JPS63293419A - Flow sensor - Google Patents

Flow sensor

Info

Publication number
JPS63293419A
JPS63293419A JP62130606A JP13060687A JPS63293419A JP S63293419 A JPS63293419 A JP S63293419A JP 62130606 A JP62130606 A JP 62130606A JP 13060687 A JP13060687 A JP 13060687A JP S63293419 A JPS63293419 A JP S63293419A
Authority
JP
Japan
Prior art keywords
fluid
heating element
flow sensor
temp
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62130606A
Other languages
Japanese (ja)
Inventor
Junichi Tanaka
潤一 田中
Yasuhiko Inami
井波 靖彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62130606A priority Critical patent/JPS63293419A/en
Publication of JPS63293419A publication Critical patent/JPS63293419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain a sensor which has excellent interchangeability and can be reduced in size and mass-produced by integrating a heating element and a fluid temp. detecting element for detecting the temp. of fluid on the same thermal insulting substrate. CONSTITUTION:A thin metallic film having a large coefft. of resistance temp. such as platinum is deposited by a vacuum deposition method, etc., on, for example, a glass substrate as the thermal insulating substrate and is then patterned by an etching technique to form bonding pads 2, the heating element 3 and the fluid temp. detecting element 4. The glass substrate 1 with the heating element 3 and the fluid temp. detecting element 4 as one set is cut to obtain individual sensor element. The resulted sensor element has the structure in which the heating element 3 and the fluid temp. detecting element 4 are disposed at both ends of the glass substrate 1. The size thereof is very small as about several millimeters and the mass production of the sensor elements having uniform characteristics is possible if a so-called batch treatment to array many pieces of the elements on a sheet of the substrate and to manufacture many elements simultaneously is adopted.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、同一熱絶縁基板上に発熱体と流体温度検知要
素を一体化した熱式フローセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a thermal flow sensor in which a heating element and a fluid temperature sensing element are integrated on the same thermally insulating substrate.

〈発明の背景〉 従来より用いられている熱式フローセンサとして、流路
用主管にバイパス流路用の側路管を設けこの釧路管へヒ
ーターを連結し、側路管全加熱した際の流体の流れによ
り側路管の流れ方向に生じる温度分布力Sら流目を検知
する方式を用いた流量計がある。この流量計は精度が良
く、半導体ガスの流量コントローラーとしてなど広く用
いられているが、構造上小型化や量産に不向きで、高価
であるため用途が限定されてしまうという欠点がある。
<Background of the Invention> As a conventionally used thermal flow sensor, a side pipe for a bypass flow path is provided in the main pipe for the flow path, a heater is connected to this Kushiro pipe, and the fluid is heated when the side pipe is fully heated. There is a flow meter that uses a method of detecting the flow line from the temperature distribution force S generated in the flow direction of the side pipe due to the flow. This flowmeter has good accuracy and is widely used as a flow rate controller for semiconductor gases, but its structure makes it unsuitable for miniaturization and mass production, and its high cost limits its uses.

また他の熱式フローセンサとして、流体中に発熱体と流
体温度検知要素を設け、上記発熱体を加熱し発熱体から
周囲の流体に伝達される熱量の変化を利用して流速を測
定する方式を用いた70−センサもある。この方式では
流体温度検知要素により流体の温度を検知し、流体と発
熱体の温度差を一定に保つことにより、流体温度の影響
を補償することができhつ発熱体の熱容量に関係なく迅
速な応答を得ることができる。また上記温度差を大きく
設定することにより、フローセンサの出力を増大させる
ことも可能となる。この方式を用いたフローセンサには
従来シリコンチップ上に形成された発熱用トランジスタ
と流体温度検知用トランジスタを利用して構成されたフ
ローセンサがある。この70−センサはシリコンプロセ
ス技[−利用しているので量産性に優れるが、反面素子
間の温度特性のバラツキが大きく、また発熱温度を高く
設定することができないなどの欠点を有している。さら
に上記方式で、発熱体と流体温度検知要素に白金やタン
グステンなどの抵抗線を用いたものがあるが、抵抗値が
小さく素子間のバラツキも大きいので発熱温度の制御性
や温度測定の精度が悪くなるのみならず細線を用いるた
の加工が困難で量産性に欠けるなどの欠点全有する。
Another thermal flow sensor is a method in which a heating element and a fluid temperature detection element are provided in the fluid, the heating element is heated, and the flow velocity is measured by utilizing changes in the amount of heat transferred from the heating element to the surrounding fluid. There is also a 70-sensor using In this method, the temperature of the fluid is detected by a fluid temperature sensing element, and by keeping the temperature difference between the fluid and the heating element constant, the influence of the fluid temperature can be compensated for. You can get a response. Further, by setting the temperature difference to be large, it is also possible to increase the output of the flow sensor. A conventional flow sensor using this method is a flow sensor configured using a heat generation transistor and a fluid temperature detection transistor formed on a silicon chip. This 70-sensor uses silicon process technology, so it is excellent in mass production, but on the other hand, it has drawbacks such as large variations in temperature characteristics between elements and the inability to set the heat generation temperature high. . Furthermore, some of the above methods use resistance wires made of platinum, tungsten, etc. for the heating element and fluid temperature sensing element, but the resistance value is small and the variation between elements is large, making it difficult to control the heating temperature and the accuracy of temperature measurement. It has all the disadvantages such as not only poor performance but also difficulty in processing due to the use of thin wire and lack of mass productivity.

