JPS63292614A - Manufacture of grain boundary layer type semiconductor ceramics capacitor - Google Patents

Manufacture of grain boundary layer type semiconductor ceramics capacitor

Info

Publication number
JPS63292614A
JPS63292614A JP12721587A JP12721587A JPS63292614A JP S63292614 A JPS63292614 A JP S63292614A JP 12721587 A JP12721587 A JP 12721587A JP 12721587 A JP12721587 A JP 12721587A JP S63292614 A JPS63292614 A JP S63292614A
Authority
JP
Japan
Prior art keywords
powder
solution
grain boundary
compound
boundary layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12721587A
Other languages
Japanese (ja)
Other versions
JP2682824B2 (en
Inventor
Toshiki Sawake
佐分 淑樹
Nobuyuki Oya
信之 大矢
Shinichi Shirasaki
信一 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Denso Corp
Original Assignee
National Institute for Research in Inorganic Material
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, NipponDenso Co Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP12721587A priority Critical patent/JP2682824B2/en
Publication of JPS63292614A publication Critical patent/JPS63292614A/en
Application granted granted Critical
Publication of JP2682824B2 publication Critical patent/JP2682824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1272Semiconductive ceramic capacitors
    • H01G4/1281Semiconductive ceramic capacitors with grain boundary layer

Abstract

PURPOSE:To obtain a ceramics capacitor enabling firing at a relatively low temperature and having large capacity with small dispersion of capacity, by making an SrTiO3 system of denatured oxide raw material powder of a submicron order having good dispersibility in grain diameter control for making this powder into a composite raw material by mixing this powder. CONSTITUTION:A solution which contains a proper quantity of at least one kind of metallic components except Sr or Ti of the chemical formula expressed by Sr1-x-yBaxGayTiO3 and Sr or Ti is made. Next, this solution is hydrolyzed to generate a sol and this sol is dried and temporarily fired at 600-1200 deg.C to be made into a calcined substance. As a result, denatured powder of a submicron order, for instance, SrTiO3 powder is obtained as the calcined substance, and this denatured powder has extremely good dispersion so as to be hard to generate cohesion of grains. Subsequently, this temporary-fired substance and a compound of the remaining constitutive components of perovskite structure are mixed to be temporary-fired at 700-1300 deg.C for being made into calcined powder. The calcined powder is fired in a reducing atmosphere of 1300-1600 deg.C to be made into a ceramic. Ti, Mn, Fe, Co, Ni, Cu, B, Pb, Bi, La, Pr and Tm are diffused in a grain boundary at 800-1300 deg.C to obtain the intended ceramic capacitor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高容量の粒界層絶縁型半導体セラミックスコ
ンデンサの製造方法に関し、特に、化学式がSr+−x
−yBaXCayTiOa (0≦X≦1.0≦y≦1
)で表わされるペロブスカイト構造を有し、粒子径を大
きく且つ均等化することによって比誘電率を高く且つ安
定させたSrTiO3系粒界層絶縁型半導体セラミック
スコンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a high-capacity grain boundary layer insulated semiconductor ceramic capacitor, particularly when the chemical formula is Sr+-x
-yBaXCayTiOa (0≦X≦1.0≦y≦1
The present invention relates to a method for manufacturing a SrTiO3-based grain boundary layer insulated semiconductor ceramic capacitor having a perovskite structure represented by ) and having a high and stable dielectric constant by increasing and equalizing particle diameters.

〔従来の技術〕[Conventional technology]

粒界層絶縁型半導体セラミックスコンデンサ(通常、B
 L型コンデンサと略称される)は半導体セラミックス
の粒界層に高絶縁性物質を一様に偏析させた構造を有し
ており、他の半導体セラミックスコンデンサと比較して
、(])絶縁抵抗が高い、(2)耐湿性が優れている、
(3)高周波特性が優れている等の特徴がある。
Grain boundary layer insulated semiconductor ceramic capacitor (usually B
L-type capacitors (abbreviated as L-type capacitors) have a structure in which a highly insulating material is uniformly segregated in the grain boundary layer of semiconductor ceramics, and compared to other semiconductor ceramic capacitors, (]) insulation resistance is (2) Excellent moisture resistance;
(3) Features include excellent high frequency characteristics.

特に5rTiO,、系B I−型コンデンサは、BaT
i0a系BL型コンデンサに比較して、容量を直接左右
する見掛iJ比誘電率等の特性が電圧、周波数、および
温度等に対して優れた安定性を有するため、産業機器か
ら民生機器に至る広い範囲の電気機器に用いられている
。しかし、5rTi03系Bl、型コンデンサは見掛は
比誘電率の絶対値がBaTi0a系に比べて低いため、
実用上十分な高容量を実現するためには見掛は比誘電率
を向上させることが不可避である。
In particular, 5rTiO, system B I-type capacitors are BaT
Compared to i0a series BL type capacitors, characteristics such as apparent iJ dielectric constant, which directly affects capacitance, have excellent stability with respect to voltage, frequency, temperature, etc., so it can be used in everything from industrial equipment to consumer equipment. Used in a wide range of electrical equipment. However, since the absolute value of the dielectric constant of 5rTi03 type Bl type capacitors is apparently lower than that of BaTi0a type capacitors,
In order to achieve a sufficiently high capacity for practical use, it is inevitable to improve the apparent dielectric constant.

