JPS63292617A - Manufacture of soi substrate - Google Patents

Manufacture of soi substrate

Info

Publication number
JPS63292617A
JPS63292617A JP12689087A JP12689087A JPS63292617A JP S63292617 A JPS63292617 A JP S63292617A JP 12689087 A JP12689087 A JP 12689087A JP 12689087 A JP12689087 A JP 12689087A JP S63292617 A JPS63292617 A JP S63292617A
Authority
JP
Japan
Prior art keywords
substrate
crystal grains
crystal
orientation
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12689087A
Other languages
Japanese (ja)
Inventor
Hiroshi Terao
博 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12689087A priority Critical patent/JPS63292617A/en
Publication of JPS63292617A publication Critical patent/JPS63292617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To allow crystal grains having specific orientation to remain and to obtain an SOI substrate controlled in its orientation by depositing a polycrystalline silicon film on an amorphous insulator, and then conducting a selectively thermal oxidation in which its oxidizing velocity depends upon the crystal orientation on the film. CONSTITUTION:A polycrystalline silicon film 2 is formed by an LPCVD method at 670 deg.C Con an SiO2 substrate 1. Then, a wet oxidation at 900 deg.C and an etching of the oxide SiO2 are conducted. As a result, crystal grains 3 with the lowest oxidizing velocity and the substrate normal direction is (100) of, among the crystal grains having various crystal orientations contained in the polycrystalline silicon film, selectively remain. Then, the substrate is held at an ambient temperature thereon, and an amorphous silicon 4 is deposited in a vacuum device. The amorphous silicon is crystallized with the selectively remaining crystal grains as seeds by heat treating at 600 deg.C for 4 hours to obtain an SOI layer 5 controlled in the whole face to an orientation (100).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はSOI基板の製造方法に関し、特に単結晶基板
を種として用いることなく、結晶方位の制御されたSO
I基板を製造する方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing an SOI substrate, and in particular to a method for manufacturing an SOI substrate with controlled crystal orientation, without using a single crystal substrate as a seed.
The present invention relates to a method of manufacturing an I-substrate.

[従来の技術] S OI (Si l 1con On In5ula
tor)構造は、半導体集積回路の高集積化、高速度化
、耐放射線などにとって有利であることから、重要性が
高い。また、能動層を絶縁体層を介して多層に重ねた積
層素子(三次元回路素子)のための基本技術である。
[Prior art] SOI
The (tor) structure is highly important because it is advantageous for higher integration, higher speed, radiation resistance, etc. of semiconductor integrated circuits. It is also a basic technology for multilayer devices (three-dimensional circuit devices) in which active layers are stacked in multiple layers with insulating layers interposed in between.

Sol構造において、その結晶方位を制御することは各
素子時、性の均一性を保つために不可欠の技術である。
In the Sol structure, controlling the crystal orientation is an essential technique for maintaining uniformity of properties in each element.

しかし、一般にSOI構造における絶縁体は非晶質であ
るために、結晶方位の制御されたSOI基板の製造には
特別の工夫か必要である。
However, since the insulator in the SOI structure is generally amorphous, special measures are required to manufacture an SOI substrate with controlled crystal orientation.

単結晶基板を種としない結晶方位の制御方法としては、
■グラフオエピタキシー法(ジャーナル・オブ・クリス
タルグロース8志、第63巻、527ページ〉、■シー
ドセレクションスルーイオンチャネリング法(アプライ
ド・フィジックス・レター誌、第146巻、683ペー
ジ〉、■2−ステップレーザアニール法(第45回応用
物理学会講演会予稿集、412ページ)などが提供され
ている。
As a method for controlling crystal orientation without using a single crystal substrate as a seed,
■Graphoepitaxy method (Journal of Crystal Growth 8th Vol. 63, page 527), ■Seed selection through ion channeling method (Applied Physics Letters, volume 146, page 683), ■2-step Laser annealing methods (Proceedings of the 45th Japan Society of Applied Physics Conference, page 412) are provided.