抵抗線の代わりに絶縁基板上に薄膜化された発熱体及び
流体温度検知要素を用いた熱膜式70−センサは小型化
が可能で、一枚の基板内に多数の素子を並べて作製でき
るので量産性に優れバラツキも小さい、など多くの長所
を有している。ところが、流量計測を行なうためには、
流体温度検知要素によって流体温度を検知する必要があ
り、温度検知を精度良く行うためには、流体温度検知要
素は発熱体と熱的に絶縁されている必要がある。
Thermal film type 70 sensor, which uses a thin heating element and fluid temperature sensing element on an insulated substrate instead of a resistance wire, can be miniaturized and can be fabricated by arranging many elements on a single substrate. It has many advantages such as excellent mass production and small variation. However, in order to measure the flow rate,
The fluid temperature must be detected by the fluid temperature sensing element, and in order to accurately detect the temperature, the fluid temperature sensing element must be thermally insulated from the heating element.

従って従来の熱式フローセンサは発熱体と流体温度検知
要素の双方が別々に支持された構造にせざるを得ないと
いう制約が生じ、寸法が大きい、量産性が悪いなどの欠
点を有していた。発熱体と流体温度検知要素の双方を一
体化するためには熱伝導の小さい材料を用いて発熱体の
熱が流体温度検知要素まで伝わらないようにしなければ
ならない。
Therefore, conventional thermal flow sensors are constrained by having to have a structure in which both the heating element and the fluid temperature detection element are supported separately, and have drawbacks such as large dimensions and poor mass production. . In order to integrate both the heating element and the fluid temperature sensing element, a material with low thermal conductivity must be used to prevent the heat of the heating element from being transmitted to the fluid temperature sensing element.

〈発明の目的〉 第3図は発熱体からの距離が[、a−だけ離れ全点での
温度を求めた結果である。ただし、発熱体の温度は40
℃、流体の温度は25℃、基板の熱伝導率にはそれぞれ
に=2.0.40.150W/mKである。この結果か
ら、基板の熱伝導率kが2、0 W/m K以下であれ
ば発熱体力為ら伝わってくる熱の影響を受けなくなる距
離が小さくなることがわかる。
<Object of the Invention> Figure 3 shows the results of determining the temperatures at all points separated by [, a-] from the heating element. However, the temperature of the heating element is 40
℃, the temperature of the fluid is 25 ℃, and the thermal conductivity of the substrate is 2.0.40.150 W/mK, respectively. From this result, it can be seen that if the thermal conductivity k of the substrate is 2.0 W/m K or less, the distance over which the substrate is not affected by the heat transmitted from the force of the heating body becomes small.

本発明は、熱伝導率の小さい熱絶縁基板を利用すること
によって、発熱体と流体温度検知要素とを熱的に絶縁す
ると同時に双方を同一素子内に一体化して配置すること
によって、互換性に優れ、小型化、量産化が可能なフロ
ーセンサを提供すること全目的とするものである。
The present invention utilizes a thermally insulating substrate with low thermal conductivity to thermally insulate the heating element and the fluid temperature sensing element, and at the same time, by integrating and arranging both in the same element, compatibility is achieved. The overall purpose of this invention is to provide a flow sensor that is superior in size, can be miniaturized, and can be mass-produced.

