JPS63291881A - Porous ceramic material and production thereof - Google Patents

Porous ceramic material and production thereof

Info

Publication number
JPS63291881A
JPS63291881A JP12639587A JP12639587A JPS63291881A JP S63291881 A JPS63291881 A JP S63291881A JP 12639587 A JP12639587 A JP 12639587A JP 12639587 A JP12639587 A JP 12639587A JP S63291881 A JPS63291881 A JP S63291881A
Authority
JP
Japan
Prior art keywords
particles
particle
layer
glassy
base layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12639587A
Other languages
Japanese (ja)
Other versions
JPH0516388B2 (en
Inventor
Kenkichi Ina
伊奈 健吉
Toru Taniguchi
徹 谷口
Kazumasa Goto
後藤 和昌
Yuichi Tasaka
田阪 裕一
Seiji Kasai
笠井 征治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASAI YUUYAKU KOGYO KK
Inax Corp
Original Assignee
KASAI YUUYAKU KOGYO KK
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASAI YUUYAKU KOGYO KK, Inax Corp filed Critical KASAI YUUYAKU KOGYO KK
Priority to JP12639587A priority Critical patent/JPS63291881A/en
Publication of JPS63291881A publication Critical patent/JPS63291881A/en
Publication of JPH0516388B2 publication Critical patent/JPH0516388B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled material having excellent appearance, frost damage resistance and coloring properties, by press molding a surface layer raw material consisting of frit, etc., a binder, a ceramic material and water and a base layer raw material consisting of frit, etc., a binder, a ground material such as tile and water and then burning. CONSTITUTION:A raw material for a surface layer 12 obtained by blending a natural raw material such as porcelain chamotte, silica sand and feldspar with ceramic material particles such as ground cullet of high-melting glass, glassy material such as frit, a binder made of paste and water and a raw material for a base layer 14 obtained by blending ground particles such as tile with the binder and water are press molded to form a molded material of double structure. Then the material is removed from a mold, dried and burnt at a temperature <=melting temperature of the ground ceramic material particles and tile and a temperature >=melting temperature of the glassy material to form a porous ceramic material consisting of the surface layer 12 wherein surface layer particles 11 having <=2.5mm particle diameters obtained by coating the whole surface of the ceramic material with the glassy material 15 are bonded and the base layer 14 wherein base layer particles 13 having <=10mm particle diameters obtained by coating the whole surface of the ground particles of the tile with the glassy material 15 are bonded. The particles in both the layers have average particle diameters >=3/70 thickness of each layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、道路舗装用、エフステリア床材、屋内外プー
ル周辺床材、屋内外吸音材、内外装材等に使用される多
孔質陶磁器材料及びその製造方法に関するものであり、
従来に比較して透水性の飛II的な向上を図ることで優
れた耐凍害性を実現せんとするものである。なお、一般
に、道路舗装用等の前記材料に透水性を持たせるのは、
雨水の流出抑制、地下水の洒養、植物の育成等を目的と
するためである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to porous ceramic materials used for road paving, Efsteria flooring, flooring around indoor and outdoor swimming pools, indoor and outdoor sound absorbing materials, interior and exterior materials, etc. and its manufacturing method,
The objective is to achieve excellent frost damage resistance by dramatically improving water permeability compared to conventional materials. Generally, the materials used for road paving etc. are made water permeable by:
The purpose is to control rainwater runoff, recharge groundwater, grow plants, etc.

〔従来の技術〕[Conventional technology]

従来にあって、道路、駐車場、公園の敷地等に使用され
る多孔質陶磁器材料に関する技術としては、例えば特開
昭61−36157号公報に記載された技術がある。こ
の従来技術では、第3図に示すように、吸水率が4%未
満の非保水性粒子1と、吸水率が5%以上の保水性粒子
2とをバインダー3で結合し、各粒子1及び2の間に連
続した気孔4を形成している。この連続気孔4により製
品タイル5に透水性を持たせることが可能である。而し
て、各粒子1及び2は、バインダー3による結合部を除
いてはその粒子表面が連続気孔4に露出している。その
ため、連続気孔4を浸透して来た雨水等の一部は、各保
水性粒子2に吸水され、余剰の雨水等が製品を通過して
外部へ排出されるようになっている。つまり、この従来
技術では製品タイル5に透水性及び保水性の両方の性質
を持たせている。透水性以外に保水性を持たせる理由は
、日差しが強い場合に、製品タイル5が速やかに乾燥し
て表面が40〜50℃の高温になり、生活環境を悪化さ
せるので、保水した雨水等の気化熱を利用して製品タイ
ル5の表面温度を低下させんとするためである。
BACKGROUND ART Conventionally, as a technique related to porous ceramic materials used for roads, parking lots, park grounds, etc., there is a technique described in, for example, Japanese Patent Laid-Open No. 61-36157. In this prior art, as shown in FIG. 3, non-water retaining particles 1 with a water absorption rate of less than 4% and water retaining particles 2 with a water absorption rate of 5% or more are combined with a binder 3, and each particle 1 and A continuous pore 4 is formed between the two. The continuous pores 4 allow the product tile 5 to have water permeability. Thus, the surface of each particle 1 and 2 is exposed to the continuous pores 4 except for the bonded portion by the binder 3. Therefore, a portion of the rainwater etc. that has permeated through the continuous pores 4 is absorbed by each water-retaining particle 2, and excess rainwater etc. passes through the product and is discharged to the outside. In other words, in this prior art, the product tile 5 has both water permeability and water retention properties. The reason for providing water retention in addition to water permeability is that if the product tile 5 is exposed to strong sunlight, it will dry quickly and the surface will reach a high temperature of 40 to 50 degrees Celsius, deteriorating the living environment. This is to reduce the surface temperature of the product tile 5 using the heat of vaporization.

またこの従来例にあっては、第4図に示すように、前記
非保水性粒子1と保水性粒子2との混合層を基層6とし
、該基層6の上に非保水性粒子1のみの単独層を表面層
7とする二層構造の製品タイル8が開示されている。
In addition, in this conventional example, as shown in FIG. A product tile 8 having a two-layer structure with a single layer as the surface layer 7 is disclosed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上述した特開昭61−36157号公報に記
載された従来技術にあっては、製品タイル5及び8が保
水性を有しているために、寒冷地等においてこれを使用
すると保水性粒子2に保水された雨水等が凍結し、亀裂
及び損壊を発生させるという欠点があつた。要するに、
前記従来の製品タイル5及び8では、耐凍害性に欠ける
問題があり、寒冷地や凍結の虞れのある環境下では使用
できないという欠点があった。しかも、第3図に示す製
品タイル5にあっては、保水性粒子2に雨水等を吸水さ
せて保水性を持たせることを目的としているため、保水
性粒子2の粒径を大きくして保水性粒子全体の表面積を
増大させる必要があり、製品タイル5の表面性状が悪化
し、見栄えが悪くなるという欠点があった。このことは
、非保水性粒子!のみの単独層を表面[7とした製品タ
イル8の場合であっても、非保水性粒子lと保水性粒子
2の粒径がほぼ間じであるため、同様に見栄え上の問題
があった。
However, in the conventional technology described in Japanese Patent Application Laid-Open No. 61-36157 mentioned above, since product tiles 5 and 8 have water-retaining properties, when used in cold regions etc., the water-retaining particles 2 had the disadvantage that rainwater, etc. stored in the system would freeze, causing cracks and damage. in short,
The conventional product tiles 5 and 8 had the problem of lacking frost resistance and could not be used in cold regions or environments where there is a risk of freezing. Moreover, in the product tile 5 shown in FIG. 3, since the purpose is to make the water-retaining particles 2 absorb rainwater and have water-retaining properties, the particle size of the water-retaining particles 2 is increased to retain water. It is necessary to increase the surface area of the entire surface of the particles, which has the disadvantage that the surface quality of the product tile 5 deteriorates, resulting in poor appearance. This means non-water retaining particles! Even in the case of product tile 8 with a single layer of water on the surface [7], there was a similar problem in appearance because the particle sizes of non-water retaining particles 1 and water retaining particles 2 were approximately the same. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、従来の前記問題点に鑑みてこれを改良除去し
たものであって、保水性を付与せず、透水性の飛躍的な
向上を実現し、耐凍害性に優れた多孔質陶磁器材料とそ
の製造方法を提供せんとするものである。
The present invention has been developed to improve and eliminate the above-mentioned conventional problems, and to achieve a dramatic improvement in water permeability without imparting water retention properties, the present invention is a porous ceramic material with excellent frost damage resistance. and its manufacturing method.

