JPS63292721A - Superconductor equipment - Google Patents

Superconductor equipment

Info

Publication number
JPS63292721A
JPS63292721A JP12755287A JP12755287A JPS63292721A JP S63292721 A JPS63292721 A JP S63292721A JP 12755287 A JP12755287 A JP 12755287A JP 12755287 A JP12755287 A JP 12755287A JP S63292721 A JPS63292721 A JP S63292721A
Authority
JP
Japan
Prior art keywords
squid
magnetic field
signal
jump signal
jump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12755287A
Other languages
Japanese (ja)
Inventor
Osamu Yamazaki
山崎 攻
Hidetaka Tono
秀隆 東野
Kentaro Setsune
瀬恒 謙太郎
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12755287A priority Critical patent/JPS63292721A/en
Publication of JPS63292721A publication Critical patent/JPS63292721A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain the operation with high accuracy, high stability at ultrahigh speed by counting while applying or subtracting by one count by a counting means depending on the polarity of a jump signal generated by a squid. CONSTITUTION:A current flowing to a magnetic field generating coil 12 is decided by an input signal source 10 and the intensity of magnetic field in the squid 20. is decided. The squid 20, at every reaching an integral number of multiple of magnetic flux quantum, generate a jump signal, it is detected by a jump signal detection coil 30, one of signals amplified by a detection signal amplifier 31 is fed to an adder input terminal 41 of an up-down counter 40 as it is, and the other is fed to a subtraction input terminal 42 via an inverter 32. When the output of the amplifier 31 is a positive pulse, the counter 40 is incremented by one and when the output is a negative pulse, the counter 40 is decremented by one, and the change in the input signal is observed at a counter output treminal 44 continuously. Thus, the titled equipment acts like an AD converter and no circuit component such as an integration device or a comparator is required, and the stability and high speed operating characteris tic are remarkably improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導現象を応用した装置に関するものであり
、特に高精度の信号変換機能を有する装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a device that applies the superconducting phenomenon, and particularly to a device that has a highly accurate signal conversion function.

従来の技術 超電導現象を示すリングをジョセフノン接合で接続した
スクイドは、リングの内をつきぬける磁束の強度がある
磁束量子の整数倍になるごとに跳:7一 躍信号を発生するととが知られている。この分野に関す
る従来技術は電気学会クライオエレクトロニクス常置専
門委員余線の「ジョセフソン効果(基礎と応用)」電気
学会発行コロナ社発売(昭和53年)に体系的に詳細に
記述されている。
Conventional technology It is known that a SQUID, in which rings exhibiting a superconducting phenomenon are connected by a Joseph nonjunction, generates a jump signal every time the strength of the magnetic flux passing through the ring becomes an integer multiple of a certain magnetic flux quantum. ing. The prior art related to this field is systematically described in detail in ``Josephson Effect (Basics and Applications)'' written by IEEJ Permanent Specialist Committee on Cryoelectronics, published by IEEJ, published by Corona Publishing (1978).

