JPS6329414B2 - - Google Patents

Info

Publication number
JPS6329414B2
JPS6329414B2 JP54065156A JP6515679A JPS6329414B2 JP S6329414 B2 JPS6329414 B2 JP S6329414B2 JP 54065156 A JP54065156 A JP 54065156A JP 6515679 A JP6515679 A JP 6515679A JP S6329414 B2 JPS6329414 B2 JP S6329414B2
Authority
JP
Japan
Prior art keywords
integrated circuits
holes
conductive pattern
mass
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54065156A
Other languages
Japanese (ja)
Other versions
JPS55157245A (en
Inventor
Yoshio Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6515679A priority Critical patent/JPS55157245A/en
Publication of JPS55157245A publication Critical patent/JPS55157245A/en
Publication of JPS6329414B2 publication Critical patent/JPS6329414B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Wire Bonding (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To enable formation, assembling and inspecting of an integrated circuit automatically by forming indexing holes (slit holes) longitudinally of a long metallic substrate. CONSTITUTION:Indexing holes 2 or slit holes 3 are formed at predetermined interval longitudinally of a metallic substrate 1 made of aluminum. Sections 4 are indexed by the indexing holes 2 or the slit holes 3 where integrated circuits are formed.

Description

【発明の詳細な説明】 本発明は集積回路の多量製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing integrated circuits in large quantities.

従来の半導体素子の多量製造方法としては特公
昭45−1137号公報の如きパンチングメタルフレー
ム方法および特公昭47−3206号公報のフイルムキ
ヤリア方法が知られている。しかしながらこれら
の方法が適用されるのは電力消費の小さいモノリ
シツク集積回路に限られ、また各リード片は自己
支持されなくてはならないのである程度以上に細
くできずピン数の多い大規模集積回路には適して
いないのである。
As conventional methods for manufacturing large quantities of semiconductor devices, there are known a punching metal frame method as disclosed in Japanese Patent Publication No. 45-1137 and a film carrier method as disclosed in Japanese Patent Publication No. 47-3206. However, these methods are only applicable to monolithic integrated circuits with low power consumption, and because each lead piece must be self-supporting, they cannot be made thinner than a certain point and are not suitable for large-scale integrated circuits with a large number of pins. It is not suitable.

本発明は斯点に鑑みてなされ従来の欠点を大巾
に改善した集積回路の多量製造方法を実現するも
のであり、以下に第1図乃至第4図を参照して本
発明の一実施例を詳述する。
The present invention has been made in view of this point, and is intended to realize a method for mass-producing integrated circuits that greatly improves the conventional drawbacks.One embodiment of the present invention will be described below with reference to FIGS. 1 to 4. details.

まず第1図に示す如く、長板状の金属基板1を
準備し、基板1の長手方向に一定間隔でインデツ
クス孔2あるいはスリツト孔3を形成する。金属
基板1としては1mm厚のアルミニウムを用い、例
えば70mm×1000mmの長板サイズとする。インデツ
クス孔2あるいはスリツト孔3はいずれかが形成
され、完成される集積回路が大きいものには第1
図Bの如くスリツト孔3を用い、逆に小さいもの
は第1図Aの如くインデツクス孔2を用いる。こ
のインデツクス孔2あるいはスリツト孔3はプレ
スで打抜かれ、後工程の機械的手段による位置の
割り出しとして用いられる。従つて完成される混
成集積回路の大きさに従つてインデツクス孔2あ
るいはスリツト孔3の間隔が選ばれる、更に詳述
すると第1図Aは基板1の巾方向の両端にインデ
ツクス孔2を設け、インデツクス孔2で割り出さ
れる区画4に2個の集積回路を備えている。第1
図Bは基板1の巾方向に長いスリツト孔3で各区
画4を区切り、区画4に1個の集積回路を形成す
るものである。これから明らかな様に基板1の巾
を標準化することによつて同一サイズの基板1で
様々の大きさの集積回路を形成できる。
First, as shown in FIG. 1, a long plate-shaped metal substrate 1 is prepared, and index holes 2 or slit holes 3 are formed at regular intervals in the longitudinal direction of the substrate 1. The metal substrate 1 is made of aluminum with a thickness of 1 mm, and has a long plate size of, for example, 70 mm x 1000 mm. Either the index hole 2 or the slit hole 3 is formed, and if the integrated circuit to be completed is large, the first one is formed.
A slit hole 3 is used as shown in Figure B, and an index hole 2 is used as shown in Figure 1A for smaller holes. This index hole 2 or slit hole 3 is punched out with a press and used for position indexing by mechanical means in a later process. Therefore, the interval between the index holes 2 or the slit holes 3 is selected according to the size of the hybrid integrated circuit to be completed.More specifically, in FIG. 1A, the index holes 2 are provided at both widthwise ends of the substrate 1, A compartment 4 indexed by an index hole 2 is provided with two integrated circuits. 1st
In Figure B, each section 4 is divided by a long slit hole 3 in the width direction of the substrate 1, and one integrated circuit is formed in each section 4. As is clear from this, by standardizing the width of the substrate 1, integrated circuits of various sizes can be formed using the same size substrate 1.

