JPS63292507A - Manufacture of dielectric resonator material - Google Patents

Manufacture of dielectric resonator material

Info

Publication number
JPS63292507A
JPS63292507A JP62127212A JP12721287A JPS63292507A JP S63292507 A JPS63292507 A JP S63292507A JP 62127212 A JP62127212 A JP 62127212A JP 12721287 A JP12721287 A JP 12721287A JP S63292507 A JPS63292507 A JP S63292507A
Authority
JP
Japan
Prior art keywords
powder
dielectric resonator
manufacturing
barium
metal component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62127212A
Other languages
Japanese (ja)
Other versions
JP2663944B2 (en
Inventor
Nobuyuki Oya
信之 大矢
Toshiki Sawake
佐分 淑樹
Shinichi Shirasaki
信一 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Denso Corp
Original Assignee
National Institute for Research in Inorganic Material
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, NipponDenso Co Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP62127212A priority Critical patent/JP2663944B2/en
Publication of JPS63292507A publication Critical patent/JPS63292507A/en
Application granted granted Critical
Publication of JP2663944B2 publication Critical patent/JP2663944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To make it possible to easily obtain an excellent property by mixing and temporarily baking by a dry method using denatured oxide powder made by a wet method so as to make into material powder which has a composition same as the desired ceramic. CONSTITUTION:In the manufacture of dielectric resonator material of perovskite composition whose chemical formula is shown as Ba(Zn1/3Nbx/3Ta(1-x)/3)O3, 0<=x<=1, one of three kinds of solutions, i.e., a solution which contains Zn and a proper amount of metal component of at least one kind except Zn in the chemical formula, a solution which contains Ba and a proper amount of metal component of at least one kind except Ba, or a solution which contains Nb and a proper amount of metal component of at least one kind except Nb, is prepared. Next, a sol is generated by hydrolysis and the sol is baked temporarily after drying at 700-1300 deg.C into temporary baked substance and then this temporary baked substance and a compound of the remaining constituent components of the perovskite composition are mixed and baked temporarity at 700-1300 deg.C into temporary baked powder and this temporary baked powder is made into a form and baked again at 1200-1700 deg.C. Hereby BZNT material powder with diameter in the submicron range can be obtained easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロ波用誘電体共振器材料の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a dielectric resonator material for microwaves.

〔従来の技術〕[Conventional technology]

衛星通信用等の誘電体共振器材料にはQ値の高いものが
望まれている。この様な材料としては、Ba(Zn+z
Jbzzz)Oi 、 Ba(Zn+73Ta2zz)
03等のべL1ブスカイト型セラミックスがあり良好な
Q値をもつ。
Dielectric resonator materials for satellite communications and the like are desired to have a high Q value. Such materials include Ba(Zn+z
Jbzz) Oi, Ba(Zn+73Ta2zz)
There are Bebe L1 buskite type ceramics such as 03, which have a good Q value.

しかし、これらのセラミックス材料は一般の乾式法にお
いては、焼成困難のため本来の特性を得ることが困難で
ある。
However, it is difficult to obtain the original properties of these ceramic materials due to the difficulty of firing them using a general dry method.

すなわち、化学式Ba(Zn+zJbXz+ Ta N
−Xl y3)O:l、0≦X≦1、で表わされるペロ
ブスカイト型セラミックス(以下場合によりBZNT系
セラミ・ノクスまたは単にBZNTと略称する)は一般
的に、原料粉末としてたとえばBaCO3粉末、ZnO
粉末、Nb2O5粉末、Taz05粉末等を所望のBZ
NT組成となるように配合して、これをボールミル等に
よって乾式法で混合した後、たとえば1200°C程度
で仮焼してBZNT粉末とし、この仮焼粉末を加圧成形
し、たとえば1400℃程度で最終的に焼成して得られ
る。
That is, the chemical formula Ba(Zn+zJbXz+ Ta N
-Xl y3) O:l, 0≦X≦1, perovskite ceramics (hereinafter sometimes referred to as BZNT-based ceramic nox or simply BZNT) are generally made from raw material powders such as BaCO3 powder, ZnO
powder, Nb2O5 powder, Taz05 powder, etc. to the desired BZ
NT composition, mixed by a dry method using a ball mill, etc., then calcined at about 1200°C to obtain BZNT powder, and press-molded this calcined powder to about 1400°C, for example. It is finally obtained by firing.