而して、前記問題点を解決するために本発明が採用した
多孔質陶磁器材料の技術手段は、陶磁器質材料の各粒子
をフリット等のガラス質材料で全面被覆し、各粒子同士
を結合させた表面層と、前記陶磁器質材料の粒子よりも
粒径の粗い瓦等の粉砕物の各粒子をフリット等のガラス
質材料で全面被覆し、各粒子同士を結合させた基層とよ
り成り、前記表面層及び基層の各粒子間には連続した気
孔が形成されており、前記表面層及び基層の各粒子の平
均粒径は、各層の厚みに対して3/70以上である。
Therefore, the technical means for producing porous ceramic material adopted by the present invention in order to solve the above-mentioned problems is to cover the entire surface of each particle of the ceramic material with a glassy material such as frit, and bond each particle to each other. and a base layer in which each particle of a pulverized product such as a roof tile whose particle size is coarser than that of the ceramic material particle is entirely covered with a glassy material such as frit, and each particle is bonded to each other. Continuous pores are formed between each particle of the surface layer and the base layer, and the average particle size of each particle of the surface layer and the base layer is 3/70 or more of the thickness of each layer.

また多孔室陶磁器材料の他の技術手段は、磁器質材料の
各粒子同士をフリット等のガラス質材料で結合させた表
面層と、前記磁器質材料の粒子よりも粒径の粗い瓦等の
粉砕物の各粒子をフリット等のガラス質材料で全面被覆
し、各粒子同士を結合させた基層とより成り、前記表面
層及び基層の各粒子間には連続した気孔が形成されてお
り、前記表面層及び基層の各粒子の平均粒径は、各層の
厚みに対して3/70以上である。
Other technical means for producing porous ceramic materials include a surface layer in which each particle of the porcelain material is bonded with a glassy material such as a frit, and a pulverized material such as a roof tile whose particle size is coarser than that of the particles of the porcelain material. It consists of a base layer in which each particle of the object is entirely covered with a glassy material such as a frit, and each particle is bonded to each other, and continuous pores are formed between each particle of the surface layer and the base layer. The average particle size of each particle in the layer and the base layer is 3/70 or more of the thickness of each layer.

更に、前記多孔質陶磁器材料を製造する方法は、フリッ
ト等のガラス質材料、糊を主成分とするバインダー及び
陶磁器質材料並びに水とを混合した表面層原料と、フリ
ット等のガラス質材料、糊を主成分とするバインダー及
び瓦等の粉砕物並びに水とを混合した基層原料とを加圧
成形することで二層構造の成形素地を成形し、脱型・乾
燥後の成形素地を前記陶磁器質材料及び瓦等の粉砕物の
溶融温度よりも低く且つ前記フリット等のガラス質材料
の溶融温度よりも高い温度で焼成することにより、表面
層の各粒子の全面又は一部及び基層の各粒子の全面をガ
ラス質材料で被覆すると共に、陶磁器質材料及び瓦等の
粉砕物の各粒子同士を結合させ、これらの各粒子同士の
間に連続した気孔を形成している。
Furthermore, the method for producing the porous ceramic material includes a surface layer raw material that is a mixture of a glassy material such as a frit, a binder mainly composed of glue, a ceramic material, and water, a glassy material such as a frit, and a glue. A two-layer structure is formed by pressure molding a binder mainly composed of a binder, a crushed material such as a roof tile, and a base layer raw material mixed with water, and after demolding and drying, the molded base is molded into the above-mentioned ceramic material. By firing at a temperature lower than the melting temperature of the pulverized materials such as tiles and tiles and higher than the melting temperature of the glassy material such as the frit, the entire surface or part of each particle of the surface layer and each particle of the base layer are heated. The entire surface is coated with a glassy material, and the particles of the ceramic material and the crushed material such as roof tiles are bonded together to form continuous pores between the particles.

(作 用〕 第1図及び第2図の実施例で明らかな如(、加圧成形に
より陶磁器質材料の粒子11で表面層12を形成し、瓦
等の粉砕物の粒子13で基W114を形成する。そして
、加圧成形後に、前記粒子11及び13の溶融温度より
も低く且つバインダーの主成分の一つであるガラス質材
料15の溶融温度よりも高い温度で焼成することにより
、前記粒子11及び13の全面をガラス質材料15で覆
い、これらの各粒子11及び13同士をそれぞれ結合さ
せることができる。しかも、各粒子11及び13同士の
間には、それぞれ連続した気孔16及び17が形成され
る。
(Function) As is clear from the embodiments shown in FIGS. 1 and 2, the surface layer 12 is formed with particles 11 of ceramic material by pressure molding, and the base layer W 114 is formed with particles 13 of crushed material such as roof tiles. After pressure molding, the particles are fired at a temperature lower than the melting temperature of the particles 11 and 13 and higher than the melting temperature of the glassy material 15, which is one of the main components of the binder. The entire surface of particles 11 and 13 can be covered with glassy material 15 to bond each particle 11 and 13 to each other. Moreover, continuous pores 16 and 17 are formed between each particle 11 and 13, respectively. It is formed.

このようにして得られた多孔質陶磁器材料10にあって
は、表面層12及び基層14の厚みに対する各粒子11
及び13の平均粒径を3/70以上に選択することで、
雨水等が前記連続した気孔16及び17を通って外部へ
容易に排出されるようにし、透水性の飛躍的な向上を実
現している。また前記粒子11及び13の全面がガラス
質材料15で被覆されているため、これらの各粒子11
及び13が連続した気孔16及び17を通る雨水等を吸
水することもない。従って、寒冷地等において多孔質陶
磁器材料10を舗装用材料として使用した場合であって
も、該材料10が凍結により亀裂及び損壊を発生させる
ということはない、即ち、耐凍害性に優れた多孔質陶磁
器材料10を提供することが可能である。
In the porous ceramic material 10 obtained in this way, each particle 11 is relative to the thickness of the surface layer 12 and base layer 14.
And by selecting the average particle size of 13 to be 3/70 or more,
Rainwater and the like are easily discharged to the outside through the continuous pores 16 and 17, thereby achieving a dramatic improvement in water permeability. Further, since the entire surface of the particles 11 and 13 is coated with the glassy material 15, each particle 11
And 13 does not absorb rainwater or the like passing through continuous pores 16 and 17. Therefore, even if the porous ceramic material 10 is used as a paving material in a cold region, the material 10 will not crack or break due to freezing. It is possible to provide a quality ceramic material 10.