BL型コンデンサの見掛は比誘電率を高めるには、粒子
の組成、粒界偏析物の特性、粒界層の厚さを変えない場
合、粒子径を増加させればよいことが知られている。更
に、増加した粒子径はばらつきなくそろっていることが
、実用上特性のばらつきをなくするために当然必要であ
る。
It is known that in order to increase the apparent dielectric constant of a BL type capacitor, it is sufficient to increase the particle size if the particle composition, characteristics of grain boundary segregates, and thickness of the grain boundary layer remain unchanged. There is. Furthermore, it is naturally necessary that the increased particle size be uniform without variation in order to eliminate variations in properties in practice.

しかし、5rTiO,系(Srの一部をBaやCaで置
換したものも含めて)BL型コンデンサはセラミックス
材料として一般の乾式法においては焼成困難のため、セ
ラミックス粒子を大きく且つそろえることが困難であっ
た。
However, BL type capacitors based on 5rTiO (including those in which part of the Sr is replaced with Ba or Ca) are difficult to sinter using the general dry method as a ceramic material, so it is difficult to make the ceramic particles large and aligned. there were.

すなわち、化学式Sr、−X−yBaxCayTiO+
、0≦X≦1.0≦y≦1、で表わされるペロブスカイ
ト型セラミックス(以下場合により5BCT系セラミツ
クスまたは単に5BCTと略称する)は一般的に、原料
粉末としてたとえば5rC(h粉末、BaC0z粉末、
CaCO3粉末、TiO□粉末等を所望の5BCT組成
となるように配合して、更に原子価制御材としてDy2
Off粉末、A 12 zo3粉末、SiO2粉末等を
加えてこれをボールミル等によって乾式法で混合した後
、たとえば1150°C程度で仮焼して5BCT粉末(
原子価制御材の金属成分も含有する)とし、 この仮焼粉末を加圧成形し、たとえば1400°C程度
で最終的に焼成して得られる。
That is, the chemical formula Sr, -X-yBaxCayTiO+
, 0 ≦
CaCO3 powder, TiO□ powder, etc. are blended to obtain the desired 5BCT composition, and Dy2 is further added as a valence control material.
Off powder, A 12 zo3 powder, SiO2 powder, etc. are added and mixed using a dry method using a ball mill, etc., and then calcined at, for example, about 1150°C to obtain 5BCT powder (
This calcined powder is press-molded and finally fired at, for example, about 1400°C.

得られた5BCT系セラミツクスの見掛は比誘電率を高
めるためには、下記の理由から該セラミックスの密度を
高める必要がある。BL型コンデンサは、多結晶体であ
るセラミックスの結晶粒界に前記のように高絶縁性物質
を一様に偏析させた構造を有する。したがって焼成過程
で個々の結晶粒が大きく均等寸法に成長し、且つ各結晶
粒の間に介在する構造が本来の結晶粒界のみであって、
特に三重点等に未接着の空隙が残留しないことが必要で
ある。このような均一粗粒緻密構造を実現させるために
は、焼成過程で粉末粒子の接着・合体を促進させて空隙
の収縮とそれによる緻密化とを促進させることが不可欠
である。
In order to increase the apparent dielectric constant of the obtained 5BCT ceramics, it is necessary to increase the density of the ceramics for the following reasons. The BL type capacitor has a structure in which a highly insulating substance is uniformly segregated at the grain boundaries of a polycrystalline ceramic as described above. Therefore, during the firing process, individual crystal grains grow to a large and uniform size, and the structure intervening between each crystal grain is only the original grain boundary,
In particular, it is necessary that no unbonded voids remain at triple points or the like. In order to realize such a uniform coarse-grained and dense structure, it is essential to promote adhesion and coalescence of powder particles during the firing process to promote shrinkage of voids and thereby densification.

粉末を加圧成形後セラミックスに焼成する車なる乾式法
においては、セラミックスの密度は焼成前の加圧成形状
態での充填密度に強く依存している。したがってセラミ
ックスの密度向上のためにはこの充填密度の向上が必要
であり、そのためには加圧成形前の5BCT仮焼粉末を
より微細化する必要がある。しかし、前記のような原料
粉末は微細化の進行によって粒子間の凝集傾向が急速に
強まるため、微細化は飽和してしまい、結局仮焼後の5
BCT粉末の微細化も飽和してしまう。そのため、従来
得られている5BCT仮焼粉末は最も小さくても1〜2
μm以上であった。
In the dry method, in which powder is pressure-formed and then fired into ceramics, the density of the ceramic is strongly dependent on the packing density in the pressure-formed state before firing. Therefore, in order to improve the density of ceramics, it is necessary to improve the packing density, and for this purpose, it is necessary to further refine the 5BCT calcined powder before pressure molding. However, as the raw material powder described above is refined, the tendency to agglomerate between particles rapidly increases, so the refinement reaches saturation, and eventually the
The refinement of BCT powder also reaches saturation. Therefore, the 5BCT calcined powder obtained conventionally has a minimum of 1 to 2
It was more than μm.

