JPH06118150A - Measuring device for superconducting magnetic field - Google Patents

Measuring device for superconducting magnetic field

Info

Publication number
JPH06118150A
JPH06118150A JP4267223A JP26722392A JPH06118150A JP H06118150 A JPH06118150 A JP H06118150A JP 4267223 A JP4267223 A JP 4267223A JP 26722392 A JP26722392 A JP 26722392A JP H06118150 A JPH06118150 A JP H06118150A
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting
signal
bias current
magnetoresistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4267223A
Other languages
Japanese (ja)
Inventor
克俊 ▲高▼尾
Katsutoshi Takao
Hideo Nojima
秀雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4267223A priority Critical patent/JPH06118150A/en
Publication of JPH06118150A publication Critical patent/JPH06118150A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To very accurately measure a weak magnetic field, to miniaturize and to improve operation performance, by measuring an outer field on the basis of an output signal of a superconducting magneto resistance element driven by an AC bias current not less than a fluctuation frequency. CONSTITUTION:A phase and amplitude of a bias current signal, which an AC bias current generating circuit 16 generates, it converted (18) into an AC bias current generating signal, inputted to a minus input of a differential amplifier 19 and adjusted so that an output signal of the amplifier 19 becomes zero when a outer measured magnetic field is zero. The adjusted AC bias current is applied from the circuit 16 to a current electrode of a superconducting magneto resistance element 14. If the AC bias current not less than the fluctuation frequency of the superconducting film is applied to the magneto resistance element 14, the output signal proportioned to an electric resistance value rapidly increasing from the transition point thereof is obtained. The output signal is inputted to a lock-in amplifier 20, only the signal component of the same frequency as the AC bias current is picked out as a DC voltage, and the outer magnetic field is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒界に弱結合を有する
超電導体の磁気抵抗効果を利用して磁界を測定する超電
導磁界測定装置に関し、特に、交流のバイアス電流の印
加により超電導磁気抵抗効果の高感度範囲を利用する超
電導磁界測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnetic field measuring apparatus for measuring a magnetic field by utilizing a magnetoresistive effect of a superconductor having weak coupling at grain boundaries, and more particularly to a superconducting magnetic resistance by applying an alternating bias current. The present invention relates to a superconducting magnetic field measuring device that utilizes the high sensitivity range of the effect.

【0002】[0002]

【従来の技術】従来、磁界の検出や測定には、半導体ま
たは磁性体材料を用いた磁気抵抗素子が一般的に利用さ
れている。特に、高電子移動度の半導体であるInSb,
InAs等における形状効果や、強磁性金属であるFe−
Ni,Co−Ni等の配向効果を用いた磁気抵抗素子が実用
化されており、この磁気抵抗素子を備えた磁界測定装置
が一般に使用されている。
2. Description of the Related Art Conventionally, a magnetoresistive element using a semiconductor or a magnetic material is generally used for detecting and measuring a magnetic field. In particular, InSb, which is a semiconductor with high electron mobility,
Shape effect in InAs etc. and Fe- which is a ferromagnetic metal
A magnetoresistive element using the orientation effect of Ni, Co-Ni, etc. has been put into practical use, and a magnetic field measuring device equipped with this magnetoresistive element is generally used.

【0003】また、酸化物超電導体の弱結合による超電
導体の磁気抵抗効果を利用し、微弱な磁界の検出や測定
を行う超電導磁界測定装置も開発されている。
Further, a superconducting magnetic field measuring device has been developed for detecting and measuring a weak magnetic field by utilizing the magnetoresistive effect of the superconductor due to the weak coupling of the oxide superconductor.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述の半導
体や磁性体材料を用いた磁気抵抗素子は、測定する磁界
の強さが小さいときには、磁界の変化に対する抵抗変化
が小さいので、微弱な磁界を正確に測定することが難し
いという欠点がある。
By the way, the magnetoresistive element using the above-mentioned semiconductor or magnetic material has a small resistance change with respect to the change of the magnetic field when the strength of the magnetic field to be measured is small. It has the drawback of being difficult to measure accurately.

【0005】そこで、上記磁気抵抗素子に、永久磁石な
どでバイアス磁界を印加して、感度および特性直線性の
良い領域に測定範囲を移行させることによって、磁気測
定感度を向上させるようにした磁気測定装置がある。し
かし、それでも、微弱な磁界を正確に測定することは難
しかった。
Therefore, by applying a bias magnetic field to the magnetoresistive element with a permanent magnet or the like to shift the measurement range to a region having good sensitivity and characteristic linearity, the magnetic measurement sensitivity is improved. There is a device. However, it was still difficult to accurately measure a weak magnetic field.

【0006】また、超電導体の磁気抵抗効果を用いる超
電導磁界測定装置は、その出力電力に10Hz以下の低
周波のゆらぎ現象があり、直流もしくは10Hz以下の
周波数のバイアス電流を超電導磁気抵抗素子に印加する
装置では、上記磁気抵抗素子と同様に、微弱な磁界を測
定することが困難であるという欠点がある。
Further, a superconducting magnetic field measuring apparatus using the magnetoresistive effect of a superconductor has a low frequency fluctuation phenomenon of 10 Hz or less in its output power, and a bias current having a direct current or a frequency of 10 Hz or less is applied to the superconducting magnetoresistive element. The device described above has a drawback that it is difficult to measure a weak magnetic field, like the magnetoresistive element.

【0007】そこで、微弱な磁界を高い精度で測定する
ために、超電導磁気抵抗素子に、その固有のゆらぎ周波
数に影響されない高い周波数の交流バイアス磁界を印加
し、感度および特性直線性の良い領域に測定範囲を移行
させるようにした磁界測定装置がある。
Therefore, in order to measure a weak magnetic field with high accuracy, an AC bias magnetic field of a high frequency which is not affected by the inherent fluctuation frequency is applied to the superconducting magnetoresistive element, so that the sensitivity and characteristic linearity are improved. There is a magnetic field measuring device that shifts the measurement range.