最近、音声信号や画像信号といったアナログ信号をディ
ジタル信号化して処理、記録する技術が急速に進展して
きている。アナログ信号にディジタル信号にする、即ち
AD変換器の場合は、積分器や比較器等を用いたり、多
数の抵抗アレイを用いたDA変換器の信号と比較し帰還
する方式などが知られている。AD変換器とDA変換器
は帰還ループのかけ方により、どちらでも使えるので、
ここではAD変換器の場合について説明する。現状では
使用する積分器、比較器、抵抗アレイのばらつきと、温
度変動、経年変化、帰還ループの時間おぐれ等が問題と
なり、高精度かつ高速度の変換を実現することは困難と
されている。スクイドに印加する磁界強度によりある磁
束量子に達するごとに跳躍信号が発生することは既に述
べた。この信号を磁界の計測に利用した例は前掲の「ジ
ョセフソン効果(基礎と応用)」の3.2節に述べられ
ている。この計測は主として地磁気など変化の遅い信号
用に研究されてきたのであって、磁束量子の間をアナロ
グ的に使用し、磁束量子に達した回数を計数しているが
、高低いずれから量子の所に達したかを量子の間のアナ
ログ的変化から決めようとするため、回路構成が複雑と
なり、あまシ高速性はなかった。
2. Description of the Related Art Recently, technology for converting analog signals such as audio signals and image signals into digital signals, processing and recording them has been rapidly progressing. In the case of converting an analog signal into a digital signal, that is, in the case of an AD converter, there are known methods such as using an integrator or comparator, or using a large number of resistor arrays to compare the signal with the signal from a DA converter and then feed it back. . Either AD converter or DA converter can be used depending on how the feedback loop is applied.
Here, the case of an AD converter will be explained. Currently, it is difficult to achieve high-accuracy and high-speed conversion due to problems such as variations in the integrators, comparators, and resistor arrays used, as well as temperature fluctuations, aging, and feedback loop time delays. . It has already been mentioned that a jump signal is generated every time the magnetic field intensity applied to the SQUID reaches a certain magnetic flux quantum. An example of using this signal to measure a magnetic field is described in Section 3.2 of "Josephson Effect (Basics and Applications)" above. This measurement has been mainly studied for slow-changing signals such as geomagnetism, and uses the magnetic flux quantum interval in an analog manner to count the number of times the magnetic flux quantum is reached. Since the attempt was made to determine whether or not this had been reached based on analog changes between quanta, the circuit configuration was complex and the speed was not very high.

発明が解決しようとする問題点 従来の装置では積分器、比較器、多数の抵抗アレイ等の
ばらつき温度変動、踊年変化などの不安定要因が存在し
、動作も遅く、高精度、高安定で、かつ超高速度で動作
しないという問題があった。
Problems to be Solved by the Invention In conventional devices, there are instability factors such as variations in temperature and yearly changes in integrators, comparators, and multiple resistor arrays, etc., and operation is slow, with high accuracy and high stability. , and did not operate at ultra-high speeds.

問題点を解決するための手段 本発明は、スクイドに磁界を印加する手段、このスクイ
ドの発生する跳躍信号を検出する手段と、ディジタル加
減算計数手段とを有しており、跳躍信号の極性によシ、
上記計数手段において1カウント加算または減算しつつ
計数することにより実施される。
Means for Solving the Problems The present invention includes means for applying a magnetic field to the SQUID, means for detecting a jump signal generated by the SQUID, and digital addition/subtraction counting means. C,
This is carried out by counting while adding or subtracting one count in the counting means.

作   用 入力信号を例えばコイルに接続すると入力信号に比例し
だ磁界が発生する。この磁界をスクイドに印加すると、
スクイドを通る磁束が、単位磁束量子の整数倍に達する
ごとに跳躍信号が発生する。
When an action input signal is connected to a coil, for example, a magnetic field is generated proportional to the input signal. When this magnetic field is applied to the SQUID,
A jump signal is generated each time the magnetic flux passing through the SQUID reaches an integer multiple of a unit flux quantum.

この跳躍信号はパルス状であるが、実験で詳しく調べて
みると、印加する磁界が増加しつつあるとき発生するバ
ノμは正極性、減少しつつある場合は負パルスが発生し
ていることがわかった。ここで正パルスの場合には1カ
ウント加算し、負パルスの場合1カウント減算していく
と、カウンタの状態は入力信号のAD変換に対応する。
This jump signal is in the form of a pulse, but when examined in detail through experiments, it was found that the Bano μ generated when the applied magnetic field is increasing is of positive polarity, and when it is decreasing, a negative pulse is generated. I understand. Here, when a positive pulse is added by one count and a negative pulse is subtracted by one count, the state of the counter corresponds to AD conversion of the input signal.

実施例 第1図は本発明の一実施例の略構成図である。Example FIG. 1 is a schematic diagram of an embodiment of the present invention.