そこで、5BCT粉末を更に微細化することによって、
セラミックスの粒子径が大きく単分散にそろった、より
高い見掛は比誘電率を有する粒界層絶縁型半導体セラミ
ックスコンデンサを安定して製造する方法の出現が強く
求められていた。
Therefore, by further refining the 5BCT powder,
There has been a strong demand for a method for stably manufacturing grain boundary layer insulated semiconductor ceramic capacitors with large, monodisperse ceramic particles and a higher apparent dielectric constant.

(発明が解決しようとする問題点〕 本発明の目的は、このような粒子径制御を分散性の良い
サブミクロン級のSrTiO3系変成酸化物原料粉末を
作成し、この粉末を用いて単なる乾式法によって混合し
本来希望する組成物原料とすることによって、比較的低
い温度にて焼成が可能で、粒子径が大きくかつ単分散に
そろった、大容量で容量のばらつきの小さい優れた粒界
層絶縁型半導体セラミックスコンデンサの製造方法を提
供することである。
(Problems to be Solved by the Invention) The purpose of the present invention is to create a submicron-class SrTiO3-based modified oxide raw material powder with good dispersibility, and to use this powder to perform a simple dry process. By mixing the desired composition raw materials, it is possible to bake at a relatively low temperature, and the particle size is large and monodisperse, providing a large capacity and excellent grain boundary layer insulation with small variation in capacity. An object of the present invention is to provide a method for manufacturing a type semiconductor ceramic capacitor.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、化学式が、Sr+−x−yBaxcay
TiO:+、0≦X≦1.0≦y≦1で表わされ且つ原
子価制御材としてTi、Mn+Cu、Ga、Y、Nb、
 In4a+W+旧、La+Pr+Gd、 Dy、 E
r、 Aβ、およびSiの少なくとも1元素の化合物を
含有するペロブスカイト組成の粒界層絶縁型半導体セラ
ミックスコンデンサの製造方法において、 (1)該化学式中Sr以外の少なくとも1種の金属成分
の適量とSrとを含有する溶液、または該化学式中Ti
以外の少なくとも1種の金属成分の適量とTi とを含
有する溶液を作成する工程、(2)該溶液の加水分解を
行なってゾルを生成させ、該ゾルを乾燥後600〜12
00℃で仮焼して仮焼物とする工程、 (3)該仮焼物と、該ペロブスカイト組成の残りの構成
成分の化合物とを混合して700〜1300℃で仮焼し
て仮焼粉末とする工程、 (4)該仮焼粉末を1300〜1600℃の還元雰囲気
中で焼成してセラミックスとする工程、および(5)該
セラミックスの粒界に、Ti、Mn、Pe、Co。
For the above purpose, the chemical formula is Sr+-x-yBaxcay
TiO: +, expressed as 0≦X≦1.0≦y≦1, and as a valence control material Ti, Mn+Cu, Ga, Y, Nb,
In4a+W+old, La+Pr+Gd, Dy, E
In a method for manufacturing a grain boundary layer insulated semiconductor ceramic capacitor having a perovskite composition containing a compound of at least one element of r, Aβ, and Si, (1) an appropriate amount of at least one metal component other than Sr in the chemical formula and Sr; or a solution containing Ti in the chemical formula
(2) hydrolyzing the solution to produce a sol, drying the sol to a temperature of 600 to 12
(3) mixing the calcined product with compounds of the remaining components of the perovskite composition and calcining at 700 to 1300°C to obtain a calcined powder; (4) firing the calcined powder in a reducing atmosphere at 1,300 to 1,600°C to form a ceramic; and (5) containing Ti, Mn, Pe, and Co at the grain boundaries of the ceramic.

Ni、CutB+Pb、Bi+La、Pr 、およびT
mの少なくとも1元素を800〜1300℃で拡散させ
る工程から成ることを特徴とする粒界層絶縁型半導体セ
ラミックスコンデンサの製造方法によって達成される。
Ni, CutB+Pb, Bi+La, Pr, and T
This is achieved by a method for manufacturing a grain boundary layer insulated semiconductor ceramic capacitor, which comprises a step of diffusing at least one element of m at 800 to 1300°C.