[発明が解決しようとする問題点] 上述の結晶方位制?ff11方法は、それぞれに特徴を
有しているか、実用化にあたっては問題点を残している
。すなわち、■のグラフカエピタキシー法では、加二「
か困!Altであること、および熱処理中に変形か生じ
ること、■のシードセレクションスルーイオンチャネリ
ング法では801層の厚さに苅する制限かぎびしく、ま
た、イオンビームの平行性、単板の保持精度の点て通常
のイオン注入装置か使えないこと、■の2−ステップレ
ーリ゛アニール法ではスループッ1への低さ、高温プロ
セスであることなどがそれぞれ問題となる。従ってこれ
らの問題点を解決したSO■基板の製造方法か望まれて
いる。
[Problem to be solved by the invention] The above-mentioned crystal orientation system? Each of the ff11 methods has its own characteristics, or there are still problems in practical implementation. In other words, in the graphka epitaxy method of ■,
Trouble! In the seed selection through ion channeling method described in (2), there is a severe limitation on the thickness of 801 layers, and there are also problems with the parallelism of the ion beam and the holding accuracy of the veneer. However, there are problems such as the inability to use a normal ion implantation device, the low throughput of 1, and the high temperature process in the 2-step Ray annealing method (2). Therefore, there is a need for a method of manufacturing SO2 substrates that solves these problems.

「問題点を解決するための手段」 本発明は非晶質絶縁体上に多結晶シリコン膜をその結晶
粒径と同等以下の膜厚に堆積Jる工程と酸化速度か結晶
方位によって異なる選択的熱酸化を前記多結晶シリコン
膜に対して行う工程と、この工程で形成されたSiO2
をエツチングにより除去して単板法線方向の結晶方位に
おいて最も前記酸化速度か小さくなるようなシリコン結
晶粒のみを残す工程と、この結晶粒か残された基板上に
非晶質シ1ノ]ンを堆積する工程と、この非晶質シリコ
ンを熱処理して前記結晶粒を種とする結晶化を行う工程
とを備えてなることを特徴とするSOI基板の製造方法
である。
``Means for Solving the Problems'' The present invention involves a process of depositing a polycrystalline silicon film on an amorphous insulator to a thickness equal to or less than the crystal grain size, and a selective method that varies depending on the oxidation rate or crystal orientation. A step of thermally oxidizing the polycrystalline silicon film and SiO2 formed in this step.
A process of removing by etching to leave only the silicon crystal grains that have the lowest oxidation rate in the crystal orientation in the normal direction of the veneer, and forming an amorphous silicone on the remaining substrate with these crystal grains. This method of manufacturing an SOI substrate is characterized by comprising a step of depositing amorphous silicon, and a step of heat-treating the amorphous silicon to crystallize it using the crystal grains as seeds.

[作用] 単結晶基板を使用しないで結晶方位を制御するために、
本発明では、最初に非晶質絶縁体上に堆積された多結晶
シリコン膜に含まれる各種の方位の結晶粒の中から、特
定の方位を持つ結晶粒のみを残す工程を設けている。シ
リ」ンの熱酸化の速度は、適当な条件下では結晶面方位
に大きく依存する。これを利用することによって基板法
線方向の結晶方位か酸化速度の最も小さい方位となる結
晶粒のみを残覆−ことかてぎる。例えば、900 ’C
てのウエッ]〜酸化によれば酸化速度は(111)、(
311)、 (100)面の順であり、 (100)面
の酸化速度か最も小さく、他の面は(ioo)面の1,
5倍程度大きな値でおる。熱酸化の過程において、はじ
めは多結晶シリコン膜の表面から酸化されるか、酸化の
進行にしたかって各結晶粒の側面からの酸化も生じる。
[Function] In order to control the crystal orientation without using a single crystal substrate,
In the present invention, a step is provided in which only crystal grains having a specific orientation are left among crystal grains having various orientations contained in a polycrystalline silicon film initially deposited on an amorphous insulator. The rate of thermal oxidation of silicon is highly dependent on crystal plane orientation under appropriate conditions. By utilizing this, it is possible to leave only the crystal grains oriented in the direction normal to the substrate or in the direction with the lowest oxidation rate. For example, 900'C
According to oxidation, the oxidation rate is (111), (
311), (100) plane, the oxidation rate of (100) plane is the lowest, and the other planes are (ioo) plane 1,
The value is about 5 times larger. In the process of thermal oxidation, the surface of the polycrystalline silicon film is oxidized first, or as the oxidation progresses, oxidation also occurs from the side surfaces of each crystal grain.

しかし、結晶粒径が膜厚と同程度以上て市れば、酸化速
度の大きな方位の結晶粒かすぺ゛C基板で市る非晶質絶
縁体との界面まで酸化され、しかも酸化速度の小さな方
位の結晶粒は部分的にしか酸化されない状態が得られる
。この時点て酸化を停止したのら、酸化物SiO2をエ
ツチングで除去すれば良い。
However, if the crystal grain size is equal to or larger than the film thickness, the crystal grains in the direction where the oxidation rate is high will be oxidized to the interface with the amorphous insulator formed on the SPEC substrate, and the oxidation rate will be low. A state is obtained in which oriented crystal grains are only partially oxidized. After stopping the oxidation at this point, the oxide SiO2 may be removed by etching.

一旦、特定方位の結晶粒のみが残れば、この上に非晶質
シリコンを堆積し結晶化を行わけると、残された特定方
位の結晶粒か種となって結晶化か牛し、仝而を同一結晶
方位とすることかできる。
Once only crystal grains with a specific orientation remain, if amorphous silicon is deposited on top of this and crystallized, the remaining crystal grains with a specific orientation will become seeds and will crystallize. can have the same crystal orientation.

[実施例] 以下、本発明の実施例について図面を参照して詳細に説
明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明方法の一実施例を説明するための工程図
である。ます、SiO2基板1上に多結晶シリコン膜2
を670°○でのl PCVD法により形成した(第1
図(a))。次に900’Cてのウェット酸化処理と、
酸化物SiO2のエツチングを行った。
FIG. 1 is a process diagram for explaining one embodiment of the method of the present invention. First, a polycrystalline silicon film 2 is formed on a SiO2 substrate 1.
was formed by l PCVD method at 670°○ (first
Figure (a)). Next, wet oxidation treatment at 900'C,
The oxide SiO2 was etched.

この結果、多結晶シリコン膜に含まれる各種の結晶方位
の結晶粒のうち、酸化速度の最も小さい基板法線方向か
<100>の結晶′)gI3が選択的に残される(第1
図(b))。次いてこのトに基板を常温に保ち、真空装
置内で非晶質シリコン4を堆積する(第1図(C))。
As a result, among the crystal grains with various crystal orientations contained in the polycrystalline silicon film, the crystals (')gI3 in the direction normal to the substrate or <100>, which have the lowest oxidation rate, are selectively left (the first
Figure (b)). Next, while keeping the substrate at room temperature, amorphous silicon 4 is deposited in a vacuum apparatus (FIG. 1(C)).

600°Cて4時間の熱処理を行うことにより、前)ホ
の選択的に残された結晶粒を種とする非晶質シリコンの
結晶化が起こり、仝而かdoo>方位に制御されたSO
I層5が得られた(第1図(d))。この801層の膜
厚は堆積させる非晶質シリコンの厚さを変えることによ
り所望の厚さとすることかできた。
By performing heat treatment at 600°C for 4 hours, amorphous silicon crystallizes using the selectively left crystal grains of (e) as seeds, resulting in SO controlled in the doo> orientation.
An I layer 5 was obtained (FIG. 1(d)). The thickness of the 801 layer could be adjusted to a desired thickness by changing the thickness of the amorphous silicon deposited.

上)小の工程においては、多結晶シリコン膜を670°
CてのL P CV D法で形成したか、これは多結晶
シリコン膜の配向性がほぼランダムとなり<111>、
<110>、<311>、<100>などの結晶粒の割
合かほぼ一様となる条件である。LPCVD法−〇 − の温度、圧力によりこの配向性は変化するので、目的に
応じてこれらの条件を決定すればよい。また、非晶質シ
リコンの結晶化を600℃の同相成長 (a)によって
行っているが、同相成長の場合、温度か高い方が成長速
度は速くなるが、非晶質シリコン中ての核形成が生じて
方位制御か不十分となるためにここ−Cは600°Cと
している。
Above) In the small process, the polycrystalline silicon film is
The orientation of the polycrystalline silicon film is almost random and is formed using the L P CV D method.
This is a condition in which the ratio of crystal grains such as <110>, <311>, and <100> is almost uniform. Since this orientation changes depending on the temperature and pressure of the LPCVD method, these conditions may be determined depending on the purpose. In addition, amorphous silicon is crystallized by in-phase growth at 600°C (a), but in the case of in-phase growth, the higher the temperature, the faster the growth rate, but nucleation in amorphous silicon -C is set to 600°C because this causes insufficient azimuth control.

本発明の方法によれば、酸化速度が結晶方位に依存する
条件下での熱酸化という簡単な方法で特定の方位を持つ
結晶粒のみを残すことかでき、方位制御のされたSOI
基板が得られる。
According to the method of the present invention, only crystal grains with a specific orientation can be left by a simple method of thermal oxidation under conditions where the oxidation rate depends on the crystal orientation, and SOI with orientation control can be obtained.
A substrate is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を示す工程図で (C)
ある。 1・・・SiO2基板    2・・・多結晶シリコン
膜3・・・基板法線方向か<100>の結晶粒4・・・
非晶質シリコン  5・・・SOI層(d) 代理人弁即士   舘  野  千惠子第1図
Figure 1 is a process diagram showing an example of the method of the present invention (C)
be. 1...SiO2 substrate 2...Polycrystalline silicon film 3...Crystal grains of <100> in the normal direction of the substrate 4...
Amorphous silicon 5...SOI layer (d) Attorney Chieko Tateno Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)非晶質絶縁体上に多結晶シリコン膜をその結晶粒
径と同等以下の膜厚に堆積する工程と、酸化速度が結晶
方位によって異なる選択的熱酸化を前記多結晶シリコン
膜に対して行う工程と、この工程で形成されたSiO_
2をエッチングにより除去して基板法線方向の結晶方位
において最も前記酸化速度が小さくなるようなシリコン
結晶粒のみを残す工程と、この結晶粒が残された基板上
に非晶質シリコンを堆積する工程と、この非晶質シリコ
ンを熱処理して前記結晶粒を種とする結晶化を行う工程
とを備えてなることを特徴とするSOI基板の製造方法
(1) A process of depositing a polycrystalline silicon film on an amorphous insulator to a thickness equal to or less than the crystal grain size, and selective thermal oxidation of the polycrystalline silicon film, the oxidation rate of which varies depending on the crystal orientation. and the SiO_ formed in this process.
2 by etching to leave only the silicon crystal grains where the oxidation rate is the lowest in the crystal orientation in the normal direction of the substrate, and depositing amorphous silicon on the substrate where the crystal grains remain. A method for manufacturing an SOI substrate, comprising: a step of heat-treating the amorphous silicon to crystallize the amorphous silicon using the crystal grains as seeds.
JP12689087A 1987-05-26 1987-05-26 Manufacture of soi substrate Pending JPS63292617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12689087A JPS63292617A (en) 1987-05-26 1987-05-26 Manufacture of soi substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12689087A JPS63292617A (en) 1987-05-26 1987-05-26 Manufacture of soi substrate

Publications (1)

Publication Number Publication Date
JPS63292617A true JPS63292617A (en) 1988-11-29

Family

ID=14946391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12689087A Pending JPS63292617A (en) 1987-05-26 1987-05-26 Manufacture of soi substrate

Country Status (1)

Country Link
JP (1) JPS63292617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351654B2 (en) 2004-05-19 2008-04-01 Elpida Memory, Inc. Semiconductor device and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351654B2 (en) 2004-05-19 2008-04-01 Elpida Memory, Inc. Semiconductor device and method for producing the same

Similar Documents

Publication Publication Date Title
US20080182392A1 (en) Method for fabricating polysilicon layer with large and uniform grains
JPS6122631A (en) Method of flattening semiconductor and structure produced thereby
JPH02191320A (en) Crystal product and its manufacture
JPH04206766A (en) Manufacture of semiconductor device
JPS63292617A (en) Manufacture of soi substrate
JPS63292618A (en) Manufacture of soi substrate
JP2638868B2 (en) Method for manufacturing semiconductor device
JPH06112504A (en) Manufacture of crystalline thin film
JPH02205339A (en) Manufacture of semiconductor device
JPS6185815A (en) Method for formation of polycrystalline silicon film
JPH0324719A (en) Forming method of single crystal film and crystal products
JPH0722315A (en) Method for manufacturing semiconductor film
JPH04349619A (en) Manufacture of single crystal semiconductor film
JPH0529214A (en) Manufacture of semiconductor substrate
JPH04267518A (en) Manufacture of semiconductor thin film element
JP2002313719A (en) Crystalline semiconductor thin film and manufacturing method thereof
JP2770681B2 (en) Semiconductor substrate manufacturing method
JPH04309216A (en) Thin film forming method
JPH07122752A (en) Manufacture of thin film transistor
JPH03104276A (en) Manufacture of semiconductor device
JPS62145768A (en) Structure of soi film
JPH05226307A (en) Manufacture of semiconductor substrate
JPH02143414A (en) Formation of single crystal film
JPS6248015A (en) Solid phase growth of semiconductor layer
JPS63226913A (en) Glass substrate for semiconductor element