次に第2図に示す如くインデツクス孔2あるい
はスリツト孔3で割り出される基板1上の多数の
区画4…4に導電パターン5を形成する。区画4
内には1つあるいは複数の導電パターン5が形成
でき、また異種の導電パターン5を同一区画4内
あるいは異なる区画4に形成できる。
Next, as shown in FIG. 2, conductive patterns 5 are formed in a large number of sections 4 . . . 4 on the substrate 1 indexed by the index holes 2 or slit holes 3. Section 4
One or more conductive patterns 5 can be formed therein, and different types of conductive patterns 5 can be formed within the same section 4 or in different sections 4.

前述した基板1は周知の陽極酸化によつてその
表面に酸化アルミニウム被膜(図示せず)が形成
され、更に基板1の一主面に第4図に示す如く導
電パターン5が形成される。先ず第4図Aの如く
導電金属箔6例えば銅箔が粘着される。金属箔6
表面はスクリーン印刷によつて所望の導電パター
ン5を露出してレジスト7でマスクされ、貴金属
(金、銀、白金)メツキ層8が第4図Bの如く金
属箔6表面にメツキされる。然る後レジストを除
去して貴金属メツキ層8をマスクとして金属箔6
のエツチングを行い第4図Cの如く所望の導電パ
ターン5…5が形成される。スクリーン印刷によ
る導電パターン5…5の細さは0.5mmが限界であ
るので、極細配線を必要とするときは周知の写真
蝕刻技術に依り約2μまでの極細導電パターン5
…5が可能となる。極細導電パターン5は従来の
パンチングメタルフレームやフイルムキヤリアで
は出来なかつたが本発明では可能となり、ピン数
の多い大規模集積回路の組立や高周波回路に利用
できる。
The aforementioned substrate 1 has an aluminum oxide film (not shown) formed on its surface by well-known anodic oxidation, and further a conductive pattern 5 is formed on one main surface of the substrate 1 as shown in FIG. First, as shown in FIG. 4A, a conductive metal foil 6, such as a copper foil, is adhered. metal foil 6
The surface is masked with a resist 7 by exposing a desired conductive pattern 5 by screen printing, and a noble metal (gold, silver, platinum) plating layer 8 is plated on the surface of the metal foil 6 as shown in FIG. 4B. After that, the resist is removed and the metal foil 6 is applied using the noble metal plating layer 8 as a mask.
Then, desired conductive patterns 5...5 are formed as shown in FIG. 4C. The thinness of the conductive pattern 5 by screen printing is limited to 0.5 mm, so when ultra-fine wiring is required, the ultra-fine conductive pattern 5 up to about 2 μm can be formed using well-known photo-etching technology.
...5 is possible. Although the ultra-fine conductive pattern 5 could not be produced using conventional punched metal frames or film carriers, it is possible with the present invention and can be used in the assembly of large-scale integrated circuits with a large number of pins and in high-frequency circuits.