本発明者は、湿式過程を含む上記工程(1>〜(2)に
よって仮焼物としてサブミクロン級の変成粉末(変成酸
化物粉末)たとえば5rTi0,1粉末が得られ、この
変成粉末は非常に分散性が良く、従来原料粉末として用
いられていた未変成のたとえば5rCOs粉末、Ti0
z粉末等で不可避的に発生した粒子の凝集が起きにくい
ことを見出した。更に、本発明者は、工程(3)によっ
て、該変成粉末(上記の場合5rTi03粉末)と、目
的とするペロブスカイト組成の残りの構成成分(この場
合Baおよび/またはCa、および原子価制御材も含む
)の化合物(たとえばBaCO3,CaCO3、および
Dyz(h+5iOz、^1 zoi等)とを混合する
と、この混合粉末自体も凝集性がなく、これを仮焼する
とやはり分散性の良いサブミクロン級の5BCT仮焼粉
末が得られ、ホットプレスやHIP <たとえば、熱間
ガス圧焼結)などの操作を省略しても、工程(4)によ
ってこれを成形・焼成して得られるペロブスカイト型5
BCTセラミツクスは粒子径が大きくそろっており、工
程(5)によって粒界に拡散させると粒界層絶縁型半導
体セラミックスコンデンサとして著しく向上した見掛は
比誘電率を具備することを見出した。
The present inventor has discovered that a submicron grade modified powder (modified oxide powder) such as 5rTi0,1 powder is obtained as a calcined product through the above steps (1>-(2) including a wet process, and this modified powder is highly dispersed. For example, unmodified 5rCOs powder, Ti0, which has good properties and has been conventionally used as raw material powder.
It has been found that agglomeration of particles, which inevitably occurs with Z powder, is less likely to occur. Furthermore, the present inventors also combined the modified powder (5rTi03 powder in the above case) with the remaining constituent components of the target perovskite composition (Ba and/or Ca in this case, and the valence control material) through step (3). When mixed with compounds such as BaCO3, CaCO3, and Dyz (h+5iOz, ^1 zoi, etc.), the mixed powder itself has no agglomeration, and when calcined, it becomes submicron-grade 5BCT with good dispersibility. Even if a calcined powder is obtained and operations such as hot pressing or HIP (for example, hot gas pressure sintering) are omitted, a perovskite mold 5 can be obtained by molding and firing it in step (4).
It has been found that BCT ceramics have large particle sizes, and when diffused into grain boundaries in step (5), a grain boundary layer insulated semiconductor ceramic capacitor has a significantly improved apparent dielectric constant.

工程(1)の溶液は水溶液またはアルコール溶液である
。該溶液の作成は、前記化学式中Sr、またはTi以外
の少なくとも1種の金属成分の化金物粉末を、Srsま
たはTiを含有する溶液中にそれぞれ溶解するか、逆に
前者を含有する溶液中に後者の化合物粉末を溶解するか
、両者共にそれぞれの成分を含有する溶液として準備し
混合するか、または両者共に化合物粉末として準備して
水またはアルコール中に一緒に溶解させるか、のいずれ
かまたはこれらの組み合せによって行なう。
The solution in step (1) is an aqueous solution or an alcoholic solution. The solution is prepared by dissolving a metal compound powder of at least one metal component other than Sr or Ti in the above chemical formula in a solution containing Srs or Ti, or conversely, in a solution containing the former. Either the latter compound powder is dissolved, both are prepared as solutions containing their respective components and mixed together, or both are prepared as compound powders and dissolved together in water or alcohol, or both are prepared as compound powders and dissolved together in water or alcohol. This is done by a combination of

Srを含有する溶液を作成するための化合物としては、
たとえば臭化ストロンチウム、塩化ストロンチウム、硝
酸ス1−ロンチうム、硫酸ストロンチウム、ジェトキシ
ストロンチウム、プロポキシストロンチウム、ブトキシ
ストロンチウム等を用いる。これらのSr化合物は1種
のみで用いてもよく、あるいは互に影響しない範囲で2
種以上を一緒に用いてもよい。Tiを含有する溶液を作
成するための化合物としては、たとえば四臭化チタン、
四塩化チタン、テトラメトキシチタン、テトラエトキシ
チタン、テトラプロポキシチタン、テトラブトキシチタ
ン等を用いる。これらのTi化合物は1種のみで用いて
もよく、あるいは互に影響しない範囲で2種以上を一緒
に用いてもよい。
As a compound for creating a solution containing Sr,
For example, strontium bromide, strontium chloride, strontium nitrate, strontium sulfate, jetoxystrontium, propoxystrontium, butoxystrontium, etc. are used. These Sr compounds may be used alone, or two types may be used as long as they do not affect each other.
More than one species may be used together. Examples of compounds for preparing a Ti-containing solution include titanium tetrabromide,
Titanium tetrachloride, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetrabutoxytitanium, etc. are used. These Ti compounds may be used alone, or two or more types may be used together as long as they do not affect each other.

工程(1)における「適量」とは、工程(2)で生成し
たゾルの凝集を抑制するのに適した量であり、溶液の作
成に用いる化合物によって異なる。
The "appropriate amount" in step (1) is an amount suitable for suppressing aggregation of the sol produced in step (2), and varies depending on the compound used to create the solution.

工程(2)において生成したゾルはろ過および洗浄によ
って回収された後乾燥される。
The sol produced in step (2) is recovered by filtration and washing, and then dried.

乾燥後のゾルの仮焼温度は600〜1200°Cである
The calcination temperature of the sol after drying is 600 to 1200°C.

仮焼温度が600℃より低いと凝集が顕著に起り、l3
00°Cを超えると粒子が粗大化する傾向がある。
If the calcination temperature is lower than 600℃, agglomeration will occur significantly, and l3
When the temperature exceeds 00°C, particles tend to become coarse.

この様にして得られた仮焼物に、ペロブスカイト組成と
しての構成成分の不足分と原子価制御材とを加えて混合
する。上記の場合には、たとえば5rCO,やTiO□
の粉末を更に混合して目的のペロブスカイト組成となる
ようにすることができる。
To the thus obtained calcined product, the missing components of the perovskite composition and a valence control material are added and mixed. In the above case, for example, 5rCO, TiO□
The powders can be further mixed to obtain the desired perovskite composition.