入力言号源1oとその内部抵抗11によシ磁界発生用コ
イル12を流れる電流が決まり、スクイド20における
磁界の強度が決定する。実施例では入力信号源として可
聴周波数帯の発振器、内部抵[fi50オーム、コイル
はワンターンコイルとした。スクイド20は鉛の膜で作
成し、ジョセフソン接合部は酸化鉛として構咬した。ス
クイドのパターンは外来磁気ノイズをさけるため、よく
使用されるメガネ型とした。スクイド2oでは磁束量子
(φ =2×1O−15Wb)の整数倍に達するごとに
跳躍信号を発生した。これを跳躍信号検出コイル30で
検出し、跳躍信号のパルスのみを増幅するためコンデン
サ33で直流分をカットし、検出信号増幅器31で、ア
ップダウンカウンタ4゜を動作させるレベルまで増幅し
た。増幅した信号はふたつに分岐し、一方はそのまま加
算入力端子41へ、他方はインバータ32を介して減算
入力端子42へ接続したtこのアップダウンカウンタ4
0は正パルスで動作するので、検出信号増幅器31の出
力が正パルスの場合に1カウント増え、負パルスの時に
1カウント減る。最初にカウンタをリセットしておけば
、その後の入力信号の変化は連続的にカウンタ出力端子
44で観測できる。
The input word source 1o and its internal resistance 11 determine the current flowing through the magnetic field generating coil 12, which determines the strength of the magnetic field in the SQUID 20. In the embodiment, an oscillator in an audio frequency band was used as an input signal source, an internal resistance [fi 50 ohm] was used, and a one-turn coil was used as the coil. SQUID 20 was made of lead film, and the Josephson junction was made of lead oxide. In order to avoid external magnetic noise, the SQUID pattern was made into the commonly used glasses shape. In SQUID 2o, a jump signal was generated every time an integer multiple of the magnetic flux quantum (φ = 2×1O−15 Wb) was reached. This was detected by a jump signal detection coil 30, the DC component was cut by a capacitor 33 in order to amplify only the pulse of the jump signal, and the detection signal amplifier 31 amplified it to a level that operated an up/down counter 4°. The amplified signal is branched into two, one directly connected to the addition input terminal 41 and the other connected to the subtraction input terminal 42 via the inverter 32.
Since 0 operates with a positive pulse, when the output of the detection signal amplifier 31 is a positive pulse, the count increases by 1, and when the output is a negative pulse, the count decreases by 1. If the counter is reset first, subsequent changes in the input signal can be observed continuously at the counter output terminal 44.

リセットはリセノ)端子43で行う。外来の直流的磁界
はリセットをすれば、出力はそこからの差として出てく
るため極めて便利である。
Resetting is performed using the reset terminal 43. If you reset the external DC magnetic field, the output will come out as a difference from it, which is extremely convenient.

この装置はこのままAD変換器として機能し、積分器や
比較器あるいは抵抗アレイといった回路要素が不要であ
シ、動作の安定性、高速性が著しく向上した。また、こ
の装置を使用してI)A変換器を構成することができる
。この前金比較器を必要とするが、ディジタル比較器で
あるため、安定性、高速性はすこしもそこなわれない。
This device functions as an AD converter as is, and does not require circuit elements such as integrators, comparators, or resistor arrays, and has significantly improved operational stability and high speed. This device can also be used to construct an I)A converter. This advance comparator is required, but since it is a digital comparator, stability and high speed are not compromised in the slightest.

第2図は本発明のもうひとつの実施例の略構成図である
。説明を簡単にするため、第1図の実施例と共通の所は
同じ番号を付し、説明の重複をさけた。
FIG. 2 is a schematic diagram of another embodiment of the present invention. In order to simplify the explanation, parts common to the embodiment shown in FIG. 1 are given the same numbers to avoid duplication of explanation.