〈実施例〉 以下、本発明を実施例に従って詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail according to examples.

第1図は本発明の一実施例を示すフローセンサの模式平
面図である。熱絶縁基板として例えばガラス基板1上に
白金等の抵抗温度係数の大きな金属薄膜を真空蒸着法、
スパッタリング法或はプラズマCVD法等により堆積さ
せた後、エツチング技術によりパターン化してポンディ
ングパッド2゜発熱体3及び流体温度検知要素4を形成
する。流体温度検知要素1−を流体の温度を正確に検知
することができるように、発熱体3と必要な距離だけ隔
てて熱的に絶縁された状態で配置される。次に発熱体3
及び流体温度検知要素4を1組としてガラス基板1を切
断し、個々のセンサ素子とする。
FIG. 1 is a schematic plan view of a flow sensor showing one embodiment of the present invention. As a thermally insulating substrate, for example, a thin metal film having a large resistance temperature coefficient such as platinum is deposited on a glass substrate 1 using a vacuum evaporation method.
After depositing by a sputtering method or a plasma CVD method, it is patterned by an etching technique to form a bonding pad 2, a heating element 3, and a fluid temperature sensing element 4. The fluid temperature sensing element 1- is arranged in a thermally insulated state and separated from the heating element 3 by a necessary distance so that the temperature of the fluid can be accurately detected. Next, heating element 3
The glass substrate 1 is cut into a set of the and fluid temperature sensing elements 4 to form individual sensor elements.

得られ念センサ素子はガラス基板10両端に発熱体3と
流体温度検知要素4とが配置された構造となる。またそ
の大きさは数ミリ程度と微小であり一枚の基板上に多数
0並べて同時に作製する、いわゆるバッチ処理を行うこ
とにより特性の均一なセンサ素子を量産することができ
る。なお基板1の材料としてはガラス以外に、熱伝導率
が2W/mK以下であるような材料例えばセラミック、
高絶縁性有機材1石英或はマイカ等を用いてもよい。ま
た、金属薄膜の材料としては白金以外に抵抗温度係数の
大きい材料例えばニッケル或はニッケル合金等の金属材
料を用いてもよい。金属1[の代わりにトランジスタ、
ダイオード、サーミスタ或は半導体等を用いることも可
能である。
The resulting mental sensor element has a structure in which a heating element 3 and a fluid temperature sensing element 4 are arranged at both ends of a glass substrate 10. Furthermore, the size of the sensor elements is minute, on the order of several millimeters, and sensor elements with uniform characteristics can be mass-produced by performing so-called batch processing, in which a large number of sensor elements are simultaneously fabricated on one substrate. In addition to glass, the material of the substrate 1 may be a material having a thermal conductivity of 2 W/mK or less, such as ceramic,
Highly insulating organic material 1 Quartz, mica, etc. may be used. Further, as the material of the metal thin film, other than platinum, a metal material having a large resistance temperature coefficient, such as nickel or a nickel alloy, may be used. Transistor instead of metal 1 [,
It is also possible to use a diode, a thermistor, a semiconductor, or the like.

このようにして作製した発熱体3と流体温度検知要素4
を用いたフローセンサの要部模式図を第2図に示す。流
体が通過する流路7内に上記製法により作製され之1対
の流体温度検知要素4と発熱体3が設置されることとな
る。流体温度検知要素4および発熱体3ばそれぞれ他の
電気抵抗素子5.6と連結されており、ブリッジを構成
している。電気抵抗素子5.6の中間接続点はアースさ
れている。これらのブリッジはブリッジ抵抗の差電圧を
増幅器8で差動増幅し、流体温度検知要素4と発熱体3
にエミッタ端子が共通接続されるスイッチング用トラン
ジスタ9のベース電位を制御してトランジスタ9を駆動
するフィードパ・ンク回路に接続されている。尚lOは
トランジスタ9のコレクタ端子と電流源を接続する入力
端子である。
The heating element 3 and fluid temperature sensing element 4 manufactured in this way
Fig. 2 shows a schematic diagram of the main parts of a flow sensor using a flow sensor. A pair of fluid temperature sensing elements 4 and a heating element 3 manufactured by the above manufacturing method are installed in the flow path 7 through which the fluid passes. The fluid temperature sensing element 4 and the heating element 3 are each connected to another electrical resistance element 5.6, forming a bridge. The intermediate connection point of the electrical resistance element 5.6 is grounded. These bridges differentially amplify the voltage difference between the bridge resistances with an amplifier 8, and connect the fluid temperature sensing element 4 and the heating element 3.
The transistors 9 and 9 are connected to a feed punch circuit that drives the transistors 9 by controlling the base potential of the switching transistors 9 whose emitter terminals are commonly connected. Note that lO is an input terminal connecting the collector terminal of the transistor 9 and the current source.