尚本工程で多層配線が必要なときは形成された
導電パターン5上に更にポリイミドなどの絶縁層
を形成しその上にスクリーン印刷で導電塗料を印
刷して焼成することで実現できる。
If multilayer wiring is required in this process, it can be realized by further forming an insulating layer such as polyimide on the formed conductive pattern 5, printing a conductive paint on it by screen printing, and baking.

また本工程で抵抗等の回路素子を組込むときは
周知のスクリーン印刷技術によつて抵抗塗料を金
属基板1に印刷して焼成して形成する。
Further, when circuit elements such as resistors are incorporated in this step, a resistive paint is printed on the metal substrate 1 using a well-known screen printing technique and then baked.

続いて第4図に示す如く、導電パターン5の所
望のパツド51上に半導体集積回路等の半導体素
子9を導電ペーストを用いて固着し、パツド51
に隣接する導電パターン5と対応する半導体素子
9の電極とを金あるいはアルミニウム細線でボン
デイングして接続する。
Subsequently, as shown in FIG. 4, a semiconductor element 9 such as a semiconductor integrated circuit is fixed onto a desired pad 51 of the conductive pattern 5 using a conductive paste.
The conductive pattern 5 adjacent to the conductive pattern 5 is connected to the corresponding electrode of the semiconductor element 9 by bonding with a thin gold or aluminum wire.

然る後インデツクス孔2あるいはスリツト孔3
を用いて機械的にコマ送りを行いながら測定され
る導電パターン5に通電して半導体素子9および
他の回路素子を含む回路機能検査を行う。斯る検
査で抵抗等が組込まれている場合はフアンクシヨ
ナルトリミングをして回路機能の調整を行い、更
に半導体素子9が所定の回路機能を出さないとき
は半導体素子9を除去して再生を行い歩留の大巾
向上をはかる。また必要ならばボンデイング細線
の接着強度の測定も行なえる。
Then index hole 2 or slit hole 3
A circuit function test including the semiconductor element 9 and other circuit elements is performed by energizing the conductive pattern 5 to be measured while mechanically moving frame by frame using the . If a resistor or the like is incorporated in such an inspection, functional trimming is performed to adjust the circuit function, and if the semiconductor element 9 does not perform the specified circuit function, the semiconductor element 9 is removed and regenerated. This will greatly improve yield. Furthermore, if necessary, the adhesive strength of the bonding thin wire can also be measured.

即ち本工程では封止前に回路機能検査を連結さ
れた状態で行なえるので極めて効率よく測定やト
リミングが行なえ且つ不良品の再生もできるので
大巾な歩留向上を達成される。
That is, in this process, the circuit function test can be performed in a connected state before sealing, so measurement and trimming can be performed extremely efficiently, and defective products can be recycled, resulting in a significant improvement in yield.

更に斯る検査後半導体素子9および保護を必要
とする回路素子にはシリコンレジンを塗付して素
子およびボンデイング細線を保護する。また斯る
素子はトランスフアモールドにより部分的にモー
ルドができる。
Furthermore, after such inspection, silicone resin is applied to the semiconductor element 9 and circuit elements requiring protection to protect the elements and bonding thin wires. Moreover, such an element can be partially molded by transfer molding.

斯上の工程の後金属基板1に連結された状態で
完成された多数の集積回路はプレスによつて金属
基板1から個別集積回路として分離される。この
プレスはインデツクス孔2あるいはスリツト孔3
に従つて機械的に位置を割り出して行なえるので
極めて効率が良い。このプレスでは雄型金型の周
端部のみを基板1に当接させて行うので基板1上
の素子は影響を受けない。
After the above steps, the completed multiple integrated circuits connected to the metal substrate 1 are separated from the metal substrate 1 as individual integrated circuits by a press. This press has index hole 2 or slit hole 3.
It is extremely efficient because the position can be determined mechanically according to the following. In this pressing, only the peripheral end of the male die is brought into contact with the substrate 1, so the elements on the substrate 1 are not affected.