得られたBZNT系セラミックスの共振特性すなわちQ
値を高めるためには該セラミ・ノクスの密度を高める必
要がある。粉末を加圧成形後セラミックスに焼成する単
なる乾式法においては、セラミックスの密度は焼成前の
加圧成形状態での充填密度に強く依存している。したが
ってセラミックスの密度向上のためにはこの充填密度の
向上が必要であり、そのためには加圧成形前のBZNT
仮焼粉末をより微細化する必要がある。しかし、前記の
ような原料粉末は微細化の進行によって粒子間の凝集傾
向が急速に強まるため、微細化は飽和してしまい、結局
仮焼後のBZNT粉末の微細化も飽和してしまう。その
ため、従来得られているBZNT仮焼粉末は最も小さく
ても1〜2μm以上であった。
The resonance characteristics of the obtained BZNT ceramics, that is, the Q
In order to increase the value, it is necessary to increase the density of the ceramic nox. In a simple dry method in which powder is pressure-molded and then fired into a ceramic, the density of the ceramic strongly depends on the packing density in the pressure-molded state before firing. Therefore, in order to improve the density of ceramics, it is necessary to improve this packing density, and for this purpose, BZNT before pressure forming is
It is necessary to make the calcined powder more fine. However, as the raw material powder as described above is refined, the tendency of particles to agglomerate rapidly increases, so that the refinement is saturated, and eventually the refinement of the BZNT powder after calcination is also saturated. Therefore, the smallest BZNT calcined powder obtained conventionally has a diameter of 1 to 2 μm or more.

そこで、BZNT粉末を更に微細化することによって、
より高いQ値を有する誘電体共振器材料を製造する方法
の出現が強く求められていた。
Therefore, by further refining the BZNT powder,
There is a strong need for a method to produce dielectric resonator materials with higher Q values.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、この乾式法での問題を解決するため、
粒子の分散性が良いサブミクロン級の変成酸化物粉末を
湿式法にて作製し、この粉末を用いて単なる乾式法によ
って混合および仮焼し、本来希望するセラミックスと同
一組成を有する原料粉末とすることで、焼成が容易で、
しかも特性が良好なマイクロ波用誘電体共振器材料を製
造する方法を提供することである。
The purpose of the present invention is to solve the problems with this dry method.
A submicron grade modified oxide powder with good particle dispersibility is produced using a wet method, and this powder is mixed and calcined using a simple dry method to create a raw material powder that has the same composition as the originally desired ceramic. This makes baking easier.
Moreover, it is an object of the present invention to provide a method for manufacturing a dielectric resonator material for microwaves having good characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、化学式が BaCZnIyzNbxi3Ta(1−x+73)03
.0≦X≦1で表わされるペロブスカイト組成の誘電体
共振器材料の製造方法において、 (1)該化学式中Zn以外の少な(とも1種の金属成分
の適量とZnとを含有する溶液、該化学式中Ba以外の
少なくとも1種の金属成分の適量とBaとを含有する溶
液、該化学式中Nb以外の少なくとも1種の金属成分の
適量とNbとを含有する溶液のいずれかを作成する工程
、 (2)該溶液の加水分解を行なってゾルを生成させ、該
ゾルを乾燥後700〜1300℃で仮焼して仮焼物とす
る工程、 (3)該仮焼物と、該ペロブスカイト組成の残りの構成
成分の化合物とを混合して700〜1300℃で仮焼し
て仮焼粉末とする工程、および(4)該仮焼粉末を成形
して1200〜1700°Cで焼成する工程 から成ることを特徴とする誘電体共振器材料の製造方法
によって達成される。
For the above purpose, the chemical formula is BaCZnIyzNbxi3Ta(1-x+73)03
.. In a method for producing a dielectric resonator material having a perovskite composition represented by 0≦X≦1, (1) a solution containing Zn and a small amount of one metal component other than Zn in the chemical formula; ( 2) Hydrolyzing the solution to produce a sol, drying the sol, and then calcining it at 700 to 1300°C to obtain a calcined product; (3) the remaining configuration of the calcined product and the perovskite composition; It is characterized by consisting of a step of mixing the component compounds and calcining at 700 to 1300°C to obtain a calcined powder, and (4) a step of molding the calcined powder and firing at 1200 to 1700°C. This is achieved by a method for manufacturing a dielectric resonator material.