〔実施例〕〔Example〕

以下に、本発明の多孔質陶磁器材料及びその製造方法を
図面に示す実施例に基づいて説明すると次の通りである
EMBODIMENT OF THE INVENTION The porous ceramic material of this invention and its manufacturing method are demonstrated below based on the Example shown in drawing.

第1図は本発明の一実施例に係る多孔質陶磁器材料10
の部分縦断面図、第2図は第1図の部分拡大図である。
FIG. 1 shows a porous ceramic material 10 according to an embodiment of the present invention.
FIG. 2 is a partially enlarged view of FIG. 1.

同図に示す如く、この多孔質陶磁器材料10は、磁器質
シャモット、珪砂及び長石等の天然原料、高融点ガラス
のカレット、瓦や土管並びに煉瓦等の粉砕物等のいわゆ
る陶器質又は磁器質材料(以下は、陶磁器質材料という
)の各粒子11同士を、バインダーで結合させた表面層
12と、瓦や土管、煉瓦等の粉砕物の各粒子13をバイ
ンダーで結合させた基層14とよりなる二層構造である
As shown in the figure, the porous ceramic material 10 is made of so-called ceramic or porcelain materials such as natural raw materials such as porcelain chamotte, silica sand, and feldspar, high melting point glass cullet, and crushed materials such as roof tiles, clay pipes, and bricks. It consists of a surface layer 12 in which particles 11 of (hereinafter referred to as ceramic material) are bound together with a binder, and a base layer 14 in which particles 13 of crushed materials such as roof tiles, clay pipes, and bricks are bound together with a binder. It has a two-layer structure.

前記バインダーは、フリット、ガラス等のガラス質材料
と、糊とを主原料とし、必要に応じてセンメントが添加
される。ガラス質材料を使用する理由は、前記表面層1
2及び基jil14の各粒子11.13の全面を被覆し
た状態で結合させ、且つ結合状態の各粒子11.13間
士の間に連続した気孔16.17を形成するためである
。また糊を使用する理由は、原料粒子を加圧成形した後
の成形素地に保形性を付与するためである。必要に応じ
てセメントを添加する理由は、焼成前の乾燥した前記成
形素地に型崩れしない程度の強度を発現させるためであ
る。
The binder is mainly made of a vitreous material such as frit or glass, and glue, and cement is added as needed. The reason for using a glassy material is that the surface layer 1
This is to bond the particles 11.13 of the particles 11.13 of the bonded particles 11.13 and to form continuous pores 16.17 between the particles 11.13 in the bonded state. The reason for using the glue is to impart shape retention to the molded base material after pressure molding the raw material particles. The reason why cement is added as necessary is to give the dried molded material before firing a strength sufficient to prevent it from losing its shape.

ところで、多孔質陶磁器材料10を二層構造とした理由
は、透水性を向上させて耐凍害性の特徴を付与した上で
、表面性状を良好にして外観上の見栄えを良くするため
である。つまり、耐凍害性に優れたこの種多孔質陶磁器
材料を得るという本発明の直接的な目的以外に、意匠的
な観点を考慮したためである。寒冷地等において道路舗
装用に使用されるこの種材料は、耐凍害性を具備するこ
とが必須である。また道路舗装用として使用されるもの
である以上、その色彩や表面粗さ等の表面性状を良好な
ものとする必要があり、表面層I2の材料粒子11の粒
径はできるだけ小さい方が好ましい。
By the way, the reason why the porous ceramic material 10 has a two-layer structure is to improve water permeability and provide frost damage resistance, and to improve the surface quality and improve the external appearance. In other words, this is because, in addition to the direct objective of the present invention, which is to obtain this type of porous ceramic material with excellent frost damage resistance, the design aspect was taken into consideration. This kind of material used for road paving in cold regions etc. must have frost damage resistance. Moreover, since it is used for road paving, it is necessary to have good surface properties such as color and surface roughness, and it is preferable that the particle size of the material particles 11 of the surface layer I2 is as small as possible.

このような要求を満足させるためには、表面層12に使
用する材料粒子11の粒径と、表面層12の厚みとの相
互関係を勘案する必要があり、また同様に、基層14に
使用する材料粒子13の粒径と、基層14の厚みとの相
互関係を勘案する必要がある。その理由は、各粒子11
及び13の粒径を大きくして各粒子11及び13どうし
の間に形成される気孔16及び17の大きさをある程度
大きくし、透水性の向上を図るようにしても、各層12
及び14の厚みが厚くなり過ぎると、多孔質陶磁器材料
10へ浸入した雨水等の通過する時間が掻端に長くなり
(材料lO内へ保水された状態となり)、結果的に全体
としての透水性が劣り、凍害発生の虞れがあるためであ
る。
In order to satisfy such requirements, it is necessary to consider the mutual relationship between the particle size of the material particles 11 used for the surface layer 12 and the thickness of the surface layer 12. It is necessary to consider the correlation between the particle size of the material particles 13 and the thickness of the base layer 14. The reason is that each particle 11
Even if the size of the pores 16 and 17 formed between the particles 11 and 13 is increased to some extent to improve water permeability, the particle size of each layer 12 is increased.
If the thickness of 14 becomes too thick, the time for rainwater etc. that has entered the porous ceramic material 10 to pass becomes extremely long (water is retained in the material 10), and as a result, the water permeability as a whole decreases. This is because there is a risk of frost damage.