混合物としての凝集防止効果を得るには、原料粉末のう
ち少なくとも1種が工程(1)〜(2)で形成させたサ
ブミクロン級の変成粉末であればよい。したがって、工
程(3)において混合する残りの構成成分の化合物とし
ては、従来からの市販原料粉末を使用してもよく、また
工程(1)〜(2)で上記と同様に形成させたサブミク
ロン級の変成粉末を使用してもよい。工程(3)で使用
する市販原料粉末はいずれもサブミクロン級の粒度であ
ることが必要である。
In order to obtain the agglomeration prevention effect as a mixture, at least one of the raw material powders may be a submicron-grade modified powder formed in steps (1) and (2). Therefore, as the remaining constituent compounds to be mixed in step (3), conventional commercially available raw material powders may be used, and submicron powders formed in the same manner as above in steps (1) and (2) may be used. Grade modified powders may also be used. All commercially available raw material powders used in step (3) must have submicron particle sizes.

混合物の仮焼温度(工程(3))については、700℃
付近よりペロブスカイト構造が形成され、1300℃以
上で仮焼すると仮焼粉末粒径が大きくなり焼成特性を著
しく悪化させるので、700〜1300℃の範囲である
ことが必要である。
The calcination temperature of the mixture (step (3)) is 700°C.
A perovskite structure is formed from the vicinity, and if calcined at a temperature higher than 1300°C, the calcined powder particle size will increase and the firing characteristics will be significantly deteriorated, so the temperature should be in the range of 700 to 1300°C.

この様にして得られた粉末を成型する。焼成温度は前記
の混合物の仮焼温度と同様にその構成成分の種類によっ
て異なるが、一般に1300〜1600℃の範囲である
。1300°Cより低いと焼結が不十分で高密度が得ら
れず、1600℃を超えると粒子が局部的に粗大化して
粒子径が著しくばらついたり、あるいは揮発性元素が揮
発して失われて所望組成とならない。
The powder thus obtained is molded. The calcination temperature, like the calcination temperature of the mixture described above, varies depending on the types of constituent components, but is generally in the range of 1300 to 1600°C. If it is lower than 1300°C, sintering will be insufficient and high density will not be obtained, and if it exceeds 1600°C, the particles will locally coarsen and the particle size will vary significantly, or volatile elements will evaporate and be lost. The desired composition is not achieved.

焼成雰囲気は?’Jz 十H2、Co□+H2等の還元
性雰囲気である。
What is the firing atmosphere? 'Jz 1H2, Co□+H2, etc. reducing atmosphere.

焼成して得られたペロブスカイト型5BCT系セラミッ
クスに、粒界で高絶縁性物質を形成するための元素すな
わちTi、 Mn、 Fe、 Co+ Ni、 Cu、
 B、 Pb、 Bi、 La。
The perovskite-type 5BCT ceramic obtained by firing is injected with elements for forming a highly insulating substance at grain boundaries, namely Ti, Mn, Fe, Co+Ni, Cu,
B, Pb, Bi, La.

Pr、Tm等の化合物(たとえば門no、Cu帆MnC
0a、PbO。
Compounds such as Pr, Tm (e.g., Cu, MnC,
0a, PbO.

Bi2O3等)を含有する塗布剤(iJT+常はペース
ト状)を塗布し、たとえば1150°Cに加熱・保持す
ることによって該元素を粒界に拡散・偏析させて上記高
絶縁性物質を形成させる。
A coating agent (iJT+ usually in paste form) containing Bi2O3, etc.) is applied and heated and held at, for example, 1150°C to diffuse and segregate the element in the grain boundaries to form the highly insulating substance.

粒界に選択的に拡散を行なう温度は900〜1200℃
の範囲内であることが望ましい。
The temperature for selective diffusion to grain boundaries is 900-1200℃
It is desirable that it be within the range of .

最終的に焼成してセラミックスとするための成形は、工
程(4)の焼成の直前に行なってもよく、工程(3)に
おいで各種粉末の混合後に行なってから仮焼してもよい
。工程(3)で成形する後者の場合には、もちろん工程
(4)での成形は行なう必要はなくなる。
The shaping for final firing to form ceramics may be performed immediately before the firing in step (4), or may be performed after mixing the various powders in step (3) and then calcined. In the latter case of molding in step (3), it is of course unnecessary to perform molding in step (4).

以下に本発明を、実施例と比較例とを比較して更に詳し
く説明する。
The present invention will be explained in more detail below by comparing Examples and Comparative Examples.

〔実施例〕〔Example〕

硝酸ストロンチウム水溶液(1,5β/mail溶液)
300ccと四塩化チタン水溶液(1,3It /mo
(!溶液)260ccとを混合した。この水溶液を、1
00°Cで100時間保持することで加水分解を行い、
S r”とTi”を含むゾルを得た。これを洗浄・乾燥
した後、800℃で仮焼して5rTi(1+粉末を作製
した。
Strontium nitrate aqueous solution (1,5β/mail solution)
300cc and titanium tetrachloride aqueous solution (1,3It/mo
(!Solution) 260cc were mixed. This aqueous solution, 1
Hydrolysis is carried out by holding at 00°C for 100 hours,
A sol containing S r'' and Ti'' was obtained. After washing and drying this, it was calcined at 800°C to produce 5rTi (1+ powder).