本発明者は、湿式過程を含む上記工程(1)〜(2)に
よって仮焼物としてサブミクロン級の変成粉末(変成酸
化物粉末)、たとえばBaZnO□粉末が得られ、この
変成粉末は非常に分散性が良く、従来原料粉末として用
いられていた未変成のたとえばBaC0+粉末、ZnO
粉末等で不可避的に発生した粒子の凝集が起きにくいこ
とを見出した。更に、本発明者らは、工程(3)によっ
て、該変成粉末(上記の場合BaZn(12粉末)と、
目的とするペロブスカイト組成の残りの構成成分(この
場合Nbおよび/またはTa)の化合物(たとえばNb
2O5゜Ta205等)とを混合すると、この混合粉末
自体も凝集性がなく、これを仮焼するとやはり分散性の
良いサブミクロン級のBZNT仮焼粉末が得られ、ホッ
トプレスやHIP (たとえば、熱間ガス圧焼結)など
の操作を省略しても、工程(4)によってこれを成形・
焼成して得られるペロブスカイト型BZNTセラミック
スは極めて高い密度を有し誘電体共振器材料として著し
く向上したQ値を具備することを見出した。
The present inventor has discovered that a submicron grade modified powder (modified oxide powder), such as BaZnO□ powder, is obtained as a calcined product through the above steps (1) and (2) including a wet process, and that this modified powder is highly dispersed. Unmodified powders, such as BaC0+ powder and ZnO powder, which have good properties and have been conventionally used as raw material powders,
It has been found that agglomeration of particles, which inevitably occurs in powders, etc., is less likely to occur. Furthermore, the present inventors have determined that the modified powder (in the above case BaZn (12 powder)) and
Compounds of the remaining components (in this case Nb and/or Ta) of the desired perovskite composition (e.g. Nb
2O5゜Ta205, etc.), this mixed powder itself has no agglomeration, and calcining it yields submicron-level calcined BZNT powder with good dispersibility. Even if operations such as gas pressure sintering) are omitted, it can still be formed and formed in step (4).
It has been found that the perovskite-type BZNT ceramics obtained by firing have an extremely high density and a significantly improved Q value as a dielectric resonator material.

本発明においては、前記化学式のBaと(Zr++zJ
bxza Ta fl−xl /3)とのモル比は必ず
しも厳密に1である必要はなく、実質的にペロブスカイ
ト型結晶構造を維持する範囲内であれば、1より若干大
きくても小さくてもよい。
In the present invention, Ba and (Zr++zJ
bxza Ta fl-xl /3) does not necessarily have to be strictly 1, and may be slightly larger or smaller than 1 as long as the perovskite crystal structure is substantially maintained.

工程(1)の溶液は水溶液またはアルコール溶液である
。該溶液の作成は、前記化学式中Zn。
The solution in step (1) is an aqueous solution or an alcoholic solution. The solution is prepared by using Zn in the above chemical formula.

Ba、またはNb以外の少なくとも1種の金属成分の化
合物粉末を、Z n + B a %またはNbを含有
する溶液中にそれぞれ溶解するか、逆に前者を含有する
溶液中に後者の化合物粉末を溶解するか、両者共にそれ
ぞれの成分を含有する溶液として準備し混合するか、ま
たは両者共に化合物粉末としく8) て準備して水またはアルコール中に一緒に熔解させるか
、のいずれかまたはこれらの組み合せによって行なう。
A compound powder of at least one metal component other than Ba or Nb is dissolved in a solution containing Z n + Ba % or Nb, respectively, or conversely, a compound powder of the latter is dissolved in a solution containing the former. Either they are dissolved, both are prepared as solutions containing their respective components and mixed, or both are prepared as compound powders and dissolved together in water or alcohol, or both are prepared as compound powders and dissolved together in water or alcohol. Do it in combination.