本発明者らは上述の留意点に鑑みて、種々の実験を重ね
たところ、表面層12及び基Jiif14のいずれにお
いても、各粒子の粒径と、各層の厚みとの間には、各層
の厚みに対して各粒子の平均粒径が夫々3/70以上で
なければ目的とする耐凍害性を得ることができないとい
うことを知見した。然しながら、前記各粒子の平均粒径
と各層厚みとの関係は、3/70以上であれば無限にそ
の数値を大きくしてもよいというものではない0表面f
fj12の粒子11の粒径は、前述した如く、粗いと意
匠上の観点から見栄えが悪くなるので、最大粒径は2.
5fi以下であることが好ましく、また基層14の粒子
13の粒径は大きくなり過ぎると、加圧成形が困難にな
り、しかも粒子相互間の結合強度が弱くなるので、最大
粒径で10■以下が好ましいものである。各粒子の粒径
と各層の厚みとの最適な関係は、例えば、多孔質陶磁器
材料10全体の厚みを4Onとし、表面層12の厚みを
5日とした場合、表面層12の粒子11の粒径は0,3
〜1.2■の範囲で平均粒径0.75nが適当であり、
基層14の粒子13の粒径は1〜4鶴の範囲で平均粒径
2.5n+mが適当である。
The present inventors conducted various experiments in view of the above-mentioned points, and found that in both the surface layer 12 and the base Jiif 14, there is a difference between the particle size of each particle and the thickness of each layer. It has been found that the desired frost damage resistance cannot be obtained unless the average particle size of each particle is 3/70 or more of the thickness. However, the relationship between the average particle diameter of each particle and the thickness of each layer does not mean that the value can be infinitely increased as long as it is 3/70 or more.
The particle size of the particles 11 of fj12 is, as mentioned above, unsightly from a design point of view if it is coarse, so the maximum particle size is 2.
The particle size of the particles 13 of the base layer 14 is preferably 5fi or less, and if the particle size of the particles 13 of the base layer 14 is too large, pressure molding becomes difficult and the bonding strength between particles becomes weak. is preferred. The optimal relationship between the particle size of each particle and the thickness of each layer is, for example, when the overall thickness of the porous ceramic material 10 is 4 On and the thickness of the surface layer 12 is 5 days, the particles 11 of the surface layer 12 are The diameter is 0.3
An average particle size of 0.75n is appropriate in the range of ~1.2■,
The particle size of the particles 13 of the base layer 14 is in the range of 1 to 4 grains, and an average particle size of 2.5n+m is appropriate.

而して、本発明に係る多孔質陶磁器材料10にあって重
要なことは、耐凍害性に優れたものとするために、その
透水性を飛躍的に向上させたことにある。これは、前述
した各層12及び14の厚みに対する各粒子11及び1
3の粒径との関係を限定したことと、次に説明する各粒
子11及び13どうしの結合構造とが寄与している。各
粒子の結合構造は、第1図及び第2図に示す如く、表面
層12の陶磁器質材料の各粒子11及び基層14の瓦や
土管、煉瓦等の粉砕物の各粒子13の全面を、それぞれ
バインダーの主成分の一つであるフリットガラス等のガ
ラス質材料15で被覆して結合させることで、各粒子1
1、13間士の間に連続した気孔16及び17を形成し
ている。各粒子11及び13の全面をガラス質材料で被
覆することにより、各粒子11及び13の個々が吸水し
なくなる。従って、多孔質陶磁器材料10内に浸入して
来た雨水等は、前述した粒径と眉厚みとの関係を限定し
たことによる効果と相俟って、前記気孔16及び17を
通過して外部へ容易に排出され、材料10の内部へ残る
ことがない。故に、透水性の飛躍的な向上を実現でき、
凍害の虞れのある寒冷地等において、道路舗装用材料と
してこの多孔質陶磁器材料lOを使用した場合であって
も、凍害の問題が起こることはない、尚、表面N12に
あっては、その材料自体に吸水性の低い(吸水率1%以
下)磁器質材料を使用した場合は、その粒子11の全面
をガラス質材料15で被覆することは必ずしも必要では
ない、この場合、ガラス質材料15は各粒子11同士の
接触部分においてこれを結合するだけでよく、その使用
量を少な(することが可能である。
What is important about the porous ceramic material 10 according to the present invention is that its water permeability is dramatically improved in order to have excellent frost damage resistance. This is based on the thickness of each particle 11 and 1 for each layer 12 and 14 described above.
This is due to the limited relationship between the particles 11 and 13 and the bonding structure between the particles 11 and 13, which will be described next. As shown in FIGS. 1 and 2, the bonding structure of each particle is as follows: Each particle 1 is coated and bonded with a glassy material 15 such as frit glass, which is one of the main components of the binder.
Continuous pores 16 and 17 are formed between 1 and 13 spaces. By covering the entire surface of each particle 11 and 13 with a glassy material, each particle 11 and 13 individually stops absorbing water. Therefore, rainwater etc. that have entered the porous ceramic material 10 pass through the pores 16 and 17 to the outside due to the effect of limiting the relationship between the particle size and the eyebrow thickness described above. and will not remain inside the material 10. Therefore, it is possible to achieve a dramatic improvement in water permeability,
Even if this porous ceramic material IO is used as a road paving material in cold regions where there is a risk of frost damage, frost damage will not occur. When a porcelain material with low water absorption (water absorption rate of 1% or less) is used as the material itself, it is not necessarily necessary to cover the entire surface of the particle 11 with the glassy material 15. In this case, the glassy material 15 It is only necessary to bond the particles 11 at the contact portions with each other, and the amount used can be reduced.

ところで、第1図及び第2図で示す実施例のように、表
面層12及び基層14の各粒子11及び13の全面をそ
れぞれガラス質材料15で被覆する場合は、これらの各
材料の配合割合が重要である。それは、表面層12及び
基層14の材料の各割合に対して、ガラス質材料15の
占める割合が少ない場合は、両層12、14の各粒子1
1.13の全面をガラス質材料15で被覆することがで
きな(なるからである。つまり、特に瓦や土管、煉瓦等
の粉砕物の各粒子13が、タイル内に浸入して来た雨水
等を吸水し、寒冷地等においてはこの吸水された水分が
凍結して亀裂や損壊を発生させるという問題があり、本
発明の目的を達成することができなくなるからである。
By the way, when the entire surface of each particle 11 and 13 of the surface layer 12 and base layer 14 is coated with the glassy material 15 as in the embodiment shown in FIGS. 1 and 2, the blending ratio of each of these materials is is important. When the ratio of the glassy material 15 to each ratio of the materials of the surface layer 12 and the base layer 14 is small, each particle 1 of both layers 12 and 14
This is because the entire surface of the tiles 1.13 cannot be covered with the glassy material 15. In other words, each particle 13 of crushed materials such as roof tiles, clay pipes, and bricks will not absorb rainwater that has penetrated into the tiles. This is because, in cold regions, the absorbed moisture freezes and causes cracks and damage, making it impossible to achieve the object of the present invention.

またガラス質材料15の占める割合が少ないと、表面層
12及び基層14の各粒子11.13同士の結合強度が
弱くなり、目的とする多孔質陶磁器材料10全体の強度
が得られなくなる虞れがあるからである。逆に、ガラス
質材料15の占める割合が多い場合は、焼成後の各粒子
11.13同士の間に形成される連続した気孔16.1
7が、ガラス質材料15によって閉塞され、透水性を喪
失してこの種多孔質陶磁器材料の本来の目的が得られな
くなるからである。
Furthermore, if the proportion of the glassy material 15 is small, the bonding strength between the particles 11, 13 of the surface layer 12 and the base layer 14 will be weakened, and there is a risk that the desired strength of the porous ceramic material 10 as a whole may not be obtained. Because there is. On the other hand, if the glassy material 15 accounts for a large proportion, continuous pores 16.1 formed between each particle 11.13 after firing.
7 is blocked by the vitreous material 15 and loses water permeability, making it impossible to achieve the original purpose of this type of porous ceramic material.

