are stable even at 250°C, so there are no problems at 120°C, which is the general sterilization temperature. Thereafter, the desired immobilized microorganism can be obtained by simply inoculating the microorganism to be immobilized and culturing in the usual manner, since the microorganism will grow even within the cellulose acetate porous particles. More preferably, by keeping the culture solution under reduced pressure after inoculating the microorganisms, migration of the microorganisms into the cellulose acetate porous particles can be promoted. Furthermore, the immobilization time can be further shortened by preparing a concentrated microbial suspension by centrifuging the culture solution obtained by conventional culture, adding sterilized cellulose acetate porous particles to the suspension, and maintaining the suspension under reduced pressure. The immobilized microorganism thus obtained can be subjected to the desired reaction using a general stirring mixing tank or a packed column type reactor. [Example] The present invention will be further explained with reference to Examples below.
The present invention is not limited to these examples. Example 1 Sporolactobacillus inulinus TUA343L was cultured in the liquid medium shown in Table 1 at 37°C for 24 hours.
20ml of this culture solution was sterilized at 120℃ for 15 minutes (cellulose acetate porous particles shown in Table 2).0.25
g was added aseptically and maintained under reduced pressure (40 mmHg) for 2 hours. Next, the cellulose acetate porous particles were taken out from the culture solution, washed with water, and transferred to 140 ml of the glucose medium shown in Table 1 to produce lactic acid at 37° C. while stirring. Thereafter, the cellulose acetate porous particles were taken out at regular intervals, washed with water, and the reaction was repeated in the same manner. As is clear from the results shown in Table 2, it is clear that cellulose acetate porous particles are an effective immobilization carrier for microorganisms.

【表】 表−2 酢酸セルロース多孔質粒子の性状 酢化度 54.8% 細孔容液 0.9c.c./g 細孔分布幅 75Å〜8μ 圧壊強度 13Kg 粒径 5.0mm【table】 Table-2 Properties of cellulose acetate porous particles Acetylation degree 54.8% Pore volume 0.9c.c./g Pore distribution width 75Å~8μ Crushing strength 13Kg Particle size 5.0mm

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 酢化度40〜62%、粒子径0.5〜10mm、細孔容
積0.65c.c./g以上、圧壊強度10Kg以上、細孔分布
幅75〓〜10μの酢酸セルロース多孔質粒子に微生
物を固定化せしめてなる固定化微生物。
1. Microorganisms are immobilized on cellulose acetate porous particles with an acetylation degree of 40 to 62%, a particle diameter of 0.5 to 10 mm, a pore volume of 0.65 cc/g or more, a crushing strength of 10 kg or more, and a pore distribution width of 75 to 10 μ. immobilized microorganisms.
JP18008684A 1984-08-29 1984-08-29 Immobilized microorganism Granted JPS6158588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18008684A JPS6158588A (en) 1984-08-29 1984-08-29 Immobilized microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18008684A JPS6158588A (en) 1984-08-29 1984-08-29 Immobilized microorganism

Publications (2)

Publication Number Publication Date
JPS6158588A JPS6158588A (en) 1986-03-25
JPH0468912B2 true JPH0468912B2 (en) 1992-11-04

Family

ID=16077201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18008684A Granted JPS6158588A (en) 1984-08-29 1984-08-29 Immobilized microorganism

Country Status (1)

Country Link
JP (1) JPS6158588A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256773A (en) * 1995-03-27 1996-10-08 Bio Material:Kk Carrier for immobilizing microorganism and conversion of nitrogen compound in liquid using the same
US6908556B2 (en) * 1999-12-02 2005-06-21 The University Of Tulsa Methods for forming microcultures within porous media
KR100348740B1 (en) * 2000-04-24 2002-08-14 (주)이앤텍 A media for treating waste water entrapped with microorganism using cellulose acetate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105281A (en) * 1976-02-26 1977-09-03 Teijin Ltd Immobilization of enzyme
JPS541795A (en) * 1977-06-06 1979-01-08 Hitachi Ltd Fuel rod for reactores
JPS5819273A (en) * 1981-07-24 1983-02-04 日産自動車株式会社 Seat belt
JPS58148796A (en) * 1982-03-02 1983-09-03 Mitsubishi Heavy Ind Ltd Powder paint coater for paper discharge part of printer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105281A (en) * 1976-02-26 1977-09-03 Teijin Ltd Immobilization of enzyme
JPS541795A (en) * 1977-06-06 1979-01-08 Hitachi Ltd Fuel rod for reactores
JPS5819273A (en) * 1981-07-24 1983-02-04 日産自動車株式会社 Seat belt
JPS58148796A (en) * 1982-03-02 1983-09-03 Mitsubishi Heavy Ind Ltd Powder paint coater for paper discharge part of printer

Also Published As

Publication number Publication date
JPS6158588A (en) 1986-03-25

Similar Documents

Publication Publication Date Title
US5175093A (en) Bioactive cells immobilized in alginate beads containing voids formed with polyethylene glycol
JPS60120987A (en) Production of immobilized microbial cell or enzyme
US5939294A (en) Immobilization of microogranisms on weakly basic anion exchange substance for producing isomaltulose
EP0217917B1 (en) Weighted microsponge for immobilizing bioactive material
US5916789A (en) Immobilized enzyme
JPH0468912B2 (en)
JPS6244914B2 (en)
JPH01225487A (en) Method for utilizing cellulose in bioreactor carrier aiming at production of citric or gluconic acid with aspergillus niger
CA1191098A (en) Process for manufacturing alcohol by fermentation
JPS6043957B2 (en) Method for producing gluconic acid using immobilized microorganisms
JP2000513570A (en) Method for producing isomaltulose by immobilized microorganism and carrier therefor
JPS6012037B2 (en) Production method of itaconic acid using immobilized microorganisms
RU2005784C1 (en) Method of immobilized peroxidase preparing
SU883175A1 (en) Method of producing immobilized glucosoisomerase
JPH0327198B2 (en)
JPH0357757B2 (en)
SU457342A1 (en) Method of preparing antibiotics
JPS6384475A (en) Preparation of food vinegar
RU2327738C1 (en) Method of immobilised beta-fructofuranozidase
JPS6115688A (en) Immobilized enzyme, or the like and preparation thereof
JP2005224160A (en) Method for producing immobilized microorganism carrier or immobilized enzyme carrier
JPS60105470A (en) Production of soy-like seasoning liquid
JPH04197177A (en) New immobilized fungi and production thereof
JPS63219386A (en) Production of sugaralcohol
JPH01247089A (en) Preparation of carrier supporting immobilized microorganism