Znを含有する溶液を作成するための化合物としては、
たとえば塩化亜鉛、硫酸亜鉛、硝酸亜鉛、酢酸亜鉛等を
用いる。これらのZn化合物は1種のみで用いてもよく
、あるいは互に影響しない範囲で2種以上を一緒に用い
てもよい。Baを含有する溶液を作成するための化合物
としては、たとえば塩化バリウム、塩素酸バリウム、過
塩素酸バリウム、硝酸バリウム、酢酸バリウム、バリウ
ムエチレート、およびバリウムイソプロピレート等を用
いる。これらのBa化合物は1種のみで用いてもよく、
あるいは互に影響しない範囲で2種以上を一緒に用いて
もよい。Nbを含有する溶液を作成するための化合物と
しては、塩化ニオビウム、ニオブメトキシド、ニオビウ
ムエチレート、ニオブ酸ナトリウム等を用いる。これら
のNb化合物は1種のみで用いてもよく、あるいは互に
影響しない範囲で2種以上を一緒に用いてもよい。
Compounds for creating a solution containing Zn include:
For example, zinc chloride, zinc sulfate, zinc nitrate, zinc acetate, etc. are used. These Zn compounds may be used alone, or two or more may be used together as long as they do not affect each other. Examples of compounds used to prepare a Ba-containing solution include barium chloride, barium chlorate, barium perchlorate, barium nitrate, barium acetate, barium ethylate, and barium isopropylate. These Ba compounds may be used alone,
Alternatively, two or more types may be used together as long as they do not affect each other. As a compound for creating a solution containing Nb, niobium chloride, niobium methoxide, niobium ethylate, sodium niobate, etc. are used. These Nb compounds may be used alone, or two or more types may be used together as long as they do not affect each other.

工程(1)における「適量」とは、工程(2)で生成し
たゾルの凝集を抑制するのに適した量であり、溶液の作
成に用いる化合物によって異なる。
The "appropriate amount" in step (1) is an amount suitable for suppressing aggregation of the sol produced in step (2), and varies depending on the compound used to create the solution.

工程(2)において生成したゾルはろ過および洗浄によ
って回収された後乾燥される。
The sol produced in step (2) is recovered by filtration and washing, and then dried.

乾燥後のゾルの仮焼温度は700〜1300℃である。The calcination temperature of the sol after drying is 700 to 1300°C.

仮焼温度が700℃より低いと凝集が顕著に起り、13
00℃を超えると粒子が粗大化する傾向がある。
If the calcination temperature is lower than 700℃, agglomeration will occur significantly, 13
When the temperature exceeds 00°C, particles tend to become coarse.

この様にして得られた仮焼物に、ペロブスカイト組成と
しての構成成分の不足分を加えて混合する。上記の場合
には、たとえばBaCO3粉末を更に混合して目的のペ
ロブスカイト組成となるようにすることができる。
To the thus obtained calcined product, the missing components of the perovskite composition are added and mixed. In the above case, for example, BaCO3 powder may be further mixed to obtain the desired perovskite composition.

混合物としての凝集防止効果を得るには、原料粉末のう
ち少なくとも1種が工程(1)〜(2)で形成させたサ
ブミクロン級の変成粉末であればよい。したがって、工
程(3)において混合する残りの構成成分の化合物とし
ては、従来からの市販原料粉末を使用してもよく、また
工程(1)〜(2)で上記と同様に形成させたサブミク
ロン級の変成粉末を使用してもよい。工程(3)で使用
する市販原料粉末はいずれもサブミクロン級の粒度であ
ることが必要である。
In order to obtain the agglomeration prevention effect as a mixture, at least one of the raw material powders may be a submicron-grade modified powder formed in steps (1) and (2). Therefore, as the remaining constituent compounds to be mixed in step (3), conventional commercially available raw material powders may be used, and submicron powders formed in the same manner as above in steps (1) and (2) may be used. Grade modified powders may also be used. All commercially available raw material powders used in step (3) must have submicron particle sizes.

混合物の仮焼温度(工程(3))については、700°
C付近よりぺ「1ブスカイト構造が形成され、1300
℃以」二で仮焼すると仮焼粉末粒径が大きくなり焼成特
性を著しく悪化させるので、700〜1300°Cの範
囲であることが必要である。
The calcination temperature of the mixture (step (3)) is 700°
A pe 1 buskite structure was formed near C, and 1300
If calcined at a temperature higher than 2°C, the particle size of the calcined powder will increase and the firing characteristics will be significantly deteriorated, so the temperature must be in the range of 700 to 1300°C.