個別集積回路には外部リードが半田付けされた
後樹脂ケースで封止するかエポキシ樹脂のデイピ
ングによつてシールを行つて完成される。
After external leads are soldered to the individual integrated circuit, it is sealed with a resin case or sealed with epoxy resin dipping to complete the circuit.

本発明に依れば金属基板1を採用しているので
放熱効果が大きく、高耐圧大出力用の半導体素子
9の組込みが可能となる。この結果高耐圧大出力
用のツイントランジスタ、デユアルトランジス
タ、トランジスタアレー、ダイオードアレー、ダ
ーリントン接続カスケード接続が量産化できる利
点を有する。またオペアンプ等のモノリシツク集
積回路とパワートランジスタの組合せやダイオー
ド、トランジスタ・モノリシツク集積回路と
LCR素子の組合せが同一パツケージで量産でき
る利点もある。更に前述した如く異種導電パター
ンを用いれば多機種少量生産も効率化できる。更
にまた連結状態での回路機能検査が可能となるの
でフアンクシヨナルトリミングおよび不良の再生
ができ歩留はほぼ100%となる。最後にインデツ
クス孔あるいはスリツト孔を用いることにより従
来より確立した自動化技術を容易に取り入れるこ
とができ大巾な自動化が達成できる。
According to the present invention, since the metal substrate 1 is used, the heat dissipation effect is large, and it becomes possible to incorporate the semiconductor element 9 for high breakdown voltage and large output. As a result, there is an advantage that twin transistors, dual transistors, transistor arrays, diode arrays, and Darlington connection cascade connections for high voltage and large output can be mass-produced. Also, combinations of monolithic integrated circuits such as operational amplifiers and power transistors, diodes, transistor monolithic integrated circuits, etc.
Another advantage is that combinations of LCR elements can be mass-produced in the same package. Furthermore, as described above, by using different types of conductive patterns, it is possible to efficiently produce a wide variety of products in small quantities. Furthermore, since it is possible to test circuit functions in a connected state, functional trimming and defect recovery can be performed, resulting in a yield of nearly 100%. Finally, by using index holes or slit holes, conventionally established automation techniques can be easily incorporated and extensive automation can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明を説明する上面図、
第4図は本発明の導電パターンの形成方法を説明
する断面図である。 主な図番の説明、1は金属基板、2はインデツ
クス孔、3はスリツト孔、4…4は区画、5は導
電パターン、9は半導体素子である。
1 to 3 are top views illustrating the present invention,
FIG. 4 is a cross-sectional view illustrating the method of forming a conductive pattern according to the present invention. Explanation of the main figure numbers: 1 is a metal substrate, 2 is an index hole, 3 is a slit hole, 4...4 is a partition, 5 is a conductive pattern, and 9 is a semiconductor element.

Claims (1)