【0008】しかし、この磁界測定装置では、超電導磁
気抵抗素子に交流バイアス磁界を印加するための外付け
コイルが必要であり、測定システムの小型化および操作
性に難点があった。
However, this magnetic field measuring apparatus requires an external coil for applying an AC bias magnetic field to the superconducting magnetoresistive element, and thus has a problem in miniaturization and operability of the measuring system.

【0009】そこで、本発明の目的は、微弱な磁界を高
い精度で効率良く測定できる小型で操作性の良い超電導
磁界測定装置を提供することにある。
Therefore, an object of the present invention is to provide a small-sized superconducting magnetic field measuring apparatus which can measure a weak magnetic field with high accuracy and high efficiency.

【0010】[0010]

【課題を解消するための手段】上記目的を達成するた
め、本発明は、弱結合粒界を有する超電導体を含む超電
導磁気抵抗素子と、上記超電導磁気抵抗素子の電流電極
に、上記超電導体のゆらぎ周波数以上の周波数の交流バ
イアス電流を印加する交流電流印加手段とを備え、上記
超電導磁気抵抗素子に作用する外部磁界と上記交流バイ
アス電流に応じて上記超電導磁気抵抗素子の電圧電極か
ら出力される出力信号に基づいて、上記外部磁界を測定
するようにしたことを特徴としている。
In order to achieve the above object, the present invention provides a superconducting magnetoresistive element including a superconductor having a weakly coupled grain boundary, a current electrode of the superconducting magnetoresistive element, and a superconducting magnetoresistive element. An alternating current applying means for applying an alternating bias current having a frequency of a fluctuation frequency or higher is provided, and the voltage is output from the voltage electrode of the superconducting magnetoresistive element according to the external magnetic field acting on the superconducting magnetoresistive element and the alternating bias current. It is characterized in that the external magnetic field is measured based on the output signal.

【0011】また、上記交流電流印加手段が発生する交
流電流と同周波数の信号を出力し、上記信号の位相と振
幅を調整できる信号発生手段と、上記超電導磁気抵抗素
子の電圧電極から出力される出力信号と、上記信号発生
手段の出力信号とが入力される差動増幅器とを有し、上
記差動増幅器から出力される出力信号に基づいて、外部
磁界を測定するようにした方が望ましい。
Further, a signal having the same frequency as the alternating current generated by the alternating current applying means is outputted, and the signal generating means capable of adjusting the phase and amplitude of the signal and the voltage electrode of the superconducting magnetoresistive element are outputted. It is desirable to have an output signal and a differential amplifier to which the output signal of the signal generating means is input, and to measure the external magnetic field based on the output signal output from the differential amplifier.

【0012】[0012]

【作用】この発明の超電導磁界測定装置は、粒界に弱結
合をもつ超電導体を含む超電導磁気抵抗素子を備えてい
る。そして、上記交流電流印加手段から上記超電導磁気
抵抗素子に超電導体のゆらぎ周波数以上の交流バイアス
電流が印加されたときに、上記超電導体は常電導状態に
遷移し、その遷移点から急速に増大する電気抵抗値に比
例した出力信号が、上記超電導磁気抵抗素子から出力さ
れる。
The superconducting magnetic field measuring apparatus of the present invention includes a superconducting magnetoresistive element including a superconductor having weak coupling at grain boundaries. Then, when an AC bias current having a fluctuation frequency of a superconductor or more is applied to the superconducting magnetoresistive element from the AC current applying unit, the superconductor transits to a normal conducting state and increases rapidly from the transition point. An output signal proportional to the electric resistance value is output from the superconducting magnetoresistive element.

【0013】そして、ゆらぎ周波数以上の比較的高い周
波数の交流バイアス電流で駆動させる超電導磁気抵抗素
子の出力信号に基づいて、外部磁界を測定するようにし
ている。
The external magnetic field is measured based on the output signal of the superconducting magnetoresistive element driven by an AC bias current having a relatively high frequency higher than the fluctuation frequency.

【0014】つまり、この発明の超電導磁界測定装置
は、超電導磁気抵抗素子の電流電極に、超電導体のゆら
ぎ周波数以上の交流バイアス電流を印加することによっ
て、超電導体の磁気抵抗効果を、その特有のゆらぎ周波
数以上の周波数帯域で利用している。したがって、外部
測定磁界の変化による超電導磁気抵抗素子の抵抗変化
を、超電導磁気抵抗素子の電圧電極から電圧信号として
検出することによって、超電導体の固有の低周波ゆらぎ
に影響されることなく、微弱磁界の高感度測定が可能に
なる。
That is, in the superconducting magnetic field measuring apparatus of the present invention, the magnetoresistive effect of the superconductor can be obtained by applying an alternating bias current having a fluctuation frequency of the superconductor or more to the current electrode of the superconducting magnetoresistive element. It is used in the frequency band above the fluctuation frequency. Therefore, by detecting the resistance change of the superconducting magnetoresistive element due to the change of the external measurement magnetic field as a voltage signal from the voltage electrode of the superconducting magnetoresistive element, the weak magnetic field is not affected by the inherent low frequency fluctuation of the superconductor. It enables high sensitive measurement of.

【0015】また、本発明によれば、外づけコイルを必
要とする従来例に比べて、小型化が計れ、操作性が格段
に向上する。
Further, according to the present invention, the size can be reduced and the operability is remarkably improved as compared with the conventional example which requires the external coil.

【0016】また、上記交流電流印加手段が発生する交
流電流と同周波数の信号を出力し、上記信号の位相と振
幅を調整できる信号発生手段と、上記超電導磁気抵抗素
子の電圧電極から出力される出力信号と、上記信号発生
手段の出力信号とが入力される差動増幅器とを有し、上
記差動増幅器から出力される出力信号に基づいて、外部
磁界を測定するようにした場合には、測定対象となる磁
界が零のときには、上記差動増幅器の出力信号が零にな
るように上記信号発生手段が出力する信号の位相と振幅
を調整することによって、地磁気等の外部環境磁界によ
る測定対象磁界の偏よりをキャンセルできる。
Further, a signal having the same frequency as the alternating current generated by the alternating current applying means is outputted, and the signal generating means capable of adjusting the phase and amplitude of the signal is outputted from the voltage electrode of the superconducting magnetoresistive element. An output signal and a differential amplifier to which the output signal of the signal generating means is input, and based on the output signal output from the differential amplifier, when the external magnetic field is measured, When the magnetic field to be measured is zero, the phase and amplitude of the signal output by the signal generating means are adjusted so that the output signal of the differential amplifier becomes zero. The bias of the magnetic field can be canceled.

【0017】[0017]

【実施例】以下、本発明を図示の実施例に基づいて詳細
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on the illustrated embodiments.

【0018】まず、図2を参照しながら、この実施例の
超電導磁界測定装置が備える超電導磁気抵抗素子14の
構成を詳細に説明する。
First, the structure of the superconducting magnetoresistive element 14 included in the superconducting magnetic field measuring apparatus of this embodiment will be described in detail with reference to FIG.

【0019】図2に示す超電導磁気抵抗素子14は、非
磁性基板1上に、ポイント状で結合する弱結合の集合体
からなる超電導膜2を形成し、この膜2を機械的加工で
ミアンダ状にし、上記膜2にチタン(Ti)を蒸着法で蒸
着し、電流電極3a,3bと電圧電極4a,4bを形成するこ
とにより、形成されている。
In the superconducting magnetoresistive element 14 shown in FIG. 2, a superconducting film 2 made of a weakly-bonded aggregate that is bonded in a point-like manner is formed on a non-magnetic substrate 1, and this film 2 is mechanically processed into a meandering shape. Then, titanium (Ti) is vapor-deposited on the film 2 by a vapor deposition method to form current electrodes 3a, 3b and voltage electrodes 4a, 4b.

【0020】上記超電導膜2は、上記非磁性基板1上に
極く薄い絶縁膜を介して微小な酸化物超電導体粒子を形
成することによって形成してもよい。
The superconducting film 2 may be formed by forming fine oxide superconductor particles on the non-magnetic substrate 1 via an extremely thin insulating film.

【0021】図2(A)は超電導磁気抵抗素子14の平面
図である。図2(A)は、上記素子14を使用するときに
は、電流電極3a,3bに電流源5を接続し、電圧電極4a
,4b に出力電圧測定器6を接続することを示してい
る。
FIG. 2A is a plan view of the superconducting magnetoresistive element 14. 2A shows that when the element 14 is used, the current source 5 is connected to the current electrodes 3a and 3b and the voltage electrode 4a is connected.
, 4b is connected to the output voltage measuring device 6.

【0022】図2(B)は素子14の断面図である。FIG. 2B is a sectional view of the element 14.

【0023】図3は、図2に示した超電導膜2をスプレ
ーパイロリシス法で作製する装置の概要を示している。
FIG. 3 shows an outline of an apparatus for producing the superconducting film 2 shown in FIG. 2 by a spray pyrolysis method.

【0024】たとえば、Y−Ba−Ca−O系の超電導体
からなる超電導膜2を形成する場合には、まず、原料の
Y(NO3)3・6H2OとBa(NO3)2およびCa(NO3)2
・3H2Oを、所定の組成比(YBa2Cu3)に秤量し、水
溶液7にする。次に、水溶液7をスプレーガン9の容器
8に入れ、圧縮空気をパイプ10から送り、上記水溶液
7をスプレーガン9から小量ずつ噴霧11にして、ヒー
ター12で約600℃に加熱した基板13に吹きつけ
る。図3は、上記基板13に吹き付けた水溶液7が熱分
解によりセラミック化している状態を示している。
For example, when forming the superconducting film 2 made of a Y—Ba—Ca—O type superconductor, first, the raw materials Y (NO 3 ) 3 .6H 2 O and Ba (NO 3 ) 2 and Ca (NO 3 ) 2
3H 2 O is weighed to a predetermined composition ratio (YBa 2 Cu 3 ) to prepare an aqueous solution 7. Next, the aqueous solution 7 is put in a container 8 of a spray gun 9, compressed air is sent from a pipe 10, the aqueous solution 7 is sprayed from the spray gun 9 little by little, and the substrate 13 is heated to about 600 ° C. by a heater 12. Spray on. FIG. 3 shows a state in which the aqueous solution 7 sprayed on the substrate 13 is made into ceramic by thermal decomposition.

【0025】以上のようにして作製した超電導膜2は、
厚さ約10μmにし、空気中での熱処理を行った。上記
超電導膜2は、他の組成にしてもよく、作製条件を変え
たり、他の作製方法を用いてもよい。又、膜厚は1から
10μmの間で良好な結果を得た。
The superconducting film 2 produced as described above is
The thickness was set to about 10 μm, and heat treatment was performed in air. The superconducting film 2 may have another composition, different manufacturing conditions, or another manufacturing method. Good results were obtained when the film thickness was between 1 and 10 μm.

【0026】上記超電導膜2を備え、図2のような構成
にした超電導磁気抵抗素子14の出力特性を、図4に示
すようにして測定した。すなわち、超電導磁気抵抗素子
14の電流電極3を介して素子14に、10mAの直流
バイアス電流を流した状態で、外部磁界印加コイル15
を用いて、上記素子14に外部直流磁界を印加し、超電
導磁気抵抗素子14の出力を測定した。測定結果を図5
に示す。図5において、縦軸は素子14の出力で、横軸
は外部直流磁界の強さを示している。
The output characteristics of the superconducting magnetoresistive element 14 having the above-mentioned superconducting film 2 and configured as shown in FIG. 2 were measured as shown in FIG. That is, the external magnetic field applying coil 15 is applied with a DC bias current of 10 mA applied to the element 14 via the current electrode 3 of the superconducting magnetoresistive element 14.
An external direct-current magnetic field was applied to the element 14 by using, and the output of the superconducting magnetoresistive element 14 was measured. Figure 5 shows the measurement results.
Shown in. 5, the vertical axis represents the output of the element 14 and the horizontal axis represents the strength of the external DC magnetic field.

【0027】次に、図6に、上記素子14の出力に含ま
れる雑音の大きさを示すノイズ特性を示す。図6は、図
4,5で説明した測定条件下で、横軸のように外部直流
磁界の強さを変化させたとき、素子14の出力に含まれ
る雑音の大きさを雑音の周波数別に示したものである。
縦軸は雑音の大きさを示す。図6を参照すればわかるよ
うに、素子14からのノイズは印加磁界の強さでの変化
は少なく、数Hz以下の低周波でのノイズが大きい。こ
のことは、上述のように、上記素子14に10mAの直
流バイアス電流を流した状態では、直流や、低周波磁界
の微小磁界の精度の良い測定が困難なことを示してい
る。
Next, FIG. 6 shows noise characteristics indicating the magnitude of noise contained in the output of the element 14. FIG. 6 shows the magnitude of noise contained in the output of the element 14 for each frequency of the noise when the strength of the external DC magnetic field is changed like the horizontal axis under the measurement conditions described in FIGS. It is a thing.
The vertical axis represents the noise level. As can be seen from FIG. 6, the noise from the element 14 has little change in the strength of the applied magnetic field and is large at low frequencies of several Hz or less. This indicates that it is difficult to measure the direct current and the minute magnetic field of the low-frequency magnetic field with high accuracy when the element 14 is supplied with the direct current bias current of 10 mA as described above.

【0028】次に、図1に上記実施例の超電導磁界測定
装置のシステムのブロック図を示す。図1において、1
6は交流バイアス電流発生回路、14は超電導磁気抵抗
素子、17は増幅器、18は交流バイアス電流発生信号
変換回路、19は差動増幅器、20はロックインアンプ
である。
Next, FIG. 1 shows a block diagram of a system of the superconducting magnetic field measuring apparatus of the above embodiment. In FIG. 1, 1
6 is an AC bias current generation circuit, 14 is a superconducting magnetoresistive element, 17 is an amplifier, 18 is an AC bias current generation signal conversion circuit, 19 is a differential amplifier, and 20 is a lock-in amplifier.

【0029】上記ロックインアンプ20の概要を示すブ
ロック図を図9に示す。図9に示すように、ロックイン
アンプ20は、位相比較器91に接続された増幅器92
と、PLL回路93と、上記位相比較器91の出力側に
接続されたローパスフィルター95とを含んでいる。
A block diagram showing an outline of the lock-in amplifier 20 is shown in FIG. As shown in FIG. 9, the lock-in amplifier 20 includes an amplifier 92 connected to a phase comparator 91.
, A PLL circuit 93, and a low-pass filter 95 connected to the output side of the phase comparator 91.

【0030】図2のような構成をもつ超電導磁気抵抗素
子14を図1に示したブロック図の超電導磁気抵抗素子
14の位置に配置する。その様に配置された超電導磁気
抵抗素子14の電流電極3に、交流バイアス電流発生回
路16から交流バイアス電流を印加する。この実施例例
では、上記交流バイアス電流として、周波数1KHz、
電流値20mApp(±10mA)の正弦波電流を電流電極
3に印加する。この交流バイアス電流の印加によって、
その時の素子14の磁気抵抗に見合った電圧信号が上記
素子14の電圧電極4から出力される。
The superconducting magnetoresistive element 14 having the structure shown in FIG. 2 is arranged at the position of the superconducting magnetoresistive element 14 in the block diagram shown in FIG. An alternating bias current is applied from the alternating bias current generating circuit 16 to the current electrode 3 of the superconducting magnetoresistive element 14 arranged in this way. In this embodiment, the AC bias current has a frequency of 1 KHz,
A sine wave current having a current value of 20 mApp (± 10 mA) is applied to the current electrode 3. By applying this AC bias current,
A voltage signal corresponding to the magnetic resistance of the element 14 at that time is output from the voltage electrode 4 of the element 14.

【0031】上記交流バイアス電流発生回路16から上
記超電導磁気抵抗素子14に超電導膜2のゆらぎ周波数
以上の1KHzの交流バイアス電流が印加されたとき
に、上記超電導膜2は常電導状態に遷移し、その遷移点
から急速に増大する電気抵抗値に比例した出力信号が、
超電導磁気抵抗素子14から出力される。
When an AC bias current of 1 kHz higher than the fluctuation frequency of the superconducting film 2 is applied from the AC bias current generating circuit 16 to the superconducting magnetoresistive element 14, the superconducting film 2 transitions to the normal conducting state, An output signal proportional to the electrical resistance value that rapidly increases from the transition point,
It is output from the superconducting magnetoresistive element 14.

【0032】そして、ゆらぎ周波数以上の比較的高い周
波数の交流バイアス電流で駆動させる超電導磁気抵抗素
子14の出力信号に基づいて、外部磁界を測定するよう
にしている。
Then, the external magnetic field is measured based on the output signal of the superconducting magnetoresistive element 14 driven by an AC bias current having a relatively high frequency higher than the fluctuation frequency.

【0033】すなわち、この実施例の超電導磁界測定装
置は、超電導磁気抵抗素子14の電流電極3a ,3b
に、超電導膜2のゆらぎ周波数以上の交流バイアス電流
を印加することによって、超電導膜2の磁気抵抗効果
を、その特有のゆらぎ周波数以上の周波数帯域で利用し
ている。したがって、外部測定磁界の変化による超電導
磁気抵抗素子14の抵抗変化を、超電導磁気抵抗素子1
4の電圧電極4から電圧信号として検出することによっ
て、超電導膜2の固有の低周波ゆらぎに影響されること
なく、微弱磁界の高感度測定が可能になる。
That is, in the superconducting magnetic field measuring apparatus of this embodiment, the current electrodes 3a and 3b of the superconducting magnetoresistive element 14 are used.
In addition, the magnetoresistive effect of the superconducting film 2 is utilized in a frequency band equal to or higher than the peculiar fluctuation frequency by applying an AC bias current of the fluctuation frequency or higher of the superconducting film 2. Therefore, the change in the resistance of the superconducting magnetoresistive element 14 due to the change in the external measurement magnetic field is prevented from occurring.
By detecting the voltage signal from the voltage electrode 4 of No. 4, it is possible to perform a highly sensitive measurement of a weak magnetic field without being affected by the low-frequency fluctuation peculiar to the superconducting film 2.

【0034】また、この実施例によれば、外づけコイル
を必要とする従来例に比べて、小型化が計れ、操作性が
格段に向上する。
Further, according to this embodiment, the size can be reduced and the operability is remarkably improved as compared with the conventional example which requires the external coil.

【0035】ところで、上記素子14の出力信号は、超
電導磁気抵抗素子14が曝される外部環境磁界(測定対
象外の環境磁界)の状態によって異なる。
The output signal of the element 14 differs depending on the state of the external environmental magnetic field (environmental magnetic field not to be measured) to which the superconducting magnetoresistive element 14 is exposed.

【0036】ここで、たとえば、図7にあるように、外
部環境磁界がQ0,Q1にある場合を考察する。
Here, let us consider a case where the external environmental magnetic fields are at Q 0 and Q 1 , as shown in FIG. 7, for example.

【0037】Q0は外部環境磁界がゼロの場合である。
0の状態にある場合、図4にある様な方法で外部から
直流磁界が印加された場合の交流バイアス電流と、出力
電圧信号の関係例を図8に示す。
Q 0 is the case where the external environmental magnetic field is zero.
FIG. 8 shows an example of the relationship between the AC bias current and the output voltage signal when a DC magnetic field is externally applied by the method shown in FIG. 4 in the state of Q 0 .

【0038】図8(A)は交流バイアス電流信号を示す。
また、図8(B)に示す波形B1は外部印加直流磁界がゼ
ロの場合の素子14の出力電圧信号の波形であり、波形
B2は外部印加直流磁界が正磁界の場合の素子14の出
力信号の波形であり、波形B3は外部印加直流磁界が負
磁界の場合の素子14の出力信号の波形である。この例
では、上記正磁界と負磁界の大きさは同一である。
FIG. 8A shows an AC bias current signal.
A waveform B1 shown in FIG. 8B is a waveform of the output voltage signal of the element 14 when the externally applied DC magnetic field is zero, and a waveform B2 is an output signal of the element 14 when the externally applied DC magnetic field is a positive magnetic field. The waveform B3 is the waveform of the output signal of the element 14 when the externally applied DC magnetic field is a negative magnetic field. In this example, the positive magnetic field and the negative magnetic field have the same magnitude.

【0039】次に、外部環境磁界がQ1にある場合、す
なわち、予め何らかの外部環境磁界がある場合である。
この場合、外部から直流磁界を印加した場合の素子14
の出力電圧信号波形を図8(C)に示す。図8(C)におい
て波形C1は外部印加直流磁界がゼロの場合の出力電圧
信号波形であり、この信号の絶対値は、外部環境磁界が
零であるQ0の場合と比較するともちろん大きい。
Next, the case where the external environmental magnetic field is at Q 1, that is, when there is some external environmental magnetic field in advance.
In this case, the element 14 when a DC magnetic field is applied from the outside
The output voltage signal waveform of is shown in FIG. 8 (C). In FIG. 8 (C), the waveform C1 is the output voltage signal waveform when the externally applied DC magnetic field is zero, and the absolute value of this signal is, of course, larger than that in the case of Q 0 where the external environmental magnetic field is zero.

【0040】波形C2は外部印加直流磁界が正磁界の場
合の信号波形であり、C3は外部直流印加磁界が負磁界
の場合の信号波形である。
Waveform C2 is a signal waveform when the externally applied DC magnetic field is a positive magnetic field, and C3 is a signal waveform when the externally applied DC magnetic field is a negative magnetic field.

【0041】一般に、超電導磁気抵抗素子14が曝され
る外部環境磁界は、図7におけるQ0すなわちゼロ磁界
でなく、Q1、すなわち、予め何らかの外部環境磁界が
存在する。その主なものは地磁気であり、この値は約
0.5×10-4Tである。したがって、超電導磁気抵抗
素子14の出力信号は、図8(C)の信号となる。この素
子14の出力信号は、図1に示す増幅器17を通り、次
段の差動増幅器19のプラス入力へ入力される。外部の
計測対象磁界がゼロのときには、上記プラス入力への入
力信号は図8(C)にしめす波形C1に比例した波形にな
る。
Generally, the external environmental magnetic field to which the superconducting magnetoresistive element 14 is exposed is not Q 0, that is, the zero magnetic field in FIG. 7, but Q 1 , that is, some external environmental magnetic field exists in advance. The main one is geomagnetism, and its value is about 0.5 × 10 -4 T. Therefore, the output signal of the superconducting magnetoresistive element 14 becomes the signal of FIG. The output signal of the element 14 passes through the amplifier 17 shown in FIG. 1 and is input to the plus input of the differential amplifier 19 in the next stage. When the external magnetic field to be measured is zero, the input signal to the plus input has a waveform proportional to the waveform C1 shown in FIG.

【0042】一方、交流バイアス電流発生回路16が発
生する交流バイアス電流信号の位相および振幅を、交流
バイアス電流発生信号変換回路18で適当に変換して、
差動増幅器19のマイナス入力に入力することにより、
外部計測磁界がゼロのとき、差動増幅器19の出力信号
をゼロになる様に調整する。この様にすることにより、
差動増幅器19の出力信号は計測対象磁界のみによって
変化する出力信号となる。このようにして、外部環境磁
界の影響を避けて、計測対象磁界を正確に計測できる。
On the other hand, the phase and amplitude of the AC bias current signal generated by the AC bias current generating circuit 16 are appropriately converted by the AC bias current generating signal converting circuit 18,
By inputting to the negative input of the differential amplifier 19,
When the external measurement magnetic field is zero, the output signal of the differential amplifier 19 is adjusted to zero. By doing this,
The output signal of the differential amplifier 19 is an output signal that changes only with the magnetic field to be measured. In this way, the magnetic field to be measured can be accurately measured while avoiding the influence of the external environmental magnetic field.

【0043】そして、この出力信号はロックインアンプ
20の入力信号となる。
Then, this output signal becomes the input signal of the lock-in amplifier 20.

【0044】このロックインアンプ20の動作原理を以
下に説明する。
The operating principle of the lock-in amplifier 20 will be described below.

【0045】まず、ロックインアンプ20の入力信号V
sおよび参照信号Vrを次の数1および数2に示すように
表わす。
First, the input signal V of the lock-in amplifier 20
s and the reference signal Vr are expressed as shown in the following equations 1 and 2.

【0046】[0046]

【数1】Vr=Acos(ωr・t+θ)[Formula 1] Vr = Acos (ωr · t + θ)

【0047】[0047]

【数2】Vs=cos(ωs・t)[Formula 2] Vs = cos (ωs · t)

【0048】数1において、Aは定数、ωrは参照信号
の角速度、θは位相角であり、数2において、ωsは入
力信号の角速度である、上記2つの信号Vr,Vsを位相
比較器91(Phase Sensitive Detector)で乗算す
ると、次の数3および数3を変形した数4で表される信
号Vpsdとなる。
In Equation 1, A is a constant, ωr is the angular velocity of the reference signal, θ is the phase angle, and in Equation 2, ωs is the angular velocity of the input signal. The two signals Vr and Vs are compared by the phase comparator 91. When multiplied by (Phase Sensitive Detector), a signal Vpsd represented by the following equation 3 and equation 4 is obtained.

【0049】[0049]

【数3】Vpsd=Acos(ωr・t+θ)cos(ωs・t)[Equation 3] Vpsd = Acos (ωr · t + θ) cos (ωs · t)

【0050】[0050]

【数4】 Vpsd=A/2cos[(ωr+ωs)t+θ]+A/2cos[(ωr−ωs)t+θ] Vpsd = A / 2cos [(ωr + ωs) t + θ] + A / 2cos [(ωr−ωs) t + θ]

【0051】数3および数4において、ωr=ωsである
から、数4の右辺第2項は直流成分となる。また、ロー
パスフィルタ95で数4の右辺第1項の交流成分を除く
ので、ローパスフィルタ95からの出力信号VLPは次
の数5で表される。
In Expressions 3 and 4, since ωr = ωs, the second term on the right side of Expression 4 is a DC component. Further, since the low-pass filter 95 removes the AC component of the first term on the right-hand side of Expression 4, the output signal VLP from the low-pass filter 95 is expressed by the following Expression 5.

【0052】[0052]

【数5】VLP=A/2cosθ[Formula 5] VLP = A / 2 cos θ

【0053】数5より明らかなように、参照信号Vrと
入力信号Vsの位相差θがゼロのときに、信号VLPが
最大になる。したがって、参照信号Vrと入力信号Vsの
位相差θをゼロするように、ロックインアンプ20を調
整すれば、信号VLPを最大にすることができる。
As is clear from Equation 5, the signal VLP becomes maximum when the phase difference θ between the reference signal Vr and the input signal Vs is zero. Therefore, the signal VLP can be maximized by adjusting the lock-in amplifier 20 so that the phase difference θ between the reference signal Vr and the input signal Vs becomes zero.

【0054】以上に説明したようにして、上記超電導磁
気抵抗素子14の出力信号から、交流バイアス電流と同
じ周波数の信号成分のみを直流電圧として取り出すこと
ができる。
As described above, only the signal component having the same frequency as the AC bias current can be extracted as the DC voltage from the output signal of the superconducting magnetoresistive element 14.

【0055】したがって、ロックインアンプ20の参照
入力として、上記交流バイアス電流発生波形の正弦波1
KHzを用いることにより、上記素子14の出力信号か
ら1KHz成分のみを抽出し、ノイズの実効値を低く押
さえ、微小磁界を非常に精度良く計測できるようにな
る。
Therefore, as the reference input of the lock-in amplifier 20, the sine wave 1 of the AC bias current generating waveform is used.
By using KHz, only the 1 KHz component is extracted from the output signal of the element 14, the effective value of noise is suppressed low, and the minute magnetic field can be measured very accurately.

【0056】外部から超電導磁気抵抗素子14への直流
印加磁界とロックインアンプ20の出力信号の関係特性
を、図10に具体的に示す。図10では、印加した直流
磁界による動作点の微分磁気感度がロックインアンプ2
0の出力として測定されている。外部印加直流磁界がゼ
ロ近くの微小磁界領域では、ロックインアンプ20の出
力信号は線形領域となった。この線形領域を用い、ロッ
クインアンプ20のローパスフィルタ95の時定数を1
00msecとすることによって、直流から数Hzの磁界を
10-9Tの分解能で測定することができた。
FIG. 10 specifically shows the relational characteristics between the DC applied magnetic field from the outside to the superconducting magnetoresistive element 14 and the output signal of the lock-in amplifier 20. In FIG. 10, the differential magnetic sensitivity at the operating point due to the applied DC magnetic field is the lock-in amplifier 2
Measured as 0 output. In the minute magnetic field region where the externally applied DC magnetic field is near zero, the output signal of the lock-in amplifier 20 is in the linear region. Using this linear region, the time constant of the low-pass filter 95 of the lock-in amplifier 20 is set to 1
By setting it to 00 msec, a magnetic field of several Hz from direct current could be measured with a resolution of 10 -9 T.

【0057】以上が実施例についての説明であるが、本
発明は実施例により限定されるものでなく、超電導磁気
抵抗素子への交流バイアス電流の大きさ及び周波数は磁
界測定の範囲や精度により変更可能なものである。
The above is a description of the embodiments, but the present invention is not limited to the embodiments, and the magnitude and frequency of the AC bias current to the superconducting magnetoresistive element are changed depending on the range and accuracy of the magnetic field measurement. It is possible.

【0058】また、上記実施例では、超電導磁気抵抗素
子が曝される外部環境磁界については地磁気等の例を挙
げただけであるが、上記実施例において直流磁界を発生
する永久磁石またはコイル等で外部環境磁界を適当に変
更することで磁界測定の範囲や精度にあった外部環境磁
界を選択することも可能である。
Further, in the above-mentioned embodiment, the external environmental magnetic field to which the superconducting magnetoresistive element is exposed is merely an example of geomagnetism, but in the above-mentioned embodiment, a permanent magnet or a coil which generates a DC magnetic field is used. By appropriately changing the external environmental magnetic field, it is possible to select the external environmental magnetic field that matches the range and accuracy of the magnetic field measurement.

【0059】更に、ロックインアンプのローパスフィル
タの時定数を変えることで数Hzを越えて変化する磁界
を測定することも可能である。
Furthermore, by changing the time constant of the low-pass filter of the lock-in amplifier, it is possible to measure the magnetic field changing over several Hz.

【0060】[0060]

【発明の効果】以上の説明より明らかなように、本発明
の超電導磁界測定装置は、弱結合粒界を有する超電導体
を含む超電導磁気抵抗素子と、上記超電導磁気抵抗素子
の電流電極に、上記超電導体のゆらぎ周波数以上の周波
数の交流バイアス電流を印加する交流電流印加手段とを
備え、超電導磁気抵抗素子の電流電極に、超電導体のゆ
らぎ周波数以上の交流バイアス電流を印加することによ
って、超電導体の磁気抵抗効果を、その特有のゆらぎ周
波数(数Hz)以上の周波数帯域で利用している。
As is apparent from the above description, the superconducting magnetic field measuring apparatus of the present invention includes a superconducting magnetoresistive element including a superconductor having a weakly coupled grain boundary, a current electrode of the superconducting magnetoresistive element, and An alternating current applying means for applying an alternating bias current having a frequency not less than the fluctuation frequency of the superconductor, and applying an alternating bias current not less than the fluctuation frequency of the superconductor to the current electrode of the superconducting magnetoresistive element. The magnetoresistive effect of is used in a frequency band higher than the peculiar fluctuation frequency (several Hz).

【0061】したがって、外部測定磁界の変化による超
電導磁気抵抗素子の抵抗変化を、超電導磁気抵抗素子の
電圧電極から電圧信号として検出することによって、超
電導体の固有の低周波ゆらぎに影響されることなく、微
弱磁界の高感度測定が可能になる。
Therefore, by detecting the resistance change of the superconducting magnetoresistive element due to the change of the externally measured magnetic field as a voltage signal from the voltage electrode of the superconducting magnetoresistive element, the low frequency fluctuation peculiar to the superconductor is not affected. It enables highly sensitive measurement of weak magnetic field.

【0062】しかも、本発明によれば、外部コイル等必
要とせずに素子単独の性能を引き出せるため、外づけコ
イルを必要とする従来例に比べて、小型化が計れ、操作
性が格段に向上する。さらに、微弱磁界の空間分布等の
測定に非常に有利である。したがって、分解能の高い測
定が可能となり、医療や非破壊検査など種々の分野に利
用することができる。
Moreover, according to the present invention, since the performance of the element alone can be obtained without the need for an external coil or the like, the size can be reduced and the operability is remarkably improved as compared with the conventional example requiring an external coil. To do. Furthermore, it is very advantageous for measuring the spatial distribution of the weak magnetic field. Therefore, measurement with high resolution becomes possible, and it can be used in various fields such as medical treatment and nondestructive inspection.

【0063】また、上記交流電流印加手段が発生する交
流電流と同周波数の信号を出力し、上記信号の位相と振
幅を調整できる信号発生手段と、上記超電導磁気抵抗素
子の電圧電極から出力される出力信号と、上記信号発生
手段の出力信号とが入力される差動増幅器とを有し、上
記差動増幅器から出力される出力信号に基づいて、外部
磁界を測定するようにした場合には、測定対象となる磁
界が零のときには、上記差動増幅器の出力信号が零にな
るように上記信号発生手段が出力する信号の位相と振幅
を調整することによって、地磁気等の外部環境磁界によ
る測定対象磁界の偏重をキャンセルでき、正確な磁界測
定ができる。
Further, a signal having the same frequency as the alternating current generated by the alternating current applying means is outputted, and the signal generating means capable of adjusting the phase and amplitude of the signal is outputted from the voltage electrode of the superconducting magnetoresistive element. An output signal and a differential amplifier to which the output signal of the signal generating means is input, and based on the output signal output from the differential amplifier, when the external magnetic field is measured, When the magnetic field to be measured is zero, the phase and amplitude of the signal output by the signal generating means are adjusted so that the output signal of the differential amplifier becomes zero. The bias of the magnetic field can be canceled, and accurate magnetic field measurement can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の超電導磁界測定装置の実施例のシス
テムブロック図である。
FIG. 1 is a system block diagram of an embodiment of a superconducting magnetic field measuring apparatus of the present invention.

【図2】 上記実施例の超電導磁気抵抗素子の正面図と
断面図を含む構造図である。
FIG. 2 is a structural diagram including a front view and a cross-sectional view of the superconducting magnetoresistive element of the above embodiment.

【図3】 上記実施例の超電導膜をスプレーパイロリシ
ス法によって作製するセラミック作製法の説明図であ
る。
FIG. 3 is an explanatory diagram of a ceramic manufacturing method for manufacturing the superconducting film of the above-described example by a spray pyrolysis method.

【図4】 上記実施例の超電導磁気抵抗素子の特性測定
方法を説明する図である。
FIG. 4 is a diagram illustrating a method for measuring the characteristics of the superconducting magnetoresistive element of the above example.

【図5】 上記実施例の超電導磁気抵抗素子の直流印加
磁界に対する出力特性図である。
FIG. 5 is an output characteristic diagram of the superconducting magnetoresistive element of the above-described embodiment with respect to a DC applied magnetic field.

【図6】 上記超電導磁気抵抗素子の直流印加磁界に対
するノイズ特性図である。
FIG. 6 is a noise characteristic diagram of the superconducting magnetoresistive element with respect to a DC applied magnetic field.

【図7】 上記超電導磁気抵抗素子の動作点を示す図で
ある。
FIG. 7 is a diagram showing operating points of the superconducting magnetoresistive element.

【図8】 上記超電導磁気抵抗素子の直流印加磁界に対
する出力波形図である。
FIG. 8 is an output waveform diagram of the superconducting magnetoresistive element with respect to a DC applied magnetic field.

【図9】 上記実施例のロックインアンプのブロック図
である。
FIG. 9 is a block diagram of the lock-in amplifier of the above embodiment.

【図10】 上記実施例の直流磁界に対するロックイン
アンプ出力の特性図である。
FIG. 10 is a characteristic diagram of a lock-in amplifier output with respect to a DC magnetic field in the above-described embodiment.

【符号の説明】[Explanation of symbols]

1,13…基板、 2…超電導
膜、3…電流電極、 4…電
圧電極、5…電流源、 6
…電圧測定器、7…水溶液、
8…容器、9…スプレーガン、
10…パイプ、11…噴霧、
12…ヒーター、14…超電導磁気抵抗素
子、 15…外部磁界印加コイル、16…
交流バイアス電流発生回路、 17…増幅器、1
8…交流バイアス電流発生信号変換回路、19…差動増
幅器、20…ロックインアンプ。
1, 13 ... Substrate, 2 ... Superconducting film, 3 ... Current electrode, 4 ... Voltage electrode, 5 ... Current source, 6
… Voltage meter, 7… Aqueous solution,
8 ... container, 9 ... spray gun,
10 ... pipe, 11 ... spray,
12 ... Heater, 14 ... Superconducting magnetoresistive element, 15 ... External magnetic field applying coil, 16 ...
AC bias current generation circuit, 17 ... Amplifier, 1
8 ... AC bias current generation signal conversion circuit, 19 ... Differential amplifier, 20 ... Lock-in amplifier.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 弱結合粒界を有する超電導体を含む超電
導磁気抵抗素子と、 上記超電導磁気抵抗素子の電流電極に、上記超電導体の
ゆらぎ周波数以上の周波数の交流バイアス電流を印加す
る交流電流印加手段とを備え、 上記超電導磁気抵抗素子に作用する外部磁界と上記交流
バイアス電流に応じて上記超電導磁気抵抗素子の電圧電
極から出力される出力信号に基づいて、上記外部磁界を
測定するようにしたことを特徴とする超電導磁界測定装
置。
1. A superconducting magnetoresistive element including a superconductor having a weakly coupled grain boundary, and an alternating current application for applying an alternating bias current having a frequency higher than a fluctuation frequency of the superconductor to a current electrode of the superconducting magnetoresistive element. And a means for measuring the external magnetic field based on an output signal output from the voltage electrode of the superconducting magnetoresistive element according to the external magnetic field acting on the superconducting magnetoresistive element and the AC bias current. A superconducting magnetic field measuring device characterized in that
【請求項2】 請求項1に記載の超電導磁界測定装置に
おいて、 上記交流電流印加手段が発生する交流電流と同周波数の
信号を出力し、上記信号の位相と振幅を調整できる信号
発生手段と、 上記超電導磁気抵抗素子の電圧電極から出力される出力
信号と、上記信号発生手段の出力信号とが入力される差
動増幅器とを有し、 上記差動増幅器から出力される出力信号に基づいて、外
部磁界を測定するようにしたことを特徴とする超電導磁
界測定装置。
2. The superconducting magnetic field measuring apparatus according to claim 1, further comprising a signal generating means for outputting a signal having the same frequency as the alternating current generated by the alternating current applying means and adjusting the phase and amplitude of the signal. An output signal output from the voltage electrode of the superconducting magnetoresistive element, and a differential amplifier to which the output signal of the signal generating means is input, based on the output signal output from the differential amplifier, A superconducting magnetic field measuring device characterized by measuring an external magnetic field.
JP4267223A 1992-10-06 1992-10-06 Measuring device for superconducting magnetic field Pending JPH06118150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4267223A JPH06118150A (en) 1992-10-06 1992-10-06 Measuring device for superconducting magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4267223A JPH06118150A (en) 1992-10-06 1992-10-06 Measuring device for superconducting magnetic field

Publications (1)

Publication Number Publication Date
JPH06118150A true JPH06118150A (en) 1994-04-28

Family

ID=17441851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4267223A Pending JPH06118150A (en) 1992-10-06 1992-10-06 Measuring device for superconducting magnetic field

Country Status (1)

Country Link
JP (1) JPH06118150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406257A1 (en) * 1994-01-12 1995-07-13 Gold Star Electronics Semiconductor device with isolation region
CN103885006A (en) * 2014-03-31 2014-06-25 哈尔滨工业大学深圳研究生院 Alternating current magnetic field sensor with measuring frequency scanning function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406257A1 (en) * 1994-01-12 1995-07-13 Gold Star Electronics Semiconductor device with isolation region
CN103885006A (en) * 2014-03-31 2014-06-25 哈尔滨工业大学深圳研究生院 Alternating current magnetic field sensor with measuring frequency scanning function

Similar Documents

Publication Publication Date Title
Jahns et al. Magnetoelectric sensors for biomagnetic measurements
Taylor et al. On the use of the ac Josephson effect to maintain standards of electromotive force
Durdaut et al. Modeling and analysis of noise sources for thin-film magnetoelectric sensors based on the delta-E effect
JPH0814614B2 (en) Superconducting magnetic field measuring device
JPH07113665B2 (en) Superconducting magnetic field measuring device
JPS5910510B2 (en) Superconducting quantum interference magnetometer
JPH06118150A (en) Measuring device for superconducting magnetic field
US5352978A (en) Apparatus for sensing a magnetic field with a superconductive material
JPH07113664B2 (en) Superconducting magnetic field distribution measuring device
Pascal et al. Experimental determination of optimum operating conditions of a superconducting interferometer
Hetrick A vibrating cantilever magnetic-field sensor
Chen et al. A Multi-parameter driving and measurement circuit of ultrasonic motor
JPH05264695A (en) Superconductive magnetic field measuring device
Arnold et al. Application of SQUIDs to low temperature and high magnetic field measurements—Ultra low noise torque magnetometry
Salzer et al. Magnetoelectric Microwave Magnetic Field Sensor at 3 GHz
Liu et al. Closed-loop Diamond Quantum Sensor for Large Range and High Precision Current Measurement
JPH01217981A (en) Superconducting quantum interference device
JP2003149311A (en) Wide band active magnetic shield method
RU2100819C1 (en) Magnetic field meter
Okazaki et al. Active magnetic shielding with magneto-impedance sensor
Jiang et al. Real Time Monitoring of Weak Magnetic Field
Asfour et al. Current source dedicated for direct digital synthesizers: Application to the giant magneto-impedance (GMI) sensors
JPH05281312A (en) Method and instrument for performing magnetic measurement
JPH01185463A (en) Magnetism detecting element
JPH0743441A (en) Superconducting magnetic sensor