この様にして得られた粉末を成型する。焼結温度は前記
の混合物の仮焼温度と同様にその構成成分の種類によっ
て異なるが、一般に1200〜1700’cの範囲であ
る。1200℃より低いと焼結が不十分で高密度が得ら
れず、1700°Cを超えると粒子が粗大化したり、あ
るいは揮発性元素が揮発して失われる。
The powder thus obtained is molded. The sintering temperature, like the calcination temperature of the mixture described above, varies depending on the types of its constituent components, but is generally in the range of 1200 to 1700'c. If the temperature is lower than 1200°C, sintering is insufficient and high density cannot be obtained, and if it exceeds 1700°C, the particles become coarse or volatile elements are volatilized and lost.

成型後の焼成(工程(4))における焼結性や特性の向
上のために、必要に応じ工程(2)および(3)の少な
くとも1つの工程において、助剤としてZr、 Mg、
 Sc、 )If、 Th、 W、 Nb、 Ta、 
Cr、 Mo、 Ti、 Mn、 Fe、 Co。
In order to improve the sinterability and properties in the firing after molding (step (4)), Zr, Mg,
Sc, ) If, Th, W, Nb, Ta,
Cr, Mo, Ti, Mn, Fe, Co.

Ni、Cd、AI!、、Sn、As、旧、Zn、および
Srの1種または2種以上の元素を微量添加する。助剤
はBaZrO3゜BaSnO3,5nTiO3、および
BaTi0.の1または2以上の形で微量添加されるこ
とも可能である。
Ni, Cd, AI! A trace amount of one or more of Sn, As, Zn, and Sr is added. The auxiliaries are BaZrO3°BaSnO3, 5nTiO3, and BaTi0. It is also possible to add trace amounts of one or more of the following.

以下に本発明の実施例を比較例と対比させて説明する。Examples of the present invention will be explained below in comparison with comparative examples.

〔実施例〕〔Example〕

塩化バリウム水溶液(1,67!/mon濃度)800
ccと塩化亜鉛水溶液臼、 87!/mon ’lHr
度)900ccとを混合した。この混合水溶液を100
°Cで100時間保持することで加水分解を行い、B 
a” とZ n”を含むゾルを得た。これを洗浄、乾燥
した後1100℃で仮焼してBaZn0z粉末を作成し
た。該粉末10g(BaZnOzが0.0426mon
 )と市販のBaCO3粉末16.816 g  (0
,0852io7り 、NbzOs粉末9.059g(
0,0341moj! ) 、Ta2O,、粉末3.7
65 g (0,00852mo# )とをボールミル
で一昼夜混合した後再び1000℃で1時間仮焼してB
a(Zn+z+Nb5z+5Tazz+s)O+粉末を
得た。粒径は約0.4μmであった。該粉末をlt/c
Jで成形したタブレットを大気中で1400℃で2時間
焼成した。得られたBZNT系セラミックスの特性を第
1表に示す。
Barium chloride aqueous solution (1,67!/mon concentration) 800
cc and zinc chloride aqueous solution mortar, 87! /mon 'lHr
degree) 900cc. 100% of this mixed aqueous solution
Hydrolysis is carried out by holding at °C for 100 hours, and B
A sol containing a'' and Z n'' was obtained. This was washed, dried, and then calcined at 1100°C to produce BaZn0z powder. 10 g of the powder (BaZnOz is 0.0426 mon
) and commercially available BaCO3 powder 16.816 g (0
,0852io7ri,NbzOs powder 9.059g (
0,0341moj! ), Ta2O,, powder 3.7
B.
A (Zn+z+Nb5z+5Tazz+s)O+ powder was obtained. The particle size was approximately 0.4 μm. lt/c of the powder
The tablets molded in J were baked at 1400° C. for 2 hours in the air. Table 1 shows the properties of the obtained BZNT ceramics.

(比較例) 比較例として市販のBaC0:++ZnO,NbzOs
、Ta30s粉末をBa(Zrzz:+Nbaz+5T
azy+5)03の組成となるように、BaCO3−2
5,224g (0,1278moff ) 、ZnO
−3,467g (0,0426io6 ) 、Nbz
Os   9.059g(0,0341io6 ) 、
Ta2es −3,765g (0,00852mo#
 )を配合し、ボールミルで1昼夜混合した後120(
1℃で1時間仮焼した。仮焼粉末の粒径は1,2μm程
度であった。該粉末をl t / calで成形し、実
施例と同し条件下で焼成した。その特性を第1表に示す
(Comparative example) As a comparative example, commercially available BaC0:++ZnO, NbzOs
, Ta30s powder was converted to Ba(Zrzz:+Nbaz+5T
BaCO3-2 to have a composition of azy+5)03
5,224g (0,1278moff), ZnO
-3,467g (0,0426io6), Nbz
Os 9.059g (0,0341io6),
Ta2es -3,765g (0,00852mo#
) and mixed in a ball mill for one day and night, then 120 (
It was calcined at 1°C for 1 hour. The particle size of the calcined powder was about 1.2 μm. The powder was compacted at l t /cal and calcined under the same conditions as in the examples. Its characteristics are shown in Table 1.