【特許請求の範囲】 1 長板状の金属基板に間隔を設けてインデツク
ス孔あるいはスリツト孔を設け、該インデツクス
孔あるいはスリツト孔で割り出される多数の区画
内に夫々前記金属基板とは絶縁処理された導電パ
ターンを形成し、各導電パターン上の所望位置に
少くとも半導体素子を固着し且つボンデイング細
線による各導電パターンとの接続を行い、前記半
導体素子を含む回路機能検査を行つた後に前記金
属基板から個別集積回路に分離することを特徴と
する集積回路の多量製造方法。 2 特許請求の範囲第1項に於いて前記区画内に
複数の導電パターンを配置することを特徴とする
集積回路の多量製造方法。 3 特許請求の範囲第1項に於いて前記区画に異
種導電パターンを配置することを特徴とする集積
回路の多量製造方法。 4 特許請求の範囲第1項に於いて前記導電パタ
ーンを極細配線とすることを特徴とする集積回路
の多量製造方法。
[Scope of Claims] 1. Index holes or slit holes are provided at intervals in a long plate-shaped metal substrate, and a number of sections defined by the index holes or slit holes are each insulated from the metal substrate. After forming conductive patterns, fixing at least a semiconductor element at a desired position on each conductive pattern, and connecting with each conductive pattern using a thin bonding wire, and performing a circuit function test including the semiconductor element, the metal substrate is A method for mass manufacturing integrated circuits, characterized by separating the integrated circuits into individual integrated circuits. 2. A method for mass-producing integrated circuits according to claim 1, characterized in that a plurality of conductive patterns are arranged within the section. 3. A method for mass-producing integrated circuits according to claim 1, characterized in that different types of conductive patterns are arranged in the sections. 4. A method for mass-producing integrated circuits according to claim 1, characterized in that the conductive pattern is made of ultra-fine wiring.
JP6515679A 1979-05-25 1979-05-25 Mass producing method of integrated circuit Granted JPS55157245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6515679A JPS55157245A (en) 1979-05-25 1979-05-25 Mass producing method of integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6515679A JPS55157245A (en) 1979-05-25 1979-05-25 Mass producing method of integrated circuit

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP9715985A Division JPS60242630A (en) 1985-05-07 1985-05-07 Mass production of integrated circuit
JP9716085A Division JPS60242631A (en) 1985-05-07 1985-05-07 Mass production of integrated circuit
JP60097161A Division JPS60242632A (en) 1985-05-07 1985-05-07 Mass production of integranted circuit

Publications (2)

Publication Number Publication Date
JPS55157245A JPS55157245A (en) 1980-12-06
JPS6329414B2 true JPS6329414B2 (en) 1988-06-14

Family

ID=13278728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6515679A Granted JPS55157245A (en) 1979-05-25 1979-05-25 Mass producing method of integrated circuit

Country Status (1)

Country Link
JP (1) JPS55157245A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242631A (en) * 1985-05-07 1985-12-02 Sanyo Electric Co Ltd Mass production of integrated circuit
JPS60242632A (en) * 1985-05-07 1985-12-02 Sanyo Electric Co Ltd Mass production of integranted circuit
JPS60242630A (en) * 1985-05-07 1985-12-02 Sanyo Electric Co Ltd Mass production of integrated circuit
EP1398622A1 (en) * 2002-09-03 2004-03-17 SCHLUMBERGER Systèmes Illumination method

Also Published As

Publication number Publication date
JPS55157245A (en) 1980-12-06

Similar Documents

Publication Publication Date Title
US5032542A (en) Method of mass-producing integrated circuit devices using strip lead frame
JPH0922963A (en) Manufacture of board frame for mounting of semiconductor circuit element
GB2026234A (en) Circuit element package having lead patterns
JPS6329414B2 (en)
JPH0226390B2 (en)
JPS60242632A (en) Mass production of integranted circuit
JPH03132061A (en) Mass production of integrated circuits
JPS58159361A (en) Multi-layer hybrid integrated circuit device
JPS60242630A (en) Mass production of integrated circuit
JPH02163956A (en) Mass production of integrated circuit
JPS6155247B2 (en)
JPS61166148A (en) Multilayer hybrid integrated circuit device
JPH02138764A (en) Mass production of integrated circuit
JP2545964B2 (en) Magnetoresistive element
JPH02138763A (en) Mass production of integrated circuit
JPS58134450A (en) Semiconductor device and manufacture thereof
JPH03132062A (en) Mass production of integrated circuits
JPS625339B2 (en)
JPS5924542B2 (en) Method for manufacturing substrates for semiconductor devices
JPS6220694B2 (en)
JPS62188345A (en) Manufacture of hybrid integrated circuit
JPS6035527A (en) Manufacture of semiconductor device and tape to be used thereon
JPS6152977B2 (en)
JPH0152916B2 (en)
JPH03104129A (en) Mass manufacture of integrated circuit