以下、上記フローセンサの駆動原理について説明する。The driving principle of the flow sensor will be explained below.

トランジスタ9をオンにして入力端子lOより供給され
る電流を発熱体3に通電し、発熱させる。流体の速度が
速い場合には、発熱体3から大量の熱が流体に奪われる
。逆に、流速が遅い場合には発熱体3から奪われる熱量
も少ない。
The transistor 9 is turned on and the current supplied from the input terminal IO is applied to the heating element 3 to generate heat. When the velocity of the fluid is high, a large amount of heat is taken away from the heating element 3 by the fluid. Conversely, when the flow rate is slow, the amount of heat removed from the heating element 3 is also small.

従って、流体温度検知要素4で流体の温度を求めてこの
温度差に一定に保つようにフィードバック回路を介して
発熱体3に流す電流値を制御することにより電流値の変
化に対応して流体の流速(流量)が求められる。発熱体
3の発熱は流体温度検知要素4の流体測温に影響を与え
ないため、流体温度検知要素4の測温動作は非常に正確
なものとなる。
Therefore, by determining the temperature of the fluid with the fluid temperature detection element 4 and controlling the current value flowing through the heating element 3 via the feedback circuit so as to keep this temperature difference constant, the temperature of the fluid is adjusted in response to changes in the current value. The flow velocity (flow rate) is determined. Since the heat generated by the heating element 3 does not affect the temperature measurement of the fluid by the fluid temperature detection element 4, the temperature measurement operation of the fluid temperature detection element 4 becomes very accurate.

〈発明の効果〉 以上詳述したように、本発明の熱式フローセンサは次の
ような実用上極めて有利な利点を有する。
<Effects of the Invention> As detailed above, the thermal flow sensor of the present invention has the following practical advantages.

(1)熱伝導率の小さい基板を用いているので熱絶縁効
果に優れ、測定精度が向上する。
(1) Since a substrate with low thermal conductivity is used, the thermal insulation effect is excellent and measurement accuracy is improved.

(2)発熱体と流体温度検知要素を同一素子内に一体化
して配置することができ、小型化が達成される。
(2) The heating element and the fluid temperature sensing element can be integrated and arranged in the same element, achieving miniaturization.

(3)  低消費電力化が可能である。(3) Lower power consumption is possible.

(4)  パッチ処理で作製されるため、量産性、互換
性に優れる。
(4) Since it is manufactured by patch processing, it has excellent mass productivity and compatibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すフローセンサの模式平
面図である。第2図は、第1図に示すフローセンサの動
作説明に供する要部模式構成図である。第3図は熱伝導
率の異なる材料の温度分布を示す説明図である。 1・・・熱絶縁基板、2・・・ポンプイングツf゛ノド
、3・・・発熱体、4・・・流体温度検知要素、5.6
・・・固定抵抗、7・・・流路、8・・・オペアンプ、
9・・・トランジスタ、10・・・入力端子。 代理人 弁理士 杉 山 毅 至(他1名)第1図
FIG. 1 is a schematic plan view of a flow sensor showing one embodiment of the present invention. FIG. 2 is a schematic configuration diagram of main parts for explaining the operation of the flow sensor shown in FIG. 1. FIG. FIG. 3 is an explanatory diagram showing the temperature distribution of materials having different thermal conductivities. DESCRIPTION OF SYMBOLS 1... Heat insulating board, 2... Pumping tube, 3... Heating element, 4... Fluid temperature detection element, 5.6
... fixed resistance, 7 ... flow path, 8 ... operational amplifier,
9...Transistor, 10...Input terminal. Agent Patent attorney Takeshi Sugiyama (and 1 other person) Figure 1