第1表 第1表かられかるように、本発明の方法によって製造し
たBZNT系セラミックスは、従来の方法によるものに
くらべて密度が著しく高く、それによってQ値が驚異的
に向上した。しかもこのQ値が従来材より高いε1値と
同時に達成されており、Q値、ε、値の両特性値の組合
せにおいては本発明法の優位性が更に大きい。
As can be seen from Table 1, the BZNT-based ceramics produced by the method of the present invention had a significantly higher density than those produced by the conventional method, and as a result, the Q value was surprisingly improved. Moreover, this Q value is achieved at the same time as the ε1 value which is higher than that of conventional materials, and the superiority of the method of the present invention is even greater in the combination of both characteristic values of Q value, ε, and value.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によると、第(1)〜(2)工程によりB
ZNTの構成成分の一種以上を含む粉末(変成粉末)は
、二次粒子の極めて少ないサブミクロン粒子となし得、
これを使用することによって、以後単なる乾式法によっ
て、容易にサブミクロン級のBZNT原料粉末が得られ
、更にこれを原料としてQ値が高く高密度のBZNTセ
ラミックスが得られる、という優れた効果が得られる。
According to the method of the present invention, B
Powder containing one or more of the constituent components of ZNT (modified powder) can be made into submicron particles with extremely few secondary particles,
By using this, submicron-grade BZNT raw material powder can be easily obtained by a simple dry method, and BZNT ceramics with a high Q value and high density can be obtained using this as a raw material, which is an excellent effect. It will be done.

そのほか次のような効果も得られる。In addition, the following effects can also be obtained.

1)仮焼によって得られる変成粉末が十分分散されたも
のが得られるため、仮焼物の粉砕工程を特に必要としな
いで、原料粉末として供給し得る。
1) Since the modified powder obtained by calcination is sufficiently dispersed, it can be supplied as a raw material powder without the need for a particular pulverization step of the calcined material.

2)該仮焼変成粉末から乾式法で得られるBZNT粉末
も単分散状態で得られ、従って粉砕工程を除いても十分
易焼結性且つ高密度の特性を有する。
2) BZNT powder obtained from the calcined modified powder by a dry method is also obtained in a monodisperse state, and therefore has characteristics of sufficiently easy sinterability and high density even without the pulverization step.

3)極めて高密度且つ高Q値を要求されるマイクロ波用
誘電体共振器材料として、BZNT系セラミックスをホ
ットプレスやHIP (たとえば熱間ガス圧焼結)など
の操作を省略して単なる固相焼結によって、理論密度に
極めて近い高密度で得ることができる。
3) As a microwave dielectric resonator material that requires extremely high density and high Q value, BZNT ceramics can be used as a simple solid phase material by omitting operations such as hot pressing and HIP (for example, hot gas pressure sintering). By sintering, high densities that are very close to the theoretical density can be obtained.

4)優れた粉末特性を有する変成粉末を大量生産するこ
とによって、任意の組成のBZNTを極めて安価に供給
し得る。
4) BZNT of any composition can be supplied at extremely low cost by mass producing a modified powder with excellent powder properties.

Claims (1)