該粉末10gに市販のBaCO3を0.687 g 、
Ti0zを0.320 g 、、DyzO:+ 0.0
4 g 、 SiO□0.04 g 、 A p 20
30.04gとをボールミルで一昼夜混合した後、10
00℃で1時間仮焼して、Sro、 q4Bao、 o
6Tio3系の粉末を得た。粒径は0.25μmである
。該粉末を0.7 ton/cjAで成形し、脱脂後1
350℃、1400℃、1450℃(93N2−7H2
中)で1時間焼成した。後、Cub、 MnOを等モル
づつ混合したペーストを塗布し、1150℃にて大気中
で1時間熱処理した。また、この後銀電極を焼付は測定
試料とした。
0.687 g of commercially available BaCO3 was added to 10 g of the powder,
TiOz: 0.320 g, DyzO: + 0.0
4 g, SiO□0.04 g, A p 20
After mixing 30.04g in a ball mill for a day and night, 10
Calcined at 00℃ for 1 hour, Sro, q4Bao, o
6Tio3 type powder was obtained. The particle size is 0.25 μm. The powder was molded at 0.7 ton/cjA, and after degreasing, 1
350℃, 1400℃, 1450℃ (93N2-7H2
(medium) for 1 hour. Thereafter, a paste containing equimolar amounts of Cub and MnO was applied and heat treated at 1150° C. in the air for 1 hour. Further, after this, the silver electrode was baked and used as a measurement sample.

(比較例) 市販の5rC03,BaCO3,Ti0z、口VzO8
+八I! 203,5i02を上記のものと同組成にな
るよう秤量し、秤量した粉末25gをボールミル中で一
昼夜混合した後、1150℃で1時間仮焼し2μmの粉
体を得た。これを実施例と同様に成形し、上記実施例と
同じ条件にて試料を作成した。
(Comparative example) Commercially available 5rC03, BaCO3, Ti0z, mouth VzO8
+8 I! 203,5i02 was weighed to have the same composition as above, and 25 g of the weighed powder was mixed in a ball mill overnight and then calcined at 1150° C. for 1 hour to obtain a powder of 2 μm. This was molded in the same manner as in the example, and a sample was prepared under the same conditions as in the above example.

(実施例)および(比較例)で作成した各試料について
、粒子径と見掛は比誘電率を測定した。
For each sample prepared in (Example) and (Comparative Example), the particle diameter and apparent dielectric constant were measured.

粒子径の測定は各試料の切断面を倍率1000倍のSE
Mによって行なった。見掛は比誘電率の測定はインピー
ダンスアナライザによって行った。各測定結果をそれぞ
れ第1図と第2図とに示す。
Measurement of particle size was performed using SE at 1000x magnification on the cut surface of each sample.
It was done by M. The apparent dielectric constant was measured using an impedance analyzer. The results of each measurement are shown in FIG. 1 and FIG. 2, respectively.

第1図から明らかなように、本発明の方法によって粒子
径は顕著に増加している。たとえば1450°Cで焼成
した場合、単なる乾式法のみによる従来法(比較例)で
は粒子径は40μmであるが、本発明の方法(実施例)
では65μmに増加しており、しかもばらつきは±5μ
m程度で極めてよくそろっていた。その結果、第2図か
ら明らかなように、本発明の方法によって見掛は比誘電
率(Sr)が顕著に向上している。たとえば焼成温度1
400〜1450℃の場合には、従来法では25000
〜27.000(±20%)であるのに対して、本発明
の方法では45000 (±10%)と約70〜80%
向上し且つばらつきが約半分に減少した優れた特性が得
られた。
As is clear from FIG. 1, the particle size is significantly increased by the method of the present invention. For example, when fired at 1450°C, the particle size is 40 μm in the conventional method (comparative example) using only a dry method, but in the method of the present invention (example)
In this case, it increases to 65μm, and the variation is ±5μm.
They were very well aligned, about m. As a result, as is clear from FIG. 2, the apparent dielectric constant (Sr) is significantly improved by the method of the present invention. For example, firing temperature 1
In the case of 400 to 1450℃, the conventional method
~27,000 (±20%), whereas in the method of the present invention, it is 45,000 (±10%), about 70-80%.
Excellent characteristics were obtained, with improved characteristics and variations reduced by about half.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によると、工程(1)〜(2)により5B
CTの構成成分の一種以上を含む原料粉末(変成酸化物
粉末)は、二次粒子の極めて少ないサブミクロン粒子と
なし得、これを使用することによって、以後単なる乾式
法によって、容易にサブミクロン級の5BCT原料粉末
が得られ、更にこれを原料として粒子径が大きく且つそ
ろっていることにより容量すなわち見掛は比誘電率が高
く且つばらつきのない5BCT系セラミツクスが得られ
る、という優れた効果を得られる。そのほか次のような
効果も得られる。
According to the method of the present invention, 5B
The raw material powder (modified oxide powder) containing one or more of the constituent components of CT can be made into submicron particles with extremely few secondary particles. 5BCT raw material powder was obtained, and by using this powder as a raw material, the particle size was large and uniform, so 5BCT ceramics with a high capacity, that is, an apparent dielectric constant, and no variation were obtained, which was an excellent effect. It will be done. In addition, the following effects can also be obtained.