これらのことから、ガラス質材料15の占める割合は、
次の範囲が適当である。すなわち、表面層12にあって
は陶磁器質材料に対して20〜50wt%が適当であり
、基1ii14にあっては瓦や土管、煉瓦等の粉砕物に
対して20〜50mt%が適当である。この事は、実際
にガラス質材料15の調合割合を変更して、多孔質陶磁
器材料10を製造し、これを顕微鏡及び目視により観察
した結果から明らかである。
From these facts, the proportion of the vitreous material 15 is:
The following range is appropriate. That is, for the surface layer 12, 20 to 50 wt% is appropriate for the ceramic material, and for the base 1ii14, 20 to 50 mt% is appropriate for the crushed material such as roof tiles, clay pipes, and bricks. . This is clear from the results of actually manufacturing the porous ceramic material 10 by changing the blending ratio of the glassy material 15 and observing it with a microscope and with the naked eye.

すなわち、観察結果によれば、ガラス質材料15の調合
割合が前記下限値を下回った場合は、いずれの場合も各
粒子11.13の全面をガラス質材料15で被覆するこ
とができず、上限値を上回った場合は気孔15.16を
形成できなかった。
That is, according to the observation results, when the blending ratio of the glassy material 15 is below the lower limit value, the entire surface of each particle 11.13 cannot be covered with the glassy material 15 in any case, and the upper limit When the value exceeded the value, pores 15 and 16 could not be formed.

次に多孔質陶磁器材料10の製造方法を説明する。Next, a method for manufacturing the porous ceramic material 10 will be explained.

先ず、陶磁器質材料とバインダーと水とを混合した表面
層12の原料を成形型内に充填し、予圧を与えて表面層
12を仮締めする。然る後に、瓦や土管。
First, a raw material for the surface layer 12, which is a mixture of a ceramic material, a binder, and water, is filled into a mold, and a preload is applied to temporarily tighten the surface layer 12. After that, tiles and clay pipes.

煉瓦等の粉砕物とバインダーと水とを混合した基層14
の原料を、前記成形型内の仮締めした表面層12の上に
充填し、振動を与えながら加圧成形する。
Base layer 14 made of a mixture of crushed materials such as bricks, binder, and water
The raw materials are filled onto the temporarily tightened surface layer 12 in the mold, and pressure molded while applying vibration.

振動を与える理由は、前記混合原料を均一に分散させ、
充填密度のバラツキを防止し、また充填密度を向上させ
るためである。なお、加圧成形の順序は、上述の場合と
は逆に、基層14を先に充填して仮締めし、次に表面層
12を成形するようにしてもよい。
The reason for applying vibration is to uniformly disperse the mixed raw materials,
This is to prevent variations in the packing density and to improve the packing density. Note that the order of pressure molding may be reversed to the above case, such that the base layer 14 is first filled and temporarily tightened, and then the surface layer 12 is molded.

次ぎに、加圧成形した二層構造の成形素地を脱型する。Next, the pressure-molded two-layer structure is demolded.

この説型直後の成形素地にあっては、必要に応じて添加
されたバインダーとしてのセメントはまだ十分に水和硬
化しておらず、またガラス質材料も原料粒子の結合を担
っていない、従って、税型直後の成形素地の保形性は、
バインダーとしての糊によって行われている。然る後は
、成形素地の乾燥が行われる。この乾燥工程から焼成工
程までの間にあってはセメントの水和硬化による強度発
現が徐々に加わり、保形性が増加する。
In the molding base immediately after this molding, the cement as a binder added as necessary has not yet sufficiently hydrated and hardened, and the glassy material does not play a role in binding the raw material particles. , the shape retention of the molded base immediately after molding is,
It is done with glue as a binder. After that, the molded base is dried. During the period from the drying process to the firing process, cement gradually develops strength due to hydration hardening, and shape retention increases.

そして、必要に応じて表面[12の表面12aに着色又
は模様付は等を行い、最後に前記二層構造の成形素地を
焼成する。なお、前記着色又は模様付は等は、基Jii
12の原料中に焼成により発色する顔料等を混合するよ
うにしてもよいことは当然である。焼成は、表面[12
の陶磁器質材料の粒子11及び基層14の瓦等の粉砕物
粒子13が溶融する温度よりも低く、且つバインダーと
してのガラス質材料15が溶融する温度以上の900〜
1350℃の範囲の焼成温度で行う、この焼成により、
糊は消失する。
Then, if necessary, the surface 12a of the surface [12] is colored or patterned, and finally the molded base having the two-layer structure is fired. In addition, the above-mentioned coloring or patterning is based on Jii.
It goes without saying that a pigment or the like that develops color upon firing may be mixed into the 12 raw materials. Firing is performed on the surface [12
900 to 900, which is lower than the temperature at which the ceramic material particles 11 and the crushed particles 13 of the base layer 14, such as tiles, melt, and higher than the temperature at which the vitreous material 15 as a binder melts.
This calcination, carried out at a calcination temperature in the range of 1350°C, results in
The glue disappears.

そして、前記粒子11.13は第2図に拡大して示す如
く、熔融したガラス質材料15によってその全面が被覆
され、相互に結合される。しかも、この結合状態にあっ
て、各粒子11.13のそれぞれの間には連続した気孔
(空隙) 16.17が形成される。従って、ここで言
う焼成とは、窯業分野で一般的に言うタイル材料粒子を
溶融させて結合させる焼結とは異なり、むしろ単なる結
合という概念に近いものである。
As shown in an enlarged view in FIG. 2, the particles 11 and 13 are entirely covered with the molten glass material 15 and bonded to each other. Furthermore, in this bonded state, continuous pores (voids) 16.17 are formed between each particle 11.13. Therefore, firing here is different from sintering, which is generally used in the ceramic industry to melt and bond tile material particles, and is rather close to the concept of simple bonding.

これにより、第1図及び第2図に示す二層構造の多孔質
陶磁器材料10を得ることができ、材料10内へ浸入し
て来た雨水等は、表面層12及び基1i14の各粒子1
1.13に吸水されることな(各粒子11゜13の間の
連続した気孔16及び17を通過して外部へ排出される
。つまり、この多孔質陶磁器材料10がその内部に水分
を保持しておくことがない、従って、寒冷地等の凍害の
虞れのある環境下で、道路舗装用等に使用したとしても
凍害の問題が発生することはない、しかも、表面層12
の連続した気孔16の大きさは、基層14の連続した気
孔170大きさよりも小さく、表面層12から材料10
内部へ浸入した雨水等はその全てが容易に基層14を通
過することになる。この性質を利用すれば、舗装路面か
ら材料10の内部を通過して地質層へ抜ける水の量を抑
制することが容易である。
As a result, it is possible to obtain the porous ceramic material 10 having a two-layer structure shown in FIGS.
1.13 (it passes through the continuous pores 16 and 17 between each particle 11 and 13 and is discharged to the outside). In other words, this porous ceramic material 10 retains moisture inside it. Therefore, even if it is used for road paving in environments where there is a risk of frost damage, such as in cold regions, there will be no problem of frost damage.Moreover, the surface layer 12
The size of the continuous pores 16 in the base layer 14 is smaller than the size of the continuous pores 170 in the surface layer 12 to the material 10.
All of the rainwater that has entered the interior easily passes through the base layer 14. By utilizing this property, it is easy to suppress the amount of water that passes through the interior of the material 10 from the paved road surface to the geological layer.