本、実施例では入力信号によって跳躍信号を発生させる
ことと、アップダウンカウンタで跳躍信号の数を計数す
ることは第1図の実施例と同様である。本実施例では新
しく、スクイドによる極性判断機能をもたせた所に特徴
がある。加算信号用のスクイド10oに、セフイド20
で発生した跳躍信号を跳躍信号磁界発生コイル101で
跳躍信号に対応したパルス磁界を発生させる。ここでス
クイド10oに対して、バイアス磁界発生コイル102
で、正側で磁束量子よりわずかに弱くバイアスをかけて
おくと、弱い正の跳躍信号にも感度よく応答し、重畳し
た磁束の強さが磁束量子をこえると、スクイド100も
跳躍信号を発生する。この跳躍信号は加算信号検出コイ
ル103で検出し、アンプダウンカウンタの加算入力端
子41に印加した。負側の場合も同様にスクイド200
を使用し、バイアス磁界発生コイル202で負側の磁気
量子よりわずかに弱くバイアスを加えておき、スクイド
2oで発生した跳躍信号を跳躍信号磁界発生コイル20
1で印加した。スクイド200で発生した跳躍信号は減
算信号検出コイル203で検出し、減算入力端子42へ
導いた。スクイド200の跳躍信号は負のパルスとなる
ので、減算信号検出コイル203の極性は加算信号検出
コイル103と逆にしている。
In this embodiment, generating a jump signal based on an input signal and counting the number of jump signals using an up/down counter are the same as in the embodiment shown in FIG. A new feature of this embodiment is that it has a polarity judgment function using SQUID. Cepheid 20 is added to Squid 10o for the addition signal.
A pulse magnetic field corresponding to the jump signal is generated by the jump signal magnetic field generating coil 101. Here, for the SQUID 10o, the bias magnetic field generating coil 102
If you apply a bias slightly weaker than the magnetic flux quantum on the positive side, it will respond sensitively to weak positive jump signals, and if the strength of the superimposed magnetic flux exceeds the magnetic flux quantum, SQUID 100 will also generate a jump signal. do. This jump signal was detected by the addition signal detection coil 103 and applied to the addition input terminal 41 of the amplifier down counter. Similarly, in the case of negative side, SQUID 200
The bias magnetic field generating coil 202 applies a bias slightly weaker than the negative side magnetic quantum, and the jump signal generated by the SQUID 2o is sent to the jump signal magnetic field generating coil 20.
It was applied at 1. The jump signal generated by the SQUID 200 is detected by the subtraction signal detection coil 203 and guided to the subtraction input terminal 42. Since the jump signal of the SQUID 200 is a negative pulse, the polarity of the subtraction signal detection coil 203 is opposite to that of the addition signal detection coil 103.

また、バイアス磁界は、正負それぞれの磁束量子よりわ
ずかに弱い所にセットするのが望ましく、感度も高くな
るので、極性を逆に直列に接続し、まとめてバイアス磁
界用端子300からノくイアスミ流と導入した。本実施
例の構成ではスクイドの′ 特徴が良く生かされておシ
、量子化がひとつのスクイド10oによシ行われるため
、量子化が均一で再現性が良く、2つのスクイド1oO
および200で、それぞれ正負の跳躍信号を判定、増幅
して加算および減算の跳躍信号パルスにするため、回路
が極めて簡単であシ、安定性が高く、スクイドのみであ
るから超高速で動作する。
In addition, it is desirable to set the bias magnetic field at a location slightly weaker than the positive and negative magnetic flux quanta, and the sensitivity will be high. was introduced. The configuration of this embodiment makes good use of the characteristics of the SQUID, and since quantization is performed by one SQUID 10o, the quantization is uniform and has good reproducibility.
and 200, the positive and negative jump signals are determined and amplified into addition and subtraction jump signal pulses, so the circuit is extremely simple, highly stable, and operates at extremely high speed because it only includes a SQUID.