【特許請求の範囲】 1、化学式がBa(Zn_1_/_3Nb_x_/_3
Ta_(_1_−_x_)_/_3)O_3、0≦x≦
1で表わされるペロブスカイト組成の誘電体共振器材料
の製造方法において、 (1)該化学式中Zn以外の少なくとも1種の金属成分
の適量とZnとを含有する溶液、該化学式中Ba以外の
少なくとも1種の金属成分の適量とBaとを含有する溶
液、該化学式中Nb以外の少なくとも1種の金属成分の
適量とNbとを含有する溶液のいずれかを作成する工程
、 (2)該溶液の加水分解を行なってゾルを生成させ、該
ゾルを乾燥後700〜1300℃で仮焼して仮焼物とす
る工程、 (3)該仮焼物と、該ペロブスカイト組成の残りの構成
成分の化合物とを混合して700〜1300℃で仮焼し
て仮焼粉末とする工程、および (4)該仮焼粉末を成形して1200〜1700℃で焼
成する工程 から成ることを特徴とする誘電体共振器材料の製造方法
。 2、前記工程(1)において、前記金属成分の化合物の
水溶液またはアルコール溶液と、ZnまたはBaまたは
Nbの化合物の水溶液またはアルコール溶液とを混合し
て前記溶液を作成することを特徴とする特許請求の範囲
第1項記載の誘電体共振器材料の製造方法。 3、前記Zn化合物が、塩化亜鉛、硫酸亜鉛、硝酸亜鉛
、および酢酸亜鉛の1種または2種以上から成ることを
特徴とする特許請求の範囲第2項記載の誘電体共振器材
料の製造方法。 4、前記Ba化合物が、塩化バリウム、塩素酸バリウム
、過塩素酸バリウム、硝酸バリウム、酢酸バリウム、バ
リウムエチレート、バリウムイソプロピレートの1種ま
たは2種以上から成ることを特徴とする特許請求の範囲
第2項記載の誘電体共振器材料の製造方法。 5、前記Nb化合物が、塩化ニオビウム、ニオブメトキ
シド、ニオビウムエチレート、ニオブ酸ナトリウムの1
種または2種以上から成ることを特徴とする特許請求の
範囲第2項記載の誘電体共振器材料の製造方法。 6、前記工程(2)および(3)の少なくとも1つの工
程において、助剤としてZr、Mg、Sc、Hf、Th
、W、Nb、Ta、Cr、Mo、Ti、Mn、Fe、C
o、Ni、Cd、Al、Sn、As、Bi、Zn、およ
びSrの1種または2種以上の元素を微量添加すること
を特徴とする特許請求の範囲第1項から第5項までのい
ずれか1項に記載の誘電体共振器材料の製造方法。 7、前記助剤がBaZrO_3、BaSnO_3、Sn
TiO_3、およびBaTiO_3の1または2以上の
形で微量添加されることを特徴とする特許請求の範囲第
8項記載の誘電体共振器材料の製造方法。
[Claims] 1. The chemical formula is Ba (Zn_1_/_3Nb_x_/_3
Ta_(_1_−_x_)_/_3)O_3, 0≦x≦
In the method for manufacturing a dielectric resonator material having a perovskite composition represented by 1, (1) a solution containing Zn and an appropriate amount of at least one metal component other than Zn in the chemical formula, at least one metal component other than Ba in the chemical formula; A step of preparing either a solution containing an appropriate amount of a metal component and Ba, or a solution containing Nb and an appropriate amount of at least one metal component other than Nb in the chemical formula, (2) adding water to the solution decomposing to produce a sol, drying the sol and calcining it at 700 to 1300°C to obtain a calcined product; (3) mixing the calcined product with compounds of the remaining components of the perovskite composition; and (4) forming the calcined powder and firing it at 1200 to 1700°C. manufacturing method. 2. A claim characterized in that in the step (1), the solution is created by mixing an aqueous or alcoholic solution of the compound of the metal component and an aqueous or alcoholic solution of the compound of Zn, Ba, or Nb. A method for manufacturing a dielectric resonator material according to item 1. 3. The method for manufacturing a dielectric resonator material according to claim 2, wherein the Zn compound is composed of one or more of zinc chloride, zinc sulfate, zinc nitrate, and zinc acetate. . 4. Claims characterized in that the Ba compound consists of one or more of barium chloride, barium chlorate, barium perchlorate, barium nitrate, barium acetate, barium ethylate, and barium isopropylate. 2. A method for manufacturing a dielectric resonator material according to item 2. 5. The Nb compound is one of niobium chloride, niobium methoxide, niobium ethylate, and sodium niobate.
3. The method for manufacturing a dielectric resonator material according to claim 2, wherein the dielectric resonator material is made of one or more kinds. 6. In at least one of the steps (2) and (3), Zr, Mg, Sc, Hf, Th as an auxiliary agent.
, W, Nb, Ta, Cr, Mo, Ti, Mn, Fe, C
Any one of claims 1 to 5, characterized in that a trace amount of one or more elements of O, Ni, Cd, Al, Sn, As, Bi, Zn, and Sr is added. A method for manufacturing a dielectric resonator material according to item 1. 7. The auxiliary agent is BaZrO_3, BaSnO_3, Sn
9. The method for manufacturing a dielectric resonator material according to claim 8, wherein a trace amount of one or more of TiO_3 and BaTiO_3 is added.
JP62127212A 1987-05-26 1987-05-26 Manufacturing method of dielectric resonator material Expired - Lifetime JP2663944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127212A JP2663944B2 (en) 1987-05-26 1987-05-26 Manufacturing method of dielectric resonator material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127212A JP2663944B2 (en) 1987-05-26 1987-05-26 Manufacturing method of dielectric resonator material