次に、具体的な原料と配合割合に基づいて本発明に含ま
れる多孔質陶磁器材料10を製造した場合と、本発明の
粒径と層厚みとの関係を越える多孔質陶磁器材料を製造
した場合とを比較し、粒径と層厚みとの関係の下限値を
限定したことの正しいことについて説明する。なお、上
限値については、前述した実験結果から既に明らかであ
るのでここでの説明は省略する。
Next, a case where the porous ceramic material 10 included in the present invention is manufactured based on specific raw materials and blending ratios, and a case where a porous ceramic material that exceeds the relationship between particle size and layer thickness of the present invention is manufactured. The following explains the correctness of limiting the lower limit of the relationship between grain size and layer thickness. Note that the upper limit value is already clear from the above-mentioned experimental results, so a description thereof will be omitted here.

(比較例1) 先ず、吸水率0.5%で粒径が0.3〜1.2鶴の範囲
で平均粒径が0.75mの磁器質シャモット75重量部
と、バインダー25重量部と、lO〜15%デキストリ
ン水溶液12重量部の混合材料を表面層12の原料とし
て準備する。この場合のバインダーは、フリットが22
.5重量部、セメントが2.5重量部であり、バインダ
ーの全体に対するフリットの占める割合は、90−t%
である。またフリットの磁器質シャモットに対する割合
は、15wt%である0次に、吸水率4〜8wt%で粒
径が1〜4簡の範囲で平均粒径が2.5論の瓦の粉砕物
75重量部と、バインダ−25°重量部と、10〜15
%デキストリン水溶液15重量部の混合材料を基層14
の原料として準備する。この場合のバインダーは、フリ
ットが22.5重量部、セメントが2.5重量部であり
、バインダーの全体に対するフリットの占める割合は、
90−t%である。
(Comparative Example 1) First, 75 parts by weight of a porcelain chamotte with a water absorption rate of 0.5% and a particle size ranging from 0.3 to 1.2 mm and an average particle size of 0.75 m, and 25 parts by weight of a binder, A mixed material containing 12 parts by weight of an aqueous solution of 10 to 15% dextrin is prepared as a raw material for the surface layer 12. In this case, the binder has 22 frits.
.. 5 parts by weight, cement is 2.5 parts by weight, and the ratio of frit to the entire binder is 90-t%.
It is. In addition, the ratio of frit to porcelain chamotte is 15 wt%, which is 75% by weight of crushed roof tiles with a water absorption rate of 4 to 8 wt%, a particle size in the range of 1 to 4 pieces, and an average particle size of 2.5 tons. parts, binder - 25 parts by weight, 10 to 15 parts
A mixed material containing 15 parts by weight of dextrin aqueous solution was added to the base layer 14.
Prepare as raw material. In this case, the binder contains 22.5 parts by weight of frit and 2.5 parts by weight of cement, and the ratio of frit to the entire binder is:
90-t%.

またフリットの瓦粉砕物に対する割合は、30−t%で
ある。
Further, the ratio of the frit to the crushed tile material is 30-t%.

然る後に、前述した製造方法の要領で、タイル成形素地
を加圧成形した後、1100℃の温度で焼成した。これ
により、表面層12の各粒子11については、ガラス質
材料が結合材としてのみ働き、第1図及び第2図の実施
例で示す多孔質陶磁器材料10の各粒子11のようにそ
の全面がガラス質材料で覆われておらず、基層14の各
粒子13についてはその全面がガラス質材料15で被覆
された二層構造の製品を得た。この場合の製品の大きさ
は、!11297 w×横297■×厚40寵であり、
表面層12の厚みは5■であった0表面層12及び基層
14の粒子11及び13の平均粒径と、層厚みとの関係
は、表面1’1iif12の場合が3720であり、基
層14の場合が1/14で、いずれの場合も3770以
上で、本発明の範囲内に含まれている。而して、このよ
うにして得られた製品の透水係数は、5X10−2(2
)/Sであり、曲げ強度は80Kg/cmであった。ま
た耐凍害性を確認する確認試験では、300回の繰り返
し試験に耐えることができ、優れた耐凍害性を示した。
Thereafter, the tile-forming base was pressure-molded in accordance with the manufacturing method described above, and then fired at a temperature of 1100°C. As a result, for each particle 11 of the surface layer 12, the vitreous material acts only as a binder, and the entire surface of the particle 11 of the porous ceramic material 10 shown in the embodiment of FIGS. 1 and 2 is A product with a two-layer structure was obtained in which each particle 13 of the base layer 14 was not covered with a glassy material but was entirely covered with a glassy material 15. In this case, the size of the product is! 11297w x width 297cm x thickness 40mm,
The thickness of the surface layer 12 was 5cm.0 The relationship between the average particle diameter of the particles 11 and 13 in the surface layer 12 and the base layer 14 and the layer thickness was 3720 in the case of the surface 1'1iif12; The case is 1/14, and in both cases it is 3770 or more, which is within the scope of the present invention. Therefore, the hydraulic conductivity of the product obtained in this way is 5X10-2 (2
)/S, and the bending strength was 80 Kg/cm. In addition, in a confirmation test to confirm frost damage resistance, it was able to withstand 300 repeated tests, demonstrating excellent frost damage resistance.

なお、耐凍害性の確認試験は、試験体を常温の清水中に
24時間浸漬した後、ただちに試験槽内へ入れ、−20
℃±3℃の雰囲気中に80分間放置した後、これを取り
出して30℃の温水を20分間散水して融解させ、これ
を1サイクルとして、繰り返し試験を行ったものである
In addition, in the confirmation test for freeze damage resistance, the specimen is immersed in clean water at room temperature for 24 hours, then immediately placed in the test tank, and
After being left in an atmosphere at ±3°C for 80 minutes, it was taken out and 30°C hot water was sprinkled on it for 20 minutes to melt it, and this was considered one cycle, and the test was repeated.

参考までに、この製品タイルの表面1’1W12で得ら
れた連続気孔16の径は0.2〜1.Otm、基層14
で得られた連続気孔17の径は0.5〜3.0鶴であり
、製品タイルの全体に対する気孔率は約35%であった
For reference, the diameter of the continuous pores 16 obtained on the surface 1'1W12 of this product tile is 0.2 to 1. Otm, base layer 14
The diameter of the continuous pores 17 obtained in the above was 0.5 to 3.0 mm, and the porosity of the entire product tile was about 35%.

(比較例2) 表面FiW12の原料として、フリットの混合割合のみ
が比較例1と異なるものを準備し、基J’!14の原料
としてと粒径のみが比較例1の場合と異なるものを準備
した。この場合の表面[12におけるフリットの碩器質
材料に対する割合は、30wt%であり、また基層14
の粒径は、0.5〜2.0flの範囲のもので、平均粒
径は1.25nである。
(Comparative Example 2) A raw material for surface FiW12 that differs from Comparative Example 1 only in the mixing ratio of frits was prepared, and the base J'! A raw material for Comparative Example 1, which differed only in particle size from that of Comparative Example 1, was prepared. In this case, the ratio of the frit to the porcelain material on the surface [12] is 30 wt%, and the base layer 14
The particle size ranges from 0.5 to 2.0 fl, with an average particle size of 1.25n.