1)仮焼物によって得られる変成酸化物粉末が十分分散
されたものが得られるため、仮焼物の粉砕工程を特に必
要としないで、原料粉末として供給し得る。
1) Since the modified oxide powder obtained by the calcined product is obtained in a sufficiently dispersed manner, it can be supplied as a raw material powder without the need for a particular pulverization step of the calcined product.

2)該仮焼変成酸化物粉末から乾式法で得られる5OC
T粉末も単分散状態で得られ、従って粉砕工程を除いて
も十分易焼結性且つ高密度の特性を有する。
2) 5OC obtained from the calcined modified oxide powder by a dry method
T powder is also obtained in a monodisperse state, and therefore has sufficient sinterability and high density even without the pulverization step.

3)極めて高い容量(見掛は比誘電率)を要求される5
BCT系粒界層絶縁型半導体セラミックスコンデンサを
ホットプレスやHIP (たとえば熱間ガス圧焼結)な
どの操作を省略して単なる固相焼結によって得ることが
できる。
3) Extremely high capacitance (apparent dielectric constant) is required 5
A BCT-based grain boundary layer insulated semiconductor ceramic capacitor can be obtained simply by solid-phase sintering, omitting operations such as hot pressing and HIP (for example, hot gas pressure sintering).

4)優れた粉末特性を有する変成酸化物粉末を大量生産
することによって、任意の組成の5BCT組成物(粉末
およびセラミックス)を極めて安価に供給し得る。
4) 5BCT compositions (powders and ceramics) of arbitrary compositions can be supplied at extremely low cost by mass producing modified oxide powders with excellent powder properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法によって製造した粒界層絶縁型半
導体セラミックスコンデンサの粒子径を従来法による場
合と比較して焼成温度に対して示すグラフである。 第2図は第1図の各試料の見掛は比誘電率を示すグラフ
である。
FIG. 1 is a graph showing the grain size of a grain boundary layer insulated semiconductor ceramic capacitor manufactured by the method of the present invention as a function of firing temperature in comparison with that of a conventional method. FIG. 2 is a graph showing the apparent dielectric constant of each sample in FIG. 1.

Claims (1)