Publications (2)

Publication Number Publication Date
JPS63292507A true JPS63292507A (en) 1988-11-29
JP2663944B2 JP2663944B2 (en) 1997-10-15

Family

ID=14954499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127212A Expired - Lifetime JP2663944B2 (en) 1987-05-26 1987-05-26 Manufacturing method of dielectric resonator material

Country Status (1)

Country Link
JP (1) JP2663944B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369548A (en) * 1989-08-07 1991-03-25 Kyocera Corp Dielectric porcelain composition
JPH03171506A (en) * 1989-08-11 1991-07-25 Sanyo Electric Co Ltd Dielectric porcelain composite for microwave
EP1130002A1 (en) * 1998-06-22 2001-09-05 Sumitomo Special Metals Company Limited Method for producing dielectric porcelain composition for electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269805A (en) * 1985-05-23 1986-11-29 松下電器産業株式会社 Manufacture of dielectric ceramic for microwave
JPS63291305A (en) * 1987-05-22 1988-11-29 Nippon Denso Co Ltd Manufacture of dielectric resonator material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269805A (en) * 1985-05-23 1986-11-29 松下電器産業株式会社 Manufacture of dielectric ceramic for microwave
JPS63291305A (en) * 1987-05-22 1988-11-29 Nippon Denso Co Ltd Manufacture of dielectric resonator material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369548A (en) * 1989-08-07 1991-03-25 Kyocera Corp Dielectric porcelain composition
JPH03171506A (en) * 1989-08-11 1991-07-25 Sanyo Electric Co Ltd Dielectric porcelain composite for microwave
EP1130002A1 (en) * 1998-06-22 2001-09-05 Sumitomo Special Metals Company Limited Method for producing dielectric porcelain composition for electronic device
EP1130002A4 (en) * 1998-06-22 2004-04-28 Sumitomo Spec Metals Method for producing dielectric porcelain composition for electronic device

Also Published As

Publication number Publication date
JP2663944B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
JP2598786B2 (en) Method for producing perovskite-based functional ceramic
JPS63292507A (en) Manufacture of dielectric resonator material
JPH0559048B2 (en)
JP2617938B2 (en) Manufacturing method of dielectric resonator material
JPH027906B2 (en)
JPS63292506A (en) Manufacture of dielectric resonator material
JP2622545B2 (en) Manufacturing method of dielectric resonator material
JP2628596B2 (en) Manufacturing method of dielectric resonator material
JPH0818867B2 (en) Method for producing perovskite ceramics containing zirconium
JPS63100001A (en) Preparation of raw material powder for perovskite
JPS63298911A (en) Manufacture of dielectric resonator material
JPH0784349B2 (en) Method for producing dielectric ceramics containing neodymium
JPH0784346B2 (en) Method for producing perovskite ceramics containing niobium
JP2687287B2 (en) Dielectric ceramic composition for microwave and method for producing the same
JPS63151676A (en) Manufacture of zirconium titanate base ceramics
JP2533305B2 (en) Manufacturing method of dielectric resonator material
JPS63117914A (en) Production of metal oxide powder for ptc-thermistor
JP2835253B2 (en) High frequency dielectric ceramic composition and dielectric material
JPS63285149A (en) Production of samarium-containing dielectric material ceramic
JPH02239511A (en) Microwave inductor porcelain composition and its manufacture
JPH0784350B2 (en) Manufacturing method of perovskite ceramics
JPS63291844A (en) Production of optical ceramics
JPS63153871A (en) Manufacture of material for dielectric resonator
JPS62235251A (en) Manufacture of dielectric ceramic
JPS63156067A (en) Manufacture of zirconium titanate base ceramics

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term