然る後に、前述の場合と同要領で、タイル成形素地を加
圧成形した後、1100℃の温度で焼成し、第1図及び
第2図に示す表面層12の各粒子11及び基層14の各
粒子13の全面が夫々ガラス質材料15により被覆され
た二層構造の多孔質陶磁器材料を製造した。この場合の
多孔質陶磁器材料の大きさは、比較例1の場合よりも全
体の厚みを15fi厚くし、55鶴とした。この比較例
2の基層14の厚みは50m+であり、基層14の粒子
の粒径と、層厚みとの関係は、1/40である。すなわ
ち、本発明の範囲外である。この本発明に含まれない製
品の耐凍害試験結果は、10回の繰り返し試験にしか耐
えることができず、目的とする耐凍害性を得ることがで
きなかった。
Thereafter, the tile-forming base is pressure-formed in the same manner as described above, and then fired at a temperature of 1100°C to form the particles 11 of the surface layer 12 and the base layer 14 shown in FIGS. 1 and 2. A porous ceramic material having a two-layer structure in which the entire surface of each particle 13 was coated with a glassy material 15 was produced. The size of the porous ceramic material in this case was 15 fi thicker than in Comparative Example 1, and was 55 fi. The thickness of the base layer 14 in Comparative Example 2 is 50 m+, and the relationship between the particle size of the particles in the base layer 14 and the layer thickness is 1/40. That is, it is outside the scope of the present invention. The results of the frost damage test for this product, which is not included in the present invention, were that it could withstand only 10 repeated tests, and the desired frost damage resistance could not be achieved.

(比較例3) この比較例3は、比較例2の場合の基層14の粒子の粒
径のみを変更したものである。粒子の粒径は、1.0〜
2.Otmの範囲で平均粒径が1.5寵である。この場
合の平均粒径と、層厚みとの関係は、3/100であり
、本発明の範囲外である。この比較例3の製品の場合も
、耐凍害性を確認する試験結果では10回の繰り返し試
験にしか耐えることができず、目的とする耐凍害性は得
られなかった。
(Comparative Example 3) In Comparative Example 3, only the particle size of the particles of the base layer 14 in Comparative Example 2 was changed. The particle size of the particles is 1.0~
2. The average particle size is 1.5 cm in the Otm range. The relationship between the average particle size and the layer thickness in this case is 3/100, which is outside the scope of the present invention. In the case of the product of Comparative Example 3 as well, the test results for confirming frost damage resistance showed that it could withstand only 10 repeated tests, and the desired frost damage resistance could not be obtained.

(比較例4) この比較例4も、比較例2の場合の基層14の粒子の粒
径のみを変更したものである0粒子の粒径は、1.0〜
4.0鶴の範囲で平均粒径が2.5龍である。粒子の平
均粒径と層厚みとの関係は、1/20であり、本発明に
含まれる。この比較例4の製品の場合、300回の耐凍
害性を確認する繰り返し試験に耐えることができた。つ
まり、目的とする耐凍害性を得ることができた。
(Comparative Example 4) In Comparative Example 4, only the particle size of the particles of the base layer 14 in Comparative Example 2 was changed, and the particle size of the 0 particles was 1.0 to 1.0.
The average particle size is 2.5 yen in the range of 4.0 yen. The relationship between the average particle diameter of the particles and the layer thickness is 1/20, which is included in the present invention. In the case of the product of Comparative Example 4, it was able to withstand 300 repeated tests to confirm frost damage resistance. In other words, the desired frost damage resistance could be achieved.

これらの比較例1乃至4から明らかなことは、表面Fi
12及び基r514にあって、各層の粒子の平均粒径と
層厚みとの関係が3/70以上であるとき、耐凍害性に
優れた多孔質陶磁器材料10が得られるということであ
る。また表面層12の各粒子11は、磁器質材料を用い
た場合は、各粒子11の全面を必ずしもガラス質材料で
被覆しなくてもよいということである。
What is clear from these Comparative Examples 1 to 4 is that the surface Fi
12 and group r514, when the relationship between the average particle size of the particles in each layer and the layer thickness is 3/70 or more, a porous ceramic material 10 with excellent frost damage resistance can be obtained. Furthermore, when each particle 11 of the surface layer 12 is made of a porcelain material, the entire surface of each particle 11 does not necessarily have to be covered with a glassy material.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明にあっては、耐凍害性に優れ
た多孔質陶磁器材料を提供することが可能である。また
表面層の表面粗さも極めて細かいため外観上の見栄えも
良く、着色や模様付けが容易であり、製品価値が大であ
る。更に原料として瓦や土管、煉瓦等の粉砕物を利用す
ることができるので安価に原料を入手でき、製品価格を
大幅に低下させることが可能である。
As explained above, according to the present invention, it is possible to provide a porous ceramic material with excellent frost damage resistance. Furthermore, since the surface roughness of the surface layer is extremely fine, it has a good appearance and is easy to color and pattern, giving it great product value. Furthermore, since pulverized materials such as roof tiles, clay pipes, and bricks can be used as raw materials, raw materials can be obtained at low cost, and product prices can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係るものであり、第1図は
多孔質陶磁器材料の一部縦断面図、第2図は第り図の部
分拡大図、第3図は従来の多孔質陶磁器材料の部分拡大
縦断面図、第4図は他の従来例を示す多孔質陶磁器材料
の一部縦断面図である。 12・・・表面層     14・・・基層11・・・
表面層の粒子  I3・・・基層の粒子15・・・ガラ
ス質材料  16.17・・・連続した気孔特許出願人
   株式会社イナックス 同       笠井釉薬工業株式会社代 理 人  
 弁理士 内田敏彦 J 第1図 第2図
Figures 1 and 2 are according to the present invention; Figure 1 is a partial vertical cross-sectional view of a porous ceramic material, Figure 2 is a partially enlarged view of Figure 3, and Figure 3 is a conventional porous ceramic material. FIG. 4 is a partially enlarged longitudinal sectional view of a porous ceramic material showing another conventional example. 12...Surface layer 14...Base layer 11...
Particles in the surface layer I3... Particles in the base layer 15... Glassy material 16.17... Continuous pores Patent applicant Inax Co., Ltd. Agent Kasai Glaze Industry Co., Ltd.
Patent Attorney Toshihiko Uchida J Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、陶磁器質材料の各粒子をフリット等のガラス質材料
で全面被覆し、各粒子同士を結合させた表面層と、前記
陶磁器質材料の粒子よりも粒径の粗い瓦等の粉砕物の各
粒子をフリット等のガラス質材料で全面被覆し、各粒子
同士を結合させた基層とより成り、前記表面層及び基層
の各粒子間には連続した気孔が形成されており、前記表
面層及び基層の各粒子の平均粒径は、各層の厚みに対し
て3/70以上であることを特徴とする多孔質陶磁器材
料。 2、磁器質材料の各粒子同士をフリット等のガラス質材
料で結合させた表面層と、前記磁器質材料の粒子よりも
粒径の粗い瓦等の粉砕物の各粒子をフリット等のガラス
質材料で全面被覆し、各粒子同士を結合させた基層とよ
り成り、前記表面層及び基層の各粒子間には連続した気
孔が形成されており、前記表面層及び基層の各粒子の平
均粒径は、各層の厚みに対して3/70以上であること
を特徴とする多孔質陶磁器材料。 3、フリット等のガラス質材料、糊を主成分とするバイ
ンダー及び陶磁器質材料並びに水とを混合した表面層原
料と、フリット等のガラス質材料、糊を主成分とするバ
インダー及び瓦等の粉砕物並びに水とを混合した基層原
料とを加圧成形することで二層構造の成形素地を成形し
、脱型・乾燥後の成形素地を前記陶磁器質材料及び瓦等
の粉砕物の溶融温度よりも低く且つ前記フリット等のガ
ラス質材料の溶融温度よりも高い温度で焼成することに
より、表面層の各粒子の全面又は一部及び基層の各粒子
の全面をガラス質材料で被覆すると共に、陶磁器質材料
及び瓦等の粉砕物の各粒子同士を結合させ、これらの各
粒子同士の間に連続した気孔を形成したことを特徴とす
る多孔質陶磁器材料の製造方法。
[Scope of Claims] 1. A surface layer in which each particle of a ceramic material is entirely covered with a glassy material such as a frit and the particles are bonded together, and a tile whose particle size is coarser than that of the particles of the ceramic material. It consists of a base layer in which each particle of the pulverized product is completely covered with a glassy material such as a frit, and each particle is bonded to each other, and continuous pores are formed between each particle of the surface layer and the base layer. . A porous ceramic material, wherein the average particle diameter of each particle in the surface layer and the base layer is 3/70 or more of the thickness of each layer. 2. A surface layer in which each particle of a porcelain material is bonded with a glassy material such as a frit, and each particle of a crushed material such as a roof tile, which has a coarser particle size than the particles of the porcelain material, is bonded with a glassy material such as a frit. It consists of a base layer that is entirely covered with a material and that binds each particle, continuous pores are formed between each particle of the surface layer and base layer, and the average particle size of each particle of the surface layer and base layer is is a porous ceramic material characterized in that the thickness of each layer is 3/70 or more. 3. Grinding of glassy materials such as frits, binders mainly composed of glue, ceramic materials, and surface layer raw materials mixed with water, glassy materials such as frits, binders mainly composed of glues, roof tiles, etc. A two-layer structure is formed by pressure-molding the base material mixed with the ceramic material and water. By firing at a temperature lower than the melting temperature of the glassy material such as the frit, the entire surface or part of each particle of the surface layer and the entire surface of each particle of the base layer are coated with the glassy material, and the ceramic is heated. 1. A method for producing a porous ceramic material, characterized in that particles of a ground material and a pulverized material such as a roof tile are bonded to each other, and continuous pores are formed between these particles.
JP12639587A 1987-05-22 1987-05-22 Porous ceramic material and production thereof Granted JPS63291881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12639587A JPS63291881A (en) 1987-05-22 1987-05-22 Porous ceramic material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12639587A JPS63291881A (en) 1987-05-22 1987-05-22 Porous ceramic material and production thereof