なおスクイドの超電導材料として鉛の場合を示したが、
イツトリウム・バリウム・銅の複合酸化物を用いると液
体窒素温度で素子の運転ができ、便利である。またアッ
プダウンカウンタもジョセフソン素子で構成すること、
も可能であり、全超電導の装置とすることによシ、低消
費電力で、超高速の装置が構成できる。
Although we have shown the case of lead as the superconducting material for SQUID,
Using a composite oxide of yttrium, barium, and copper is convenient because the device can be operated at liquid nitrogen temperature. In addition, the up/down counter must also be composed of Josephson elements.
By making the device entirely superconducting, it is possible to construct an ultrahigh-speed device with low power consumption.

発明の効果 本発明はこれまでのAD変換器やDA変換器で問題とな
っていた不安定要因、即ち積分器、比較器環、抵抗アレ
イ等を全く使用しない、新しい装置を提供するとともに
、超電導の超高速性、低消費電力性により装置特性の向
上における効果は櫃めて大きい。
Effects of the Invention The present invention provides a new device that does not use any instability factors that have caused problems in conventional AD converters and DA converters, such as integrators, comparator rings, and resistor arrays. The ultra-high speed and low power consumption of this system have a significant effect on improving device characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の実施例の略構成
図である。 10・・・・・・入力信号源、11・・・川内部抵抗、
12・・・・・・磁界発生コイル、2o、100.20
0・旧・・スクイド、3o・・・・・・跳躍信号検出コ
イル、31・・・・・・検出信号増幅器、32・・・・
・・インバータ、33・・・・・・コンデンサ、40・
・・・・・アップダウンカウンタ、41・・・・・・加
算入力端子、42・・・・・・減算入力端子、43・・
・・・・リセット端子、44・・・・・・カウンタ出力
端子、101,201・・・・・・跳躍信号磁界発生コ
イル。 102.202・・・・・・バイアス磁界発生コイル、
103・・・・・・加算信号検出コイル、203・・・
・・・減算信号検出コイル、300・・・・・・バイア
ス磁界用端子。
FIGS. 1 and 2 are schematic diagrams of embodiments of the present invention, respectively. 10...Input signal source, 11...Internal resistance,
12...Magnetic field generating coil, 2o, 100.20
0. Old... Squid, 3o... Jumping signal detection coil, 31... Detection signal amplifier, 32...
・・Inverter, 33・・Capacitor, 40・
...Up/down counter, 41...Addition input terminal, 42...Subtraction input terminal, 43...
. . . Reset terminal, 44 . . . Counter output terminal, 101, 201 . . . Jump signal magnetic field generation coil. 102.202...Bias magnetic field generation coil,
103... Addition signal detection coil, 203...
... Subtraction signal detection coil, 300 ... Bias magnetic field terminal.

Claims (3)

【特許請求の範囲】[Claims] (1)スクイドに磁界を印加する手段と、上記スクイド
の発生する跳躍信号を検出する手段と、ディジタル加減
算計数手段とを有し、上記の検出した跳躍信号のひとつ
の信号ごとにその極性に従いある単位量子を上記ディジ
タル加減算器に加算または減算する機能を持つことを特
徴とする超電導装置。
(1) It has means for applying a magnetic field to the SQUID, means for detecting the jump signal generated by the SQUID, and digital addition/subtraction counting means, and the polarity is determined for each of the detected jump signals. A superconducting device characterized by having a function of adding or subtracting a unit quantum to or from the digital adder/subtractor.
(2)さらに別のスクイドを用い、単位磁束量子未満の
バイアス磁界とともに、検出した跳躍信号に対応した磁
界を重畳して上記スクイドに印加する構成とし、上記の
重畳した磁界が、それぞれの磁界が同極性の場合にのみ
1磁束量子以上かつ2磁束量子未満に設定し、上記スク
イドで発生する跳躍信号を極性検出に用いたことを特徴
とする特許請求の範囲第1項記載の超電導装置。
(2) Using another SQUID, a bias magnetic field of less than a unit flux quantum and a magnetic field corresponding to the detected jump signal are superimposed and applied to the SQUID, and the superimposed magnetic field is 2. The superconducting device according to claim 1, wherein only in the case of the same polarity, the magnetic flux quantum is set to 1 or more and less than 2 magnetic flux quanta, and a jump signal generated by the SQUID is used for polarity detection.
(3)第1のスクイドに磁界を印加する手段と、上記第
1のスクイドの発生する跳躍信号を検出する手段と、デ
ィジタル加減算計数手段とを有し、別の第2のスクイド
を用い、単位磁束量子未満のバイアス磁界とともに、上
記第1のスクイドで検出した跳躍信号に対応した磁界を
重畳して上記第2のスクイドに印加する構成とし、上記
の重畳した磁界が、それぞれの磁界が同極性の場合にの
み1磁束量子以上かつ2磁束量子未満に設定し、上記第
2のスクイドで発生する跳躍信号を上記ディジタル加減
算器にて加算または減算することを特徴とする超電導装
置。
(3) It has a means for applying a magnetic field to the first SQUID, a means for detecting a jumping signal generated by the first SQUID, and a digital addition/subtraction counting means, and uses another second SQUID. The configuration is such that a magnetic field corresponding to the jump signal detected by the first SQUID is superimposed with a bias magnetic field of less than a magnetic flux quantum and applied to the second SQUID, and the superimposed magnetic field is such that each magnetic field has the same polarity. A superconducting device characterized in that only in the case of 1 magnetic flux quantum or more and less than 2 magnetic flux quantum, the jump signal generated by the second SQUID is added or subtracted by the digital adder/subtractor.
JP12755287A 1987-05-25 1987-05-25 Superconductor equipment Pending JPS63292721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12755287A JPS63292721A (en) 1987-05-25 1987-05-25 Superconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12755287A JPS63292721A (en) 1987-05-25 1987-05-25 Superconductor equipment

Publications (1)

Publication Number Publication Date
JPS63292721A true JPS63292721A (en) 1988-11-30

Family

ID=14962831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12755287A Pending JPS63292721A (en) 1987-05-25 1987-05-25 Superconductor equipment

Country Status (1)

Country Link
JP (1) JPS63292721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609916A3 (en) * 1989-08-24 1996-01-10 Trw Inc Superconducting analog-to-digital converter and techniques for its reading.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609916A3 (en) * 1989-08-24 1996-01-10 Trw Inc Superconducting analog-to-digital converter and techniques for its reading.

Similar Documents

Publication Publication Date Title
US4983971A (en) Josephson analog to digital converter for low-level signals
US7248044B2 (en) Magnetic flux measuring apparatus by hysteresis characteristic type digital FLL using counter system for squid
US4922250A (en) Superconducting analog-to-digital converter with bidirectional counter
JPH05291956A (en) Superconductive magnetometer
JPS6113423B2 (en)
JP2662903B2 (en) High sensitivity magnetic field detector
US4994742A (en) Hall effect device and magnetic coil circuits for magnetic field detection
JPS63292721A (en) Superconductor equipment
JPH02170061A (en) Electric power detecting device
JPH06281493A (en) Measuring apparatus
JPH04290276A (en) Superconducting device
JPH05323004A (en) Squid magnetic flux meter
Gutmann et al. Two junction SQUID using a sampling technique
SU907478A1 (en) Flux meter
SU813762A1 (en) Signal converter
JPH04332886A (en) Method for detecting drive of digital-type squid
SU1622843A1 (en) Device for measuring capacitor parameters
JPH04340488A (en) Highly-sensitive apparatus for detecting magnetic field
JPH0690267B2 (en) Digital squid
JP3522104B2 (en) High sensitivity magnetic field detector
JPS6361927A (en) Superconduction thermometer
JPS6192414A (en) Magneto-resistance device
JPH04208884A (en) Superconducting quantum interferometer
JPH01185464A (en) Superconducting magnetometer
JPH06118150A (en) Measuring device for superconducting magnetic field