Claims (1)

【特許請求の範囲】 1、発熱体から流体によって奪われる熱量に基づいて流
速を求めるフローセンサにおいて、同一熱絶縁基板上に
発熱体及び流体の温度を検知する流体温度検知要素を一
体化したことを特徴とするフローセンサ。 2、前記熱絶縁基板として熱伝導率が2W/m・K以下
の材料を用いた特許請求の範囲第1項記載のフローセン
サ。 3、前記熱絶縁基板の材料としてガラス、石英或はマイ
カを用いた特許請求の範囲第2項記載のフローセンサ。 4、前記発熱体として電気抵抗体を用いた特許請求の範
囲第1項記載のフローセンサ。 5、前記流体温度検知要素として電気抵抗体を用いた特
許請求の範囲第1項記載のフローセンサ。 6、前記発熱体として白金、ニッケル或はニッケル合金
を用いた特許請求の範囲第4項記載のフローセンサ。 7、前記流体温度検知要素として白金、ニッケル或はニ
ッケル合金を用いた特許請求の範囲第5項記載のフロー
センサ。
[Claims] 1. In a flow sensor that determines the flow velocity based on the amount of heat removed by the fluid from the heating element, a fluid temperature detection element that detects the temperature of the heating element and the fluid is integrated on the same thermally insulating substrate. A flow sensor featuring: 2. The flow sensor according to claim 1, wherein the thermally insulating substrate is made of a material having a thermal conductivity of 2 W/m·K or less. 3. The flow sensor according to claim 2, wherein glass, quartz, or mica is used as the material of the thermally insulating substrate. 4. The flow sensor according to claim 1, wherein an electric resistor is used as the heating element. 5. The flow sensor according to claim 1, wherein an electric resistor is used as the fluid temperature sensing element. 6. The flow sensor according to claim 4, wherein platinum, nickel, or a nickel alloy is used as the heating element. 7. The flow sensor according to claim 5, wherein platinum, nickel, or a nickel alloy is used as the fluid temperature sensing element.
JP62130606A 1987-05-27 1987-05-27 Flow sensor Pending JPS63293419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62130606A JPS63293419A (en) 1987-05-27 1987-05-27 Flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62130606A JPS63293419A (en) 1987-05-27 1987-05-27 Flow sensor

Publications (1)

Publication Number Publication Date
JPS63293419A true JPS63293419A (en) 1988-11-30

Family

ID=15038234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130606A Pending JPS63293419A (en) 1987-05-27 1987-05-27 Flow sensor

Country Status (1)

Country Link
JP (1) JPS63293419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528496U (en) * 1991-09-30 1993-04-16 野田通信株式会社 Injection disconnection detector for chlorine injection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528496U (en) * 1991-09-30 1993-04-16 野田通信株式会社 Injection disconnection detector for chlorine injection

Similar Documents

Publication Publication Date Title
US5108193A (en) Thermal flow sensor
JP2578365B2 (en) Fluid flow detector
JPS63243885A (en) Flow velocity detector
US4733559A (en) Thermal fluid flow sensing method and apparatus for sensing flow over a wide range of flow rates
CN104482971B (en) A kind of thermal flow rate sensor based on MEMS technology
EP0353996B1 (en) A flow sensor
JP3324855B2 (en) Mass flow sensor
US4561303A (en) Mass airflow sensor with backflow detection
JPH02259527A (en) Flow rate detection sensor for fluid
GB2177212A (en) Flow sensor
JP5765609B2 (en) Electrical device, integrated device, electronic circuit and temperature calibration device
JPS63293419A (en) Flow sensor
JPS62203019A (en) Flow sensor
JP3345695B2 (en) Acceleration sensor
JPS6243522A (en) Flow sensor
JP2619735B2 (en) Heat flow sensor
JP2003106884A (en) Airflow sensor
CN118102842B (en) Manufacturing process of self-cleaning flow chip
JPH0584867B2 (en)
JPH11344369A (en) Flow-rate detecting element and flow-rate sensor
JPH04235338A (en) Humidity sensor
KR100266408B1 (en) Fluid sensor and manufacturing method thereof
JPS63135866A (en) Flow sensor
JPS6244627A (en) Flow rate sensor
JPH0222516A (en) Flow sensor