Publications (2)

Publication Number Publication Date
JPS63291881A true JPS63291881A (en) 1988-11-29
JPH0516388B2 JPH0516388B2 (en) 1993-03-04

Family

ID=14934082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12639587A Granted JPS63291881A (en) 1987-05-22 1987-05-22 Porous ceramic material and production thereof

Country Status (1)

Country Link
JP (1) JPS63291881A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349180A (en) * 1991-03-25 1992-12-03 Ube Ind Ltd Production of inorganic foamed granule
JPH06199581A (en) * 1991-01-30 1994-07-19 Agency Of Ind Science & Technol Surface-colored inorganic expanded compact and its production
EP1555119A1 (en) * 2004-01-16 2005-07-20 MDF Italia SRL Multi-layer panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558476A (en) * 1978-07-05 1980-01-22 Ishikawajima Harima Heavy Ind Co Ltd Production of hydrogen through photolysis of water
JPS5777067A (en) * 1980-10-27 1982-05-14 Nippon Petrochemicals Co Ltd Refractory heat-insulating material
JPS60156804A (en) * 1984-01-26 1985-08-17 テイヒュー株式会社 Water permeable concrete block
JPS60231475A (en) * 1984-04-26 1985-11-18 日本碍子株式会社 Inorganic lightweight porous body
JPS61200212A (en) * 1985-03-02 1986-09-04 株式会社キクテック Night reflective sound absorbing board
JPS6220321A (en) * 1985-07-19 1987-01-28 Hitachi Ltd Processor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558476A (en) * 1978-07-05 1980-01-22 Ishikawajima Harima Heavy Ind Co Ltd Production of hydrogen through photolysis of water
JPS5777067A (en) * 1980-10-27 1982-05-14 Nippon Petrochemicals Co Ltd Refractory heat-insulating material
JPS60156804A (en) * 1984-01-26 1985-08-17 テイヒュー株式会社 Water permeable concrete block
JPS60231475A (en) * 1984-04-26 1985-11-18 日本碍子株式会社 Inorganic lightweight porous body
JPS61200212A (en) * 1985-03-02 1986-09-04 株式会社キクテック Night reflective sound absorbing board
JPS6220321A (en) * 1985-07-19 1987-01-28 Hitachi Ltd Processor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199581A (en) * 1991-01-30 1994-07-19 Agency Of Ind Science & Technol Surface-colored inorganic expanded compact and its production
JPH04349180A (en) * 1991-03-25 1992-12-03 Ube Ind Ltd Production of inorganic foamed granule
EP1555119A1 (en) * 2004-01-16 2005-07-20 MDF Italia SRL Multi-layer panel

Also Published As

Publication number Publication date
JPH0516388B2 (en) 1993-03-04

Similar Documents

Publication Publication Date Title
US4874153A (en) Process for producing ceramic products using the sludge obtained by sewage treatment
CN106220085A (en) A kind of high intensity high water-permeability pavior brick and preparation method thereof
CN107686367B (en) Water-permeable sponge brick and production method thereof
US7621692B2 (en) Porous ceramic paving material
CN1162583C (en) Permeable floor brick and mfg. method thereof
US4954460A (en) Water-permeable ceramic material
JPS63291881A (en) Porous ceramic material and production thereof
JP4138398B2 (en) Concrete pavement and concrete block with water retention function
JP2002327402A (en) Permeable block and its manufacturing method
JPH0518786B2 (en)
JPH0930873A (en) Production of water-permeable ceramic block
CN210177298U (en) Water-retaining cooling water-intercepting brick
KR910001935B1 (en) Porous porcelain material and method for producing thereof
JPH0518785B2 (en)
JP2002187784A (en) Porous ceramics, method of manufacturing the same, paving material, roof laying material, external wall material and plant growth container material comprising the same
JPS62171972A (en) Water permeable floor material
KR102641394B1 (en) Functional multi-layer sidewalk block composition and its manufacturing method
CN111335097A (en) Sponge city permeable brick mixed rock wool and paving method thereof
JPH0481942B2 (en)
JPS60156804A (en) Water permeable concrete block
DE4410242C2 (en) Process for the production of moldings from expanded clay and their use
JPH0548321B2 (en)
JPH0512267Y2 (en)
CN2637544Y (en) Porous pavement brick
JPH0516396B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees