JPH01185463A - Magnetism detecting element - Google Patents

Magnetism detecting element

Info

Publication number
JPH01185463A
JPH01185463A JP1041788A JP1041788A JPH01185463A JP H01185463 A JPH01185463 A JP H01185463A JP 1041788 A JP1041788 A JP 1041788A JP 1041788 A JP1041788 A JP 1041788A JP H01185463 A JPH01185463 A JP H01185463A
Authority
JP
Japan
Prior art keywords
piezoelectric body
magnetic field
magnetic
superconductor
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1041788A
Other languages
Japanese (ja)
Inventor
Shigeki Shibagaki
茂樹 柴垣
Akira Seki
彰 関
Akira Shintani
新谷 昭
Masaichiro Matsushita
松下 雅一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1041788A priority Critical patent/JPH01185463A/en
Publication of JPH01185463A publication Critical patent/JPH01185463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To improve the sensitivity of a magnetism detecting element and to prevent fluctuation due to temperature, by providing a superconductor and a piezoelectric body which detects the Lorentz force generated due to the Meissner effect as stress at one surface of the pressure receiving surfaces. CONSTITUTION:Electrodes 2 and 2 are deposited on two surfaces of a piezoelectric body 1 having a crystal structure by evaporation and the like. The two surfaces are arranged at aright angle to the crystal orientation where the piezoelectric effect of the piezoelectric body 1 appears most intensely. A superconductor 3 is deposited on one of the electrode 2 by the same way. The other electrode 2 is fixed to a fixing plate 4. When this element is placed in a magnetic field 8, a screening current which repels the magnetic field 8 flows in the surface of the conductor 3. Lorentz force is generated in the conductor 8 due to the Meissner effect and transmitted to the piezoelectric body 1. At this time, since one end of the piezoelectric body 1 is fixed 4, the transmitted Lorentz force becomes stress. The piezoelectric body 1 is contracted or expanded with the stress, and a potential is generated between the electrodes 2 and 2 which are disposed on both ends. The magnitude of the potential is detected with a voltmeter 7 through a lead wires 6. The intensity of the magnetism in the magnetic field 8 is measured as the voltage.

Description

【発明の詳細な説明】 〔従来の技術及び発明が解決しようとする課題〕従来、
固体磁気センサとしては半導体素子を使用したものが多
く、これらの磁気センサは半導体のホール効果または磁
気抵抗効果を利用したものが代表的である。
[Detailed description of the invention] [Prior art and problems to be solved by the invention] Conventionally,
Many solid-state magnetic sensors use semiconductor elements, and these magnetic sensors typically utilize the Hall effect or magnetoresistive effect of semiconductors.

また、ジョセフソン接合を用いた2個の超電導量子干渉
素子(Super Quantum Interfer
ence De−vice; 5QtllD)を利用し
た磁気センサがあり、感度は非常に高い。
In addition, two superconducting quantum interference devices using Josephson junctions (Super Quantum Interfer
There is a magnetic sensor that uses ence device; 5QtllD) and has very high sensitivity.

しかし、これらの磁気センサは、磁気を検知する磁気検
知部と、検知した信号を増幅処理する電気回路部とから
なり、磁気検知装置としては構成が複雑となっている。
However, these magnetic sensors consist of a magnetic detection section that detects magnetism and an electric circuit section that amplifies the detected signal, making the structure of the magnetic detection device complicated.

例えば、5QtllD磁気センサは、超電導リングの近
傍にLC共振回路を配し、リング電流のヒステリシスに
よるしC共振回路のQの変化を増幅することによって磁
気に対する感度を高め、これを検知している。即ち、磁
気センサとしては、ジョセフソン接合を利用した2個の
超電導リングだけでは電気信号が微弱であって、検知し
た磁気の電気信号をLC共振器で増幅しなければ、検知
量を電気信号として取り出すことが難しく、この電気信
号の減衰をできる限り小さくするために、しC共振器を
センサ本体の近傍に配置しなければならず、センサの構
成が複雑になっている。
For example, in the 5QtllD magnetic sensor, an LC resonant circuit is arranged near a superconducting ring, and sensitivity to magnetism is increased and detected by amplifying changes in the Q of the C resonant circuit due to hysteresis of the ring current. In other words, as a magnetic sensor, the electric signal produced by only two superconducting rings using Josephson junctions is weak, and unless the detected magnetic electric signal is amplified with an LC resonator, the detected amount cannot be converted into an electric signal. It is difficult to extract the electric signal, and in order to minimize the attenuation of this electric signal, the C resonator must be placed near the sensor body, making the sensor configuration complicated.

さらに、5QUID磁気センサは、ジッセフソン接合を
利用した2個の超電導体を使用しているが、素子そのも
のが微細であって、素子作製に高度の集積回路作製技術
を必要とするとともに、作製コストが高いという欠点を
有している。
Furthermore, the 5QUID magnetic sensor uses two superconductors using Gisefson junctions, but the elements themselves are minute, requiring advanced integrated circuit manufacturing technology to manufacture the elements, and the manufacturing cost is high. It has the disadvantage of being expensive.

一方、ホール効果を利用した磁気センサは、磁界を電圧
変化として検出するが、この電圧変化が磁界のみならず
素子形状にも依存するため、電圧と磁界との関係に直線
性を得難く、磁気センサとしての感度が低い、また、ホ
ール素子の材料としてInSb、 InAs等のm−v
族元素を使用した半導体が主流であるが、これらの材料
のホール係数には0.05χ/℃程度の温度依存性があ
り、この温度ゆらぎによってセンサの測定精度に誤差が
生じ易い。
On the other hand, a magnetic sensor that uses the Hall effect detects a magnetic field as a voltage change, but since this voltage change depends not only on the magnetic field but also on the element shape, it is difficult to obtain linearity in the relationship between the voltage and the magnetic field. InSb, InAs, etc. have low sensitivity as a sensor, and m-v materials such as InSb and InAs can be used as materials for Hall elements.
Semiconductors using group elements are the mainstream, but the Hall coefficients of these materials have a temperature dependence of about 0.05χ/°C, and this temperature fluctuation tends to cause errors in the measurement accuracy of the sensor.

また、磁気抵抗効果を利用した磁気センサは、磁気抵抗
素子そのものが磁界強度に対して本来感度が低く、例え
ばInSbでは、0.15テスラ以上の磁界に対して初
めて感度を有するので、磁気抵抗効果を利用した磁気セ
ンサは高磁界の測定には通している。従って、低磁界の
測定には、0.1〜0.2テスラ程度のバイアス磁界を
付加している。
In addition, in magnetic sensors that utilize the magnetoresistive effect, the magnetoresistive element itself has inherently low sensitivity to magnetic field strength.For example, InSb has sensitivity for the first time to a magnetic field of 0.15 Tesla or more, so the magnetoresistive effect Magnetic sensors using this technology are successful in measuring high magnetic fields. Therefore, for low magnetic field measurements, a bias magnetic field of about 0.1 to 0.2 Tesla is added.

さらに、この磁気センサはIOV程度の動作電圧を必要
とし、センサの駆動エネルギを常時供給しなければなら
ず、素子の構成が複雑となる。
Furthermore, this magnetic sensor requires an operating voltage on the order of IOV, and driving energy for the sensor must be constantly supplied, making the element configuration complicated.

また、最近、超電導体の磁気に対する電気抵抗変化を利
用した磁気センサが考案されているが、この場合、外部
磁場と電気抵抗との関係はリニアでなく、その関係は超
電導体の特性に基づき得られる複雑な関数によって定ま
るので、これを磁気センサに使用する場合、外部磁場と
電気抵抗との複雑な関数を予め知っておく必要があるた
め、磁気センサとしての利用効率が低いという問題点が
あった。
Recently, magnetic sensors have been devised that utilize changes in electrical resistance due to magnetism in superconductors, but in this case, the relationship between the external magnetic field and electrical resistance is not linear, and the relationship can be determined based on the characteristics of the superconductor. Therefore, when using this as a magnetic sensor, it is necessary to know in advance the complex function between the external magnetic field and electrical resistance, which poses the problem of low utilization efficiency as a magnetic sensor. Ta.

本発明はこのような課題を解決するためになされたもの
であって、駆動回路、外部バイアス磁界の印加を必要と
せず、温度ゆらぎが小さく、また、作製工程が簡単な磁
気検知素子及びその使用方法の提供を目的とする。
The present invention has been made to solve these problems, and provides a magnetic sensing element that does not require a drive circuit or the application of an external bias magnetic field, has small temperature fluctuations, and has a simple manufacturing process, and its use. The purpose is to provide a method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る磁気検知素子は、超電導体と、該超電導体
のマイスナ効果により生じるローレンツ力を応力として
その受圧面の1面または両面にて感知することを特徴と
し、また本発明に係る磁気検知装置は、前記磁気検知素
子複数個を1次元または2次元または3次元方向に配列
してなることを特徴とする。
The magnetic sensing element according to the present invention is characterized by sensing a superconductor and Lorentz force generated by the Meissner effect of the superconductor as stress on one or both of its pressure receiving surfaces, and the magnetic sensing element according to the present invention The device is characterized in that a plurality of the magnetic sensing elements are arranged in a one-dimensional, two-dimensional, or three-dimensional direction.

〔作用〕[Effect]

本発明に係る磁気検知素子は、磁気に対する超電導体の
マイスナ効果により生じたローレンツ力が圧電体に伝達
され、その応力によって圧電体の受圧面間に電位が生じ
、生じた電位を検出して磁気強さを検知する。
In the magnetic sensing element according to the present invention, the Lorentz force generated by the Meissner effect of the superconductor on magnetism is transmitted to the piezoelectric material, the stress generates a potential between the pressure-receiving surfaces of the piezoelectric material, and the generated potential is detected to detect the magnetic field. Detect strength.

また、本発明に係る磁気検知装置は、前記磁気検知素子
を2次元または3次元方向に配し、2次元または3次元
方向の磁気強さの分布を検知する。
Further, in the magnetic sensing device according to the present invention, the magnetic sensing elements are arranged in a two-dimensional or three-dimensional direction, and the distribution of magnetic strength in the two-dimensional or three-dimensional direction is detected.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づき詳述する
。第1図は本発明に係る磁気検知素子の構成を示す概略
図であって、図中1は結晶構造を有する圧電体である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 1 is a schematic diagram showing the configuration of a magnetic sensing element according to the present invention, and numeral 1 in the figure represents a piezoelectric material having a crystal structure.

圧電体1の圧電効果が最も強く現れる結晶方位と直角を
なす2つの面それぞれには、電極2.2が蒸着等により
被着され、一方の電極2には、超電導体3が蒸着、貼着
等により被着され、また他方の電極2は固定板4に固定
される。さらに、画電極2,2にはリード線6が配設さ
れ、リード線6は電圧計7に接続される。
Electrodes 2.2 are deposited by vapor deposition on each of the two planes perpendicular to the crystal orientation in which the piezoelectric effect of the piezoelectric body 1 appears most strongly, and a superconductor 3 is deposited or pasted on one of the electrodes 2. etc., and the other electrode 2 is fixed to the fixing plate 4. Further, a lead wire 6 is provided between the picture electrodes 2, 2, and the lead wire 6 is connected to a voltmeter 7.

以上のような構成の磁気検知素子による磁気検知の原理
を以下に説明する。磁気検知素子を磁界8の中に配する
と、超電導体3表面に磁界8を反溌する遮蔽電流が流れ
、このマイスナ効果によって超電導体3にローレンツ力
が生じる。なお、ローレンツ力と磁界8の磁気強さと′
の関係は2次関数である。
The principle of magnetic detection by the magnetic sensing element configured as above will be explained below. When the magnetic sensing element is placed in the magnetic field 8, a shielding current that repulses the magnetic field 8 flows on the surface of the superconductor 3, and a Lorentz force is generated in the superconductor 3 due to this Meissner effect. In addition, the Lorentz force, the magnetic strength of the magnetic field 8, and ′
The relationship is a quadratic function.

次に、超電導体3に生じたローレンツ力は圧電体lに伝
達されるが、圧電体1は一方を固定板5に固定されてお
り、伝達されたローレンツ力が応力となって圧電体1が
圧縮または伸長し、その結果、圧電体1の両側に配され
た電極2,2間に電位が生じ、この電位がリード線6を
介して電圧計7に伝達され、電圧計7によって電位の大
きさが検出される。
Next, the Lorentz force generated in the superconductor 3 is transmitted to the piezoelectric body 1, but one side of the piezoelectric body 1 is fixed to the fixed plate 5, and the transmitted Lorentz force becomes stress and the piezoelectric body 1 As a result, a potential is generated between the electrodes 2 arranged on both sides of the piezoelectric body 1, and this potential is transmitted to the voltmeter 7 via the lead wire 6, and the magnitude of the potential is measured by the voltmeter 7. is detected.

即ち、圧電体1で生じる電位は、超電導体4から圧電体
lに加えられる応力に比例し、超電導体3にて生じる応
力は磁界8の磁気強さの2乗に比例するので、磁界8の
磁気強さが電圧として測定される。
That is, the potential generated in the piezoelectric body 1 is proportional to the stress applied to the piezoelectric body l from the superconductor 4, and the stress generated in the superconductor 3 is proportional to the square of the magnetic strength of the magnetic field 8. Magnetic strength is measured as a voltage.

また、磁界8が逆方向の場合は、圧電体に生じる電位の
方向が逆転するので、電圧計7の針の振れ方向によって
磁界8の方向を検知することができる。
Furthermore, when the magnetic field 8 is in the opposite direction, the direction of the potential generated in the piezoelectric body is reversed, so the direction of the magnetic field 8 can be detected by the deflection direction of the needle of the voltmeter 7.

さらに、このような磁気検知素子を複数個直列に接続す
れば、測定電圧が増幅され、磁気センサとしての感度が
向上する。
Furthermore, if a plurality of such magnetic sensing elements are connected in series, the measured voltage is amplified and the sensitivity of the magnetic sensor is improved.

また、このような磁気検知素子を2次元または3次元方
向に配列すれば、2次元または3次元方向の磁界分布を
検知することができる。
Furthermore, by arranging such magnetic sensing elements in two or three dimensions, it is possible to detect the magnetic field distribution in two or three dimensions.

次に、本実施例の磁気検知素子の詳細につき説明する。Next, details of the magnetic sensing element of this example will be explained.

第2図は本発明に係る磁気検知素子の詳細な構成を示す
図であつて、第2図に基づき本実施例の磁気検知素子の
作製手順を説明する0図中1は、電圧出力係数の大きい
PZTセラミフクスからなる、直径約10鶴、長さ約2
0fiの円柱形の圧電体である。圧電体1は、図示の如
く、同一極性を有する端面を電極5を介して対向させて
2個を並設し、並設した圧電体1,1の両端には、それ
ぞれAIメタルからなる厚さ約2mのアルミニウム電極
2,2が蒸着される。一方のアルミニウム電極2は、直
径的22tmの金属製円筒10の底面に固定され、また
、他方のアルミニウム電極2は、その周縁部が金属製円
筒10に摺動可能に内接する金属板11に固定される。
FIG. 2 is a diagram showing the detailed configuration of the magnetic sensing element according to the present invention, and 1 in 0 represents the voltage output coefficient. Made of large PZT ceramic fuchs, about 10 cranes in diameter and about 2 in length.
It is a cylindrical piezoelectric body of 0fi. As shown in the figure, two piezoelectric bodies 1 are arranged side by side with end faces having the same polarity facing each other with an electrode 5 interposed therebetween, and both ends of the piezoelectric bodies 1, 1 arranged in parallel are each coated with a thickness made of AI metal. Approximately 2 m of aluminum electrodes 2,2 are deposited. One aluminum electrode 2 is fixed to the bottom surface of a metal cylinder 10 with a diameter of 22 tm, and the other aluminum electrode 2 is fixed to a metal plate 11 whose peripheral edge is slidably inscribed in the metal cylinder 10. be done.

一方、BaCO31Cu20+ Y2O3を重量比、4
:3:1の割合で混合し、この混合粉体をit/−でプ
レスし、これを24時間大気中で仮焼する。この仮焼物
を粉砕し、再び混合してit/−でプレスし、直径24
鶴、厚さ6fiのY BaCu酸化物セラミックスから
なる円板状の超電導体3を形成した後、この超電導体3
を900℃で16時間、空気中で焼結する。
On the other hand, the weight ratio of BaCO31Cu20+ Y2O3 is 4
: Mixed in a ratio of 3:1, this mixed powder was pressed at it/-, and this was calcined in the air for 24 hours. This calcined material was crushed, mixed again and pressed with it/-, with a diameter of 24 mm.
After forming a disk-shaped superconductor 3 made of YBaCu oxide ceramics with a thickness of 6 fi, this superconductor 3
is sintered at 900° C. for 16 hours in air.

この超電導体3を、金属とフリットガラスとの混合物に
よって金属板11に接着し、接着部位を120℃程度に
加熱して固着させる。
This superconductor 3 is bonded to the metal plate 11 using a mixture of metal and frit glass, and the bonded portion is heated to about 120° C. to fix it.

また、電極5には絶縁体12を介してリード線6が接続
され、該リード線6と、金属製円筒10に接続されたリ
ード線6とは、電圧計7の端子にそれぞれ接続される。
Further, a lead wire 6 is connected to the electrode 5 via an insulator 12, and the lead wire 6 and the lead wire 6 connected to the metal cylinder 10 are respectively connected to a terminal of a voltmeter 7.

以上のように形成された磁気検知素子における磁界と誘
起電位との関係を第1表に示す。なお、その際の温度ゆ
らぎは0.001以下であった。
Table 1 shows the relationship between the magnetic field and the induced potential in the magnetic sensing element formed as described above. Note that the temperature fluctuation at that time was 0.001 or less.

従って、第1表に示すような誘起電位と磁界との2次関
数的な関係に基づき誘起電位から磁界を算出する回路を
この検知素子に接続すれば、磁気強さを直接計器から読
み取ることができる。
Therefore, if a circuit that calculates the magnetic field from the induced potential based on the quadratic relationship between the induced potential and the magnetic field as shown in Table 1 is connected to this sensing element, the magnetic strength can be read directly from the meter. can.

また、本発明に係る磁気検知素子を使用した磁気センサ
と、従来の磁気センサとの特徴を第2表に比較した。
Table 2 also compares the characteristics of a magnetic sensor using the magnetic sensing element according to the present invention and a conventional magnetic sensor.

〔発明の効果〕〔Effect of the invention〕

本発明の磁気検知素子は、超電導体のマイスナ効果を利
用して素子の感度を高め、また第2表の比較から明らか
なように、駆動回路、外部バイアス回路を必要とせず、
素子の作製工程が簡単であって、さらに温度ゆらぎが小
さいという優れた効果を奏する。
The magnetic sensing element of the present invention utilizes the Meissner effect of superconductors to increase the sensitivity of the element, and as is clear from the comparison in Table 2, it does not require a drive circuit or an external bias circuit.
The manufacturing process of the device is simple, and furthermore, it has excellent effects such as small temperature fluctuations.

第1表 第2表Table 1 Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係る磁気検知素子の構成を
示す概略図である。 1・・・圧電体 2・・・アルミニウム電極 3・・・
超電導体 4・・・固定板 5・・・電極 6・・・リ
ード線7・・・電圧計 8・・・磁界 特 許 出願人 住友金属工業株式会社代理人 弁理士
 河  野  登  夫薬    22
FIGS. 1 and 2 are schematic diagrams showing the structure of a magnetic sensing element according to the present invention. 1... Piezoelectric body 2... Aluminum electrode 3...
Superconductor 4... Fixed plate 5... Electrode 6... Lead wire 7... Voltmeter 8... Magnetic field patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono 22

Claims (1)

【特許請求の範囲】[Claims] 1、超電導体と、該超電導体のマイスナ効果により生じ
るローレンツ力を応力としてその受圧面の1面または両
面にて感知する圧電体とを備えたことを特徴とする磁気
検知素子。2、超電導体と、該超電導体のマイスナ効果
により生じるローレンツ力を応力としてその受圧面の1
面または両面にて感知する圧電体とを備えた磁気検知素
子複数個を、1次元または2次元または3次元方向に配
列してなることを特徴とする磁気検知装置。
1. A magnetic sensing element comprising a superconductor and a piezoelectric body that senses the Lorentz force generated by the Meissner effect of the superconductor as stress on one or both of its pressure-receiving surfaces. 2. A superconductor and one of its pressure-receiving surfaces using the Lorentz force generated by the Meissner effect of the superconductor as stress.
1. A magnetic sensing device comprising a plurality of magnetic sensing elements each having a piezoelectric body that senses on one or both sides arranged in one, two or three dimensions.
JP1041788A 1988-01-19 1988-01-19 Magnetism detecting element Pending JPH01185463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1041788A JPH01185463A (en) 1988-01-19 1988-01-19 Magnetism detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1041788A JPH01185463A (en) 1988-01-19 1988-01-19 Magnetism detecting element

Publications (1)

Publication Number Publication Date
JPH01185463A true JPH01185463A (en) 1989-07-25

Family

ID=11749571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1041788A Pending JPH01185463A (en) 1988-01-19 1988-01-19 Magnetism detecting element

Country Status (1)

Country Link
JP (1) JPH01185463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426621B1 (en) * 1998-06-22 2002-07-30 Honeywell Inc. Method and apparatus for generating an output voltage by detecting magnetic field
US6975109B2 (en) 2000-09-01 2005-12-13 Honeywell International Inc. Method for forming a magnetic sensor that uses a Lorentz force and a piezoelectric effect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426621B1 (en) * 1998-06-22 2002-07-30 Honeywell Inc. Method and apparatus for generating an output voltage by detecting magnetic field
US6975109B2 (en) 2000-09-01 2005-12-13 Honeywell International Inc. Method for forming a magnetic sensor that uses a Lorentz force and a piezoelectric effect

Similar Documents

Publication Publication Date Title
EP2818884B1 (en) Magneto-resistive sensor for measuring magnetic field
US6191581B1 (en) Planar thin-film magnetic field sensor for determining directional magnetic fields
US5731703A (en) Micromechanical d'arsonval magnetometer
US5168760A (en) Magnetic multilayer strain gage
Willemin et al. Piezoresistive cantilever designed for torque magnetometry
US5011818A (en) Sensing a magnetic field with a super conductive material that exhibits magneto resistive properties
US7094480B2 (en) Magnetic field sensor using magnetoresistance and method for making same
JPH06148301A (en) Magnetic sensor
JPH11507436A (en) Composite superconducting quantum interference device and circuit
US5126667A (en) Superconductive magneto-resistive device for sensing an external magnetic field
JPH01185463A (en) Magnetism detecting element
CN115856725A (en) Magnetic sensor
US5055785A (en) Superconductive magneto resistive apparatus for measuring weak magnetic field using superconductive magneto-resistive element
US4996392A (en) Superconductor magnetic image detection device
JP2615732B2 (en) Magnetic field detector
Kvitkovič et al. Three-axis cryogenic Hall sensor
CN206905691U (en) A kind of single shaft micromechanics displacement transducer based on tunnel magneto-resistance effect
US5592081A (en) Magnetic Sensor
Hattrick-Simpers et al. Demonstration of magnetoelectric scanning probe microscopy
JPH0227279A (en) Superconductor magnetic measuring apparatus
JPH05196715A (en) Superconductive magnetism sensor
JP2933681B2 (en) Magnetic field measurement method
JPH06103340B2 (en) Magnetic sensor
Tritt et al. Response of piezoelectric bimorphs as a function of temperature
Sisson Hall effect. Devices and applications