【特許請求の範囲】 1、化学式が、Sr_1_−_x_−_yBa_xCa
_yTiO_3、0≦x≦1、0≦y≦1で表わされか
つ原子価制御材としてTi、Mn、Cu、Ga、Y、N
b、In、Ta、W、Bi、La、Pr、Gd、Dy、
Er、Al、およびSiの少なくとも1元素の化合物を
含有するペロブスカイト組成の粒界層絶縁型半導体セラ
ミックスコンデンサの製造方法において、(1)該化学
式中Sr以外の少なくとも1種の金属成分の適量とSr
とを含有する溶液、または該化学式中Ti以外の少なく
とも1種の金属成分の適量とTiとを含有する溶液を作
成する工程、(2)該溶液の加水分解を行なってゾルを
生成させ、該ゾルを乾燥後600〜1200℃で仮焼し
て仮焼物とする工程、 (3)該仮焼物と、該ペロブスカイト組成の残りの構成
成分の化合物とを混合して700〜1300℃で仮焼し
て仮焼粉末とする工程、 (4)該仮焼粉末を1300〜1600℃の還元雰囲気
中で焼成してセラミックスとする工程、および(5)該
セラミックスの粒界に、Ti、Mn、Fe、Co、Ni
、Cu、B、Pb、Bi、La、Pr、およびTmの少
なくとも1元素を800〜1300℃で拡散させる工程
から成ることを特徴とする粒界層絶縁型半導体セラミッ
クスコンデンサの製造方法。 2、前記工程(1)において、前記金属成分の化合物の
水溶液またはアルコール溶液とSr化合物の水溶液また
はアルコール溶液とを混合して前記溶液を作成すること
を特徴とする特許請求の範囲第1項記載の粒界層絶縁型
半導体セラミックスコンデンサの製造方法。 3、前記Sr化合物が、臭化ストロンチウム、塩化スト
ロンチウム、硝酸ストロンチウム、硫酸ストロンチウム
、ジエトキシストロンチウム、プロポキシストロンチウ
ム、およびブトキシストロンチウムの1種または2種以
上から成ることを特徴とする特許請求の範囲第2項記載
の粒界層絶縁型半導体セラミックスコンデンサの製造方
法。 4、前記工程(1)において、前記金属成分の化合物の
水溶液またはアルコール溶液とTi化合物の水溶液また
はアルコール溶液とを混合して前記溶液を作成すること
を特徴とする特許請求の範囲第1項記載の粒界層絶縁型
半導体セラミックスコンデンサの製造方法。 5、前記Ti化合物が、四臭化チタン、四塩化チタン、
テトラメトキシチタン、テトラエトキシチタン、テトラ
プロポキシチタン、およびテトラブトキシチタンの1種
または2種以上から成ることを特徴とする特許請求の範
囲第4項記載の粒界層絶縁型半導体セラミックスコンデ
ンサの製造方法。
[Claims] 1. The chemical formula is Sr_1_-_x_-_yBa_xCa
_yTiO_3, expressed as 0≦x≦1, 0≦y≦1 and containing Ti, Mn, Cu, Ga, Y, N as a valence control material
b, In, Ta, W, Bi, La, Pr, Gd, Dy,
In a method for manufacturing a grain boundary layer insulated semiconductor ceramic capacitor having a perovskite composition containing a compound of at least one element of Er, Al, and Si, (1) an appropriate amount of at least one metal component other than Sr in the chemical formula and Sr;
or a solution containing Ti and an appropriate amount of at least one metal component other than Ti in the chemical formula; (2) hydrolyzing the solution to produce a sol; a step of drying the sol and then calcining it at 600 to 1200°C to obtain a calcined product; (3) mixing the calcined product and compounds of the remaining constituent components of the perovskite composition and calcining the mixture at 700 to 1300°C; (4) firing the calcined powder in a reducing atmosphere at 1,300 to 1,600°C to produce a ceramic; and (5) adding Ti, Mn, Fe, Co, Ni
, Cu, B, Pb, Bi, La, Pr, and Tm at 800 to 1300°C. 2. In the step (1), the solution is prepared by mixing an aqueous solution or an alcoholic solution of the compound of the metal component and an aqueous solution or an alcoholic solution of the Sr compound. A method for manufacturing a grain boundary layer insulated semiconductor ceramic capacitor. 3. Claim 2, wherein the Sr compound is comprised of one or more of strontium bromide, strontium chloride, strontium nitrate, strontium sulfate, diethoxystrontium, propoxystrontium, and butoxystrontium. A method for manufacturing a grain boundary layer insulated semiconductor ceramic capacitor as described in 1. 4. In the step (1), the solution is prepared by mixing an aqueous solution or an alcoholic solution of the compound of the metal component and an aqueous solution or an alcoholic solution of the Ti compound. A method for manufacturing a grain boundary layer insulated semiconductor ceramic capacitor. 5. The Ti compound is titanium tetrabromide, titanium tetrachloride,
The method for manufacturing a grain boundary layer insulated semiconductor ceramic capacitor according to claim 4, characterized in that the capacitor is made of one or more of tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, and tetrabutoxytitanium. .
JP12721587A 1987-05-26 1987-05-26 Method for manufacturing grain boundary layer insulated semiconductor ceramic capacitor Expired - Lifetime JP2682824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12721587A JP2682824B2 (en) 1987-05-26 1987-05-26 Method for manufacturing grain boundary layer insulated semiconductor ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12721587A JP2682824B2 (en) 1987-05-26 1987-05-26 Method for manufacturing grain boundary layer insulated semiconductor ceramic capacitor

Publications (2)

Publication Number Publication Date
JPS63292614A true JPS63292614A (en) 1988-11-29
JP2682824B2 JP2682824B2 (en) 1997-11-26

Family

ID=14954576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12721587A Expired - Lifetime JP2682824B2 (en) 1987-05-26 1987-05-26 Method for manufacturing grain boundary layer insulated semiconductor ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2682824B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072376A (en) * 2021-04-12 2021-07-06 中国振华集团云科电子有限公司 Oxidizing agent for grain boundary layer semiconductor ceramic substrate and coating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072376A (en) * 2021-04-12 2021-07-06 中国振华集团云科电子有限公司 Oxidizing agent for grain boundary layer semiconductor ceramic substrate and coating method thereof

Also Published As

Publication number Publication date
JP2682824B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
US6162752A (en) Barium titanate powder, semiconducting ceramic, and semiconducting ceramic electronic element
JPS63292614A (en) Manufacture of grain boundary layer type semiconductor ceramics capacitor
CN103073305A (en) Sintering additive composition and dielectric ceramic composition, and applications thereof
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JP3220846B2 (en) Semiconductor porcelain and method of manufacturing semiconductor porcelain electronic component
JP2861659B2 (en) Method for producing dielectric porcelain composition
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JPS62235279A (en) Manufacture of high permittivity intergranular insulating layer ceramic
JP2854350B2 (en) Method for producing conductive metal oxide
JPS63292508A (en) Manufacture of dielectric resonator material
JPS63292507A (en) Manufacture of dielectric resonator material
JPH03285870A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPS63153871A (en) Manufacture of material for dielectric resonator
JP2628596B2 (en) Manufacturing method of dielectric resonator material
JPS6019133B2 (en) Manufacturing method of semiconductor ceramic capacitor
JP3000821B2 (en) Manufacturing method of ceramic capacitor
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPH03285871A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPS633442B2 (en)
JPH0521265A (en) Manufacture of capacitor
JPH0397662A (en) Dielectric porcelain composition having high dielectric constant and production thereof
JPH0332009A (en) Capacitor and manufacture thereof
JPS6029211B2 (en) Manufacturing method of semiconductor ceramic capacitor
JPH03285872A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPS5857843B2 (en) porcelain dielectric composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term