JPH0481942B2 - - Google Patents

Info

Publication number
JPH0481942B2
JPH0481942B2 JP62060054A JP6005487A JPH0481942B2 JP H0481942 B2 JPH0481942 B2 JP H0481942B2 JP 62060054 A JP62060054 A JP 62060054A JP 6005487 A JP6005487 A JP 6005487A JP H0481942 B2 JPH0481942 B2 JP H0481942B2
Authority
JP
Japan
Prior art keywords
concrete
porous ceramic
aggregate
ceramic body
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62060054A
Other languages
Japanese (ja)
Other versions
JPS63227330A (en
Inventor
Toyoji Fuma
Takashi Kume
Koji Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP62060054A priority Critical patent/JPS63227330A/en
Publication of JPS63227330A publication Critical patent/JPS63227330A/en
Publication of JPH0481942B2 publication Critical patent/JPH0481942B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Road Paving Structures (AREA)
  • Laminated Bodies (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主として土木工事に使用される透水性
コンクリート製品の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing water-permeable concrete products mainly used in civil engineering works.

〔従来の技術とその問題点〕[Conventional technology and its problems]

コンクリートは成形自由度と強度、耐久性など
の特質から、建造物、建築物を始め、道路舗装、
汚水、雨水などの流体物の排水、貯留あるいは集
水のための手段として汎用されている。しかしな
がら、コンクリート製品は、一般に不透水である
ため、流体物たとえば雨水の地表流出量が増し、
いわゆる鉄砲水となつて下水道の負担を増加させ
たり、道路、河川の氾濫や、地下水系の枯渇を起
させる等様々な問題を生じさせている。
Due to its flexibility in shaping, strength, and durability, concrete is used for construction, construction, road paving,
It is widely used as a means for draining, storing, or collecting fluids such as sewage and rainwater. However, concrete products are generally impermeable, which increases the amount of surface runoff of fluids such as rainwater.
They cause a variety of problems, such as so-called flash floods that increase the burden on sewer systems, flood roads and rivers, and deplete groundwater systems.

この対策として、コンクリート製品の必要部分
に透水性を持たせ、雨水を自然系に浸透させた
り、自然系から取込んだりするいわゆる浸透工法
が提案されている。この工法はコンクリート製品
の局部的多孔質化により実現されるが、この局部
的多孔質化の方法として従来では一般に、コンク
リート製品の形成時に透水性の要求される部分の
骨材粒度を粗くしてセメントや樹脂バインダで結
合する方法が採られていたため、次のような問題
があつた。
As a countermeasure to this problem, a so-called infiltration method has been proposed in which the necessary parts of concrete products are made water permeable so that rainwater can permeate into or be taken in from the natural system. This method is achieved by making the concrete product locally porous. Conventionally, this localized porosity is generally achieved by coarsening the aggregate grain size in areas where water permeability is required during the formation of the concrete product. The following problems arose because methods of bonding using cement or resin binders were used.

多孔質化部分の機械的強度が低下しやすく、
これを避けるために肉厚を大きくするなどの必
要があり、十分な軽量化を図ることができな
い。
The mechanical strength of the porous part is likely to decrease,
In order to avoid this, it is necessary to increase the wall thickness, and it is not possible to achieve sufficient weight reduction.

多孔質部の骨材を樹脂やセメントで結合させ
ているだけであるため、表面のポロツキが生じ
やすく、このため、取扱いが面倒で、施工時運
搬時や施工時の擦れや衝撃により多孔質部の厚
さが変化し、透水性が不用意に変化されたり、
強度の低下が起りやすい。
Because the aggregate in the porous area is simply bonded with resin or cement, the surface tends to become uneven, which makes handling difficult, and the porous area may be damaged by friction or impact during transportation or construction. The thickness of the water may change, the water permeability may be changed inadvertently,
Strength tends to decrease.

樹脂をバインダとしたものはセメントに比べ
接合力はよいが、反面、耐候性が乏しく、短期
間でバインダ性能が劣化して大きな開孔が形成
されたり、圧壊が起こる危険がある。また、熱
に弱く、酸類に侵されやすいので用途が限定さ
れる不利がある。
Materials using resin as a binder have better bonding strength than cement, but on the other hand, they have poor weather resistance, and there is a risk that the binder performance will deteriorate in a short period of time, resulting in the formation of large pores or crushing. In addition, it is sensitive to heat and easily attacked by acids, which has the disadvantage of limiting its uses.

地表に露出する製品については外観や体裁の
面から着色されることが多いが、塗装による方
法に限られるため耐久性が乏しく、容易に剥が
れやすい。
Products that are exposed to the ground are often colored for appearance and style, but because this method is limited to painting, it lacks durability and easily peels off.

多孔質部に必要な強度を得るためにはかなり
多量の樹脂を添加する必要があるため、材料コ
ストが高価になる。また、コンクリート製の蓋
類については、金属のバーや格子でグレーチン
グと称する透水機構を得ることも行われている
が、腐食防止のためにメツキ処理を行う必要が
あるため製造コストが高くなり、また、紙類な
どの固形異物の侵入を許してしまうため性能上
問題がある。
In order to obtain the necessary strength in the porous portion, it is necessary to add a fairly large amount of resin, which increases the material cost. In addition, for concrete lids, metal bars or gratings are used to create a water permeability mechanism called grating, but this requires plating to prevent corrosion, which increases manufacturing costs. In addition, there is a performance problem because solid foreign matter such as paper is allowed to enter.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記のような問題点を解決するために
研究して創案されたもので、その目的とするとこ
ろは、良好な透水性と機械的強度を備え、軽量で
かつ表面のポロツキが生じず、耐候性が良好であ
ると共に熱や酸によつても性能劣化が起らず、色
彩化も容易で、しかも比較的低コストな透水性コ
ンクリート製品の製造法を提供することにある。
The present invention was developed through research in order to solve the above-mentioned problems.The purpose of the present invention is to have good water permeability and mechanical strength, to be lightweight, and to prevent surface scratches. An object of the present invention is to provide a method for producing a water-permeable concrete product that has good weather resistance, does not deteriorate in performance even when exposed to heat or acids, can be easily colored, and is relatively inexpensive.

この目的を達成するため本発明は、コンクリー
ト製品を得るに当たり、予め作成した多孔質セラ
ミツク体を型にセツトしてコンクリートを流し込
み、コンクリート製品の成形と同時に多孔質セラ
ミツク体を一体化接合ないし包含させる方法とし
たものであり、前記多孔質セラミツク体は陶磁器
廃材の破砕物を骨材としガラス系廃棄物を二次バ
インダとして焼成したものを用いるのが効果的で
ある。
In order to achieve this object, the present invention provides that, when obtaining a concrete product, a pre-prepared porous ceramic body is set in a mold, concrete is poured, and the porous ceramic body is integrally joined or included at the same time as the concrete product is formed. It is effective to use a porous ceramic body produced by firing the porous ceramic body using crushed ceramic waste as an aggregate and glass waste as a secondary binder.

以下本発明を添付図面に基づき説明する。 The present invention will be explained below based on the accompanying drawings.

第1図a〜dは本発明をL形コンクリートブロ
ツクの製造に適用した実施例を示している。
Figures 1a to 1d show an embodiment in which the present invention is applied to the manufacture of L-shaped concrete blocks.

1は型枠であり、製品における立上り部と勾配
部に対応する型面1a,1bとを備えている。本
発明はこのL形コンクリートブロツクを作るにあ
たり、まず第1図aのように型面1bに別途製作
しておいた所要寸法の多孔質セラミツク体2を配
置する。そして、この多孔質セラミツク体2の上
に製品における底となるべきレベルにより突出す
る長さ寸法を備えた穴形成用の型部材11を配置
する。なお、コンクリートが浸透し、透水性が損
なわれるような部分は予め紙やフイルム等によ
り、シールないしマスキングを施しておけばよ
い。
Reference numeral 1 denotes a mold, which includes mold surfaces 1a and 1b corresponding to the rising portions and sloped portions of the product. In making this L-shaped concrete block, the present invention first places a separately manufactured porous ceramic body 2 of a required size on a mold surface 1b as shown in FIG. 1a. Then, a mold member 11 for forming a hole is placed on the porous ceramic body 2, the mold member 11 having a length protruding from the level that is to become the bottom of the product. Note that areas where concrete will penetrate and impair water permeability may be sealed or masked with paper, film, etc. in advance.

この状態で第1図bのように型枠1に生コンク
リート3を流し込み、慣用法と同様に型枠1に叩
打あるいは振動を加え、生コンクリート3をすみ
ずみまで緻密に充填させる。そして、コンクリー
トが硬化したのち、第1図cのように型枠1から
脱型し、型部材11を取外すことにより第1図d
のように製品4となる。
In this state, fresh concrete 3 is poured into the formwork 1 as shown in FIG. 1b, and the formwork 1 is pounded or vibrated in the same way as in the conventional method, so that the fresh concrete 3 is densely filled in every corner. After the concrete has hardened, it is removed from the formwork 1 as shown in Fig. 1c, and the mold member 11 is removed, as shown in Fig. 1d.
Product 4 is obtained as follows.

この製品4は、勾配部が多孔質セラミツク体2
による透水部で構成され、多孔質セラミツク体2
の底側は通水穴41により製品底面42に通じて
いる。そして、多孔質セラミツク体2はその表面
積が大きく、微小な凹凸に生コンクリート3が付
着し、いわゆる喰付きがよいため、強固に接合一
体化される。
This product 4 has a porous ceramic body 2 with a sloped part.
The porous ceramic body is composed of a water-permeable part 2
The bottom side thereof communicates with the product bottom surface 42 through a water passage hole 41. The porous ceramic body 2 has a large surface area, and the ready-mixed concrete 3 adheres to minute irregularities, so that it has good bite, so that it is firmly joined and integrated.

第2図a〜cは本発明をL形コンクリートブロ
ツクに適用した場合の外の実施態様を示してお
り、第2図aは、第1図のようにコンクリート質
の枠部43を形成せず、多孔質セラミツク体2の
寸法を大きくとり、製品における勾配部の全体も
しくは少なくともスパン方向又はこれと交差する
方向の全面を透水部2としたものである。第2図
bは逆に多孔質セラミツク体2をスパン方向又
は/及びこれと交差する方向で複数に配置し、コ
ンクリート質のリブ44により仕切られるように
したものである。第2図cは鉄筋5,5′を入れ
た実施例であり、この場合には縦横の鉄筋5,
5′で囲まれた部分に通水穴41,41を形成す
ればよい。
Figures 2a to 2c show other embodiments in which the present invention is applied to an L-shaped concrete block, and Figure 2a shows an embodiment in which the concrete frame 43 is not formed as in Figure 1. , the size of the porous ceramic body 2 is increased, and the water-permeable portion 2 covers the entire sloped portion of the product or at least the entire surface in the span direction or a direction intersecting the span direction. In contrast, FIG. 2b shows a structure in which a plurality of porous ceramic bodies 2 are arranged in the span direction and/or in a direction intersecting the span direction, and are partitioned by concrete ribs 44. Fig. 2c shows an example in which reinforcing bars 5, 5' are inserted; in this case, vertical and horizontal reinforcing bars 5,
Water passage holes 41, 41 may be formed in the portion surrounded by 5'.

ここで、前記のように透水部を構成する多孔質
セラミツク体2は、所要孔径で均一に分散した気
孔を持ち、しかも機械的強度が高く、それでいて
安価であることが望ましい。この特性を備えた多
孔質セラミツク体2としては、本発明者らが提案
した昭和62年特許願第8204号に示されるものがあ
る。すなわち、これは、陶磁器廃材の破枠物を主
たる骨材とし、これに二次バインダとしてガラス
系廃材破枠物を添加して混合、成形、焼成したも
のである。
Here, as described above, it is desirable that the porous ceramic body 2 constituting the water-permeable portion has pores uniformly distributed with a required pore diameter, has high mechanical strength, and is inexpensive. As a porous ceramic body 2 having this characteristic, there is one shown in Patent Application No. 8204 filed in 1988, proposed by the present inventors. That is, this is made by using broken ceramic waste frames as the main aggregate, to which glass waste broken frames are added as a secondary binder, mixed, molded, and fired.

この多孔質セラミツク体の特性と製造方法を詳
述すると、 まず、この多孔質セラミツク体の製造原料は以
下のとおりである。
The characteristics and manufacturing method of this porous ceramic body will be described in detail. First, the raw materials for manufacturing this porous ceramic body are as follows.

骨材…陶磁器の廃材の破砕物(セルベン) 一次バインダ…無機質または有機質の液状物 二次バインダ…ガラス系廃材破砕物 セルベンは、食卓用器、厨房用器、衛生用器、
碍子で代表される電気工業用セラミツクスのなど
の不良品や廃品類を破砕したものであり、したが
つて安価で、入手が容易で、しかもすでに焼成済
のものであるため、品質、強度特性が優れてい
る。骨材としてセルベンは必須の要素であるが、
要求される強度が低い場合には、他の粉粒状産業
廃棄物を添加してもよい。この例としては、金属
精錬で生ずる鉱滓の粉砕物、廃棄鋳物砂、コンク
リート構造物や建築物の破壊により生じたコンク
リート・セメントの破砕粒、砂婆すなわち花剛岩
の半分解物、キラすなわち粘土精錬時に生ずる廃
棄物などがあげられる。これらをセルベンに所要
割合たとえば10〜50wt%添加する。また、要求
強度が高い場合には、碍子系のセルベンを使用し
たり、あるいは適度にアルミナなどを添加すれば
よい。
Aggregate: Crushed ceramic waste (Celben) Primary binder: Inorganic or organic liquid Secondary binder: Crushed glass waste Selven is used for tableware, kitchen utensils, sanitary utensils,
It is made by crushing defective or waste products such as ceramics for the electrical industry, such as insulators, and is therefore cheap and easily available.Furthermore, since it has already been fired, its quality and strength characteristics are high. Are better. Cerben is an essential element as an aggregate, but
If the required strength is low, other powdery industrial waste may be added. Examples of this include crushed slag produced in metal smelting, waste foundry sand, crushed concrete/cement particles resulting from the destruction of concrete structures and buildings, half-dissolved granite (saba), and kira (clay). Examples include waste generated during smelting. These are added to Cerben in a required proportion, for example, 10 to 50 wt%. If the required strength is high, insulator-based Cerben may be used, or alumina may be added appropriately.

一次バインダは液状をなし、グリーンにおける
必要強度を持たせるため、骨材表面をコーテイン
グし一時的骨材粒を結合するものであり、水ガラ
スが一般に使用されるが、これに代えてエチルシ
リケートやフエノール・イソシアネートなどで代
表される有機物を用いてもよい。
The primary binder is in liquid form and is used to coat the aggregate surface and bind temporary aggregate particles in order to provide the necessary strength in greens.Water glass is generally used, but ethyl silicate or other binders may be used instead. Organic substances such as phenol isocyanate may also be used.

二次バインダは、焼成時に溶融して骨材20を
結合し、所定の気孔率と強度セラミツクを得るた
めのもので、ガラス系廃材の粉砕物が使用され
る。その例としては、板ガラス、ガラス容器など
のガラス製品の廃材あるいは不良品などが挙げら
れる。
The secondary binder is used to melt and bind the aggregate 20 during firing to obtain a ceramic having a predetermined porosity and strength, and is made of crushed glass-based waste material. Examples include waste or defective glass products such as plate glass and glass containers.

前記多孔質セラミツク体2の製造工程を説明す
ると第3図a〜gのごとくである。
The manufacturing process of the porous ceramic body 2 will be explained as shown in FIGS. 3a to 3g.

すなわち、まず第3図aのように、骨材20と
二次バインダ21をミル等所要の混合手段23に
装入し、均一に混合する。ここで、二次バインダ
21の骨材20に対する添加量は、通常、重量比
で3〜30%が適当である。
That is, first, as shown in FIG. 3a, aggregate 20 and secondary binder 21 are charged into a required mixing means 23 such as a mill and mixed uniformly. Here, the amount of the secondary binder 21 added to the aggregate 20 is normally 3 to 30% by weight.

骨材20は目的とする気孔率と気孔径と強度に
応じて適宜の粒度のもの使用する。第4図は粒度
と圧縮強度の関係を、第5図は気孔率と粒度(メ
ツシユ)の関係を、第6図は気孔径と粒度の関係
をそれぞれ示している。各図は、廃材ガラス粉を
セメベンに重量比で10%添加し、1000℃で焼成し
た結果である。本発明は前述のようにセルベンを
用いるため、高い気孔率、粗い気孔径としても強
度を高くする保持し得ることがわかる。
The aggregate 20 used has an appropriate particle size depending on the desired porosity, pore diameter, and strength. FIG. 4 shows the relationship between particle size and compressive strength, FIG. 5 shows the relationship between porosity and particle size (mesh), and FIG. 6 shows the relationship between pore size and particle size. Each figure shows the results of adding 10% by weight of waste glass powder to Semeben and firing it at 1000℃. Since the present invention uses Cerben as described above, it can be seen that the strength can be increased and maintained even with high porosity and coarse pore diameter.

次いで、第3図bのように、上記混合物22に
一次バインダ24を加え、混練して骨材20の粒
子に薄い一次バインダ膜を形成する。一次バイン
ダ24の添加量は造形後焼成までの間に形崩れを
生じさせないだけのものでよく、一般には骨材2
0に対し重量比で3〜10%である。
Next, as shown in FIG. 3b, a primary binder 24 is added to the mixture 22 and kneaded to form a thin primary binder film on the aggregate 20 particles. The amount of the primary binder 24 to be added is sufficient to prevent the shape from deforming after modeling and before firing, and generally the amount of the primary binder 24 added to the aggregate 2
The weight ratio is 3 to 10% relative to 0.

この混練物25を次に所望形状寸法に造形す
る。第3図cはこの一例を示しており、予め離型
処理を施した型26に混練物25を充填して行
う。密度を向上し、あるいは密度のむらを少なく
するため、プレス27を使用して圧縮力を付加
し、あるいはさらにバイブレータを使用すること
も推奨される。
This kneaded material 25 is then shaped into a desired shape and size. FIG. 3c shows an example of this, in which the kneaded material 25 is filled into a mold 26 which has been subjected to a mold release treatment in advance. In order to improve the density or reduce density unevenness, it is recommended to use a press 27 to apply compressive force or to use a vibrator.

ついで造形物28に気体を作用させて硬化させ
る。この工程は、第3図dのように、型26を吹
き込み手段29で覆い、所要圧力のCO2ガスを造
形物全体にむらなく吹き付けることにより行えば
よい。なお、この硬化工程は温風硬化法を採つて
もよく、この場合は第3図aの混合工程において
フエロシリコン粉を添加しておく。フエロシリコ
ン粉と一次バインダ4の割合は、1:2〜1:6
程度とすればよい。そして造形後温風を作用させ
ることにより一次バインダ21との化学反応によ
る発熱と反応生成物により骨材粒が結合硬化され
る。
Then, gas is applied to the shaped object 28 to harden it. This step may be carried out by covering the mold 26 with a blowing means 29 and spraying CO 2 gas at a required pressure evenly over the entire shaped object, as shown in FIG. 3d. Note that this curing step may be carried out by a hot air curing method, in which case ferrosilicon powder is added in the mixing step shown in FIG. 3a. The ratio of ferrosilicon powder and primary binder 4 is 1:2 to 1:6.
It is sufficient to set it to a certain degree. Then, by applying hot air after shaping, the aggregate particles are bonded and hardened by the heat generated by the chemical reaction with the primary binder 21 and the reaction product.

次いで第3図eのように型26を開き、離型す
ることでグリーン2′が得られる。このグリーン
2′は離型後、所定のサイズにカツテイングなど
の処理を施し、寸法、形状を整える。
Next, as shown in FIG. 3e, the mold 26 is opened and released to obtain green 2'. After the green 2' is released from the mold, it is cut to a predetermined size to adjust its size and shape.

そして、第3図fのようにグリーン2′を焼成
する。この焼成工程は、ガス炉や電気炉で実施す
ればよく、焼成条件は骨材20がセルベン単味の
場合700〜1300℃、鉱滓や鉄系廃材粉を併用した
場合は500〜1200℃程度とする。骨材20として
すでに焼成された物質を用いるためキープ時間は
1〜3時間の短時間で足りる。なお、この焼成工
程において、600〜700℃の温度域を10℃/min以
上の速度で通過させることが好ましく、この制御
によりガラスの溶融に伴う熱間強度の低下と型崩
れが防止され、形状、寸法の良好な多孔質セラミ
ツクが焼成される。得られた多孔質セラミツクは
そのままかあるいは適宜仕上げ加工を施すことに
より目的多孔質セラミツク体2となる。
Then, the green 2' is fired as shown in FIG. 3f. This firing process may be carried out in a gas furnace or electric furnace, and the firing conditions are approximately 700 to 1300°C if the aggregate 20 is only Cerben, and approximately 500 to 1200°C if slag or iron waste powder is used in combination. do. Since a material that has already been fired is used as the aggregate 20, a short holding time of 1 to 3 hours is sufficient. In this firing process, it is preferable to pass through a temperature range of 600 to 700°C at a speed of 10°C/min or more. This control prevents the glass from losing its shape and reducing its hot strength due to melting, and maintains its shape. , a porous ceramic with good dimensions is fired. The obtained porous ceramic body 2 can be made into the desired porous ceramic body 2 as it is or by being subjected to an appropriate finishing process.

なお、カラー多孔質セラミツクを得るときに
は、グリーンの状態で顔料を塗布し、あるいは骨
材20として色付きのものを使用すればよい。ま
た、表層が比較的密で内層が粗な組織が望まれる
場合には、焼成工程以前、好適には第3図eのグ
リーンの状態で、セルベンなどの骨材微粒子を水
また有機溶剤に分散したものを表面に塗布、吹付
け、あるいは分散液に浸漬させればよく、自己吸
水性を有するための分散液が浸透し、この際に微
粒子が表面に捕集され密度の高い表層が形成され
る。さらに、より高い強度が要求される場合に
は、前記原料に加えてステンレスや合金鋼などの
加工屑などを使用すればよい。
In addition, when obtaining a colored porous ceramic, the pigment may be applied in a green state, or a colored material may be used as the aggregate 20. In addition, if a relatively dense surface layer and coarse inner layer structure is desired, fine aggregate particles such as Cervene are dispersed in water or an organic solvent before the firing process, preferably in the green state shown in Figure 3e. The self-absorbing dispersion penetrates into the surface, and fine particles are collected on the surface, forming a dense surface layer. Ru. Furthermore, if higher strength is required, processing scraps of stainless steel, alloy steel, etc. may be used in addition to the above-mentioned raw materials.

このような多孔質セラミツク体2を用いて前記
のようなコンクリートと一体化した場合、透水部
の強度が優れるため薄くすることができ、しかも
空孔が均一に分散し高い空孔率のため透水性能が
良好で、このため小形な透水部で必要透水率を得
ることができる。しかも透水部の骨材が溶融ガラ
ス質で結合されているため、乱暴な取扱を行つて
も表面のポロツキが生じず、透水部材を別途製作
することによる品質安定性とあいまち、安定した
透水性を実現できる。そのうえ、紫外線による劣
化が全く無く、熱や酸にも影響されない。製造上
も、透水部構成原料が産業廃棄物であるため、材
料コストが安く、工程も、骨材20に二次バイン
ダ21を添加混練した後、所望形状に造形し、気
体を作用させて一次硬化させた後焼成するだけで
よく、これをコンクリートの型枠に配してコンク
リートを流し込むだけでよいため、低コストで量
産できる。
When such a porous ceramic body 2 is used and integrated with concrete as described above, it can be made thin because the strength of the water permeable part is excellent, and the pores are evenly distributed and the porosity is high, so the water permeability is high. It has good performance, and therefore the required water permeability can be obtained with a small water permeable part. Moreover, since the aggregate in the water-permeable part is bonded with molten glass, the surface will not become uneven even if it is handled roughly, and the quality stability of separately manufacturing the water-permeable member is inconsistent with stable water permeability. realizable. Furthermore, there is no deterioration due to ultraviolet rays, and it is not affected by heat or acids. In terms of manufacturing, since the raw material for the permeable part is industrial waste, the material cost is low, and the process involves adding and kneading the secondary binder 21 to the aggregate 20, shaping it into the desired shape, and applying gas to the primary material. It only needs to be cured and then fired, placed in concrete molds and poured with concrete, allowing mass production at low cost.

なお、本発明は前述したL形コンクリートブロ
ツクに限られず、透水、集水等の要求されるあら
ゆるコンクリート製品に適用されるものである。
第7図と第8図は、溝、桝、マンホールの蓋に適
用した実施例であり、下型10に多孔質セラミツ
ク体2を配し、この上に鉄筋5,5′を配材する
と共に、鉄筋間に穴用の型部材11を立て、上型
12を装着して生コンクリート3を流し込む。こ
れにより上面部に多孔質セラミツク性の透水部2
を持ち、これが通水穴41により下面に通じた高
強度の透水蓋が得られる。
The present invention is not limited to the above-mentioned L-shaped concrete block, but can be applied to any concrete product that requires water permeability, water collection, etc.
FIGS. 7 and 8 show an embodiment in which the porous ceramic body 2 is arranged on the lower mold 10, and reinforcing bars 5, 5' are arranged on it. A mold member 11 for the hole is erected between the reinforcing bars, an upper mold 12 is attached, and ready-mixed concrete 3 is poured. This allows the upper surface to have a porous ceramic water-permeable part 2.
A high-strength water-permeable lid is obtained, which is connected to the lower surface through the water passage holes 41.

第9図は側溝に適用した実施例を、第10図は
ますに適用した実施例を、第11図は井戸や太径
パイプに適用した実施例である。いずれの場合も
予め盤状、筒状、弧状その他の形状に成形、焼成
した多孔質セラミツク体2を型にセツトし、コン
クリート3を流し込むことで接合一体化すること
で得られる。
FIG. 9 shows an example applied to a side ditch, FIG. 10 shows an example applied to a trench, and FIG. 11 shows an example applied to a well or large diameter pipe. In either case, the porous ceramic body 2, which has been previously formed into a disk, cylinder, arc, or other shape and fired, is set in a mold, and the concrete 3 is poured into the mold to join and integrate the body.

なお、上記実施例では、多孔質セラミツク体2
が製品肉厚の一部を構成するようにしているが、
これに限られず、第12図のように肉厚全部が多
孔質セラミツク体2で構成されるようにしてもよ
い。これはコンクリート製品内から外部へ流体物
を浸透させるような場合に適している。
In addition, in the above embodiment, the porous ceramic body 2
is made to form part of the product wall thickness,
The present invention is not limited to this, and the entire thickness may be made of the porous ceramic body 2 as shown in FIG. This is suitable for infiltrating a fluid from the inside of a concrete product to the outside.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

本発明によりJIS規格250AタイプのL形コン
クリートブロツクを製造した。透水部として、
陶磁器廃材の破枠物を骨材とした多孔質セラミ
ツク板250b×400l×40tを使用した。この多孔
質セラミツク板は、粒径1〜3mmのセルベンを
使用し、二次バインダとしてガラス廃材破枠粉
を用骨材に12wt%添加混合してドライ資料を
作り、これに一次バインダとして水ガラス3号
を骨材に対し6wt%添加して混練し、型に充填
して5Kg/cm2で成形し、4Kg圧のCO2ガスを2
分程度吹付けて一次硬化させ、ガス炉で1100
℃、1時間焼成して得た。
An L-shaped concrete block of JIS standard 250A type was manufactured according to the present invention. As a water permeable part,
Porous ceramic boards 250b x 400l x 40t were used, with the aggregate made from broken ceramic waste. This porous ceramic board uses Cerben with a particle size of 1 to 3 mm, and 12 wt% of glass waste broken frame powder is added to the aggregate as a secondary binder to create a dry material, and water glass is added to this as the primary binder. No. 3 was added at 6wt% to the aggregate, kneaded, filled into a mold and molded at 5Kg/cm 2 , and CO 2 gas at a pressure of 4Kg was added at 2
First harden by spraying for about 1 minute, then heat to 1100 in a gas furnace.
It was obtained by baking at ℃ for 1 hour.

この多孔質セラミツク板の単体特性は、比重
1.48、吸水性20.8%(測定条件:JIS A−
5209)、透水率0.35cm/sec、曲げ強度15Kg/cm2
(測定条件:JIS A−5209、圧縮強度202Kg/cm2
(測定条件:JIS R−2206、試験片:×50
)、耐摩耗性0.04(測定条件:JIS A−5209)、
凍結試験でもJIS A−5209に準拠した凍結10回
で異常なく、JIS A−1415による耐候性試験で
も全く異常がなかつた。
The individual characteristics of this porous ceramic board are its specific gravity
1.48, water absorption 20.8% (measurement conditions: JIS A-
5209), water permeability 0.35cm/sec, bending strength 15Kg/cm 2
(Measurement conditions: JIS A-5209, compressive strength 202Kg/cm 2
(Measurement conditions: JIS R-2206, test piece: x50
), wear resistance 0.04 (measurement conditions: JIS A-5209),
There was no abnormality in the freezing test according to JIS A-5209 after 10 freezes, and there was no abnormality at all in the weather resistance test according to JIS A-1415.

前記セラミツク多孔板を第1図に示す型枠に
セツトし、セラミツク多孔質板上に50mmの型
部材6個を定間隔で配置し、コンクリートを流
し込んだ。コンクリートの場合は、ポルトラン
ドセメント386Kg、細骨材792Kg、粗骨材1114
Kg、W/c50%で、この配合990を混練したも
のを用いた。
The ceramic porous plate was set in the form shown in FIG. 1, six 50 mm mold members were placed at regular intervals on the ceramic porous plate, and concrete was poured. For concrete, Portland cement 386Kg, fine aggregate 792Kg, coarse aggregate 1114Kg
Kg, W/c 50%, this blend 990 was kneaded and used.

得られたL形コンクリートブロツクのJIS A
−5306に規定する破壊試験結果は4940Kgであ
り、規格値の3300Kgを大幅にクリアした。この
ブロツクの比重は2.1、ブロツク全体の透水性
は0.24cm/secで、しかも透水部を金具類で引
掻してもポロツキは失く生じなかつた。これは
透水部の強度が高くかつコンクリート部との喰
い付きがよく、完全に一体化しているためであ
る。
JIS A of the obtained L-shaped concrete block
The destructive test result specified in -5306 was 4940Kg, which far exceeded the standard value of 3300Kg. The specific gravity of this block was 2.1, the water permeability of the entire block was 0.24 cm/sec, and even when the water permeable part was scratched with metal fittings, no polo spots were generated. This is because the permeable part has high strength and has good bite with the concrete part, making it completely integrated.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によるときには、単に粗粒
の骨材をセメントや樹脂で接合することにより透
水部を形成するのでなく、予め作成した多孔質セ
ラミツク焼成体を用い、これをコンクリート製品
の造形時に型中に配して接合一体化するように
し、しかもその多孔質セラミツク体として、陶磁
器廃材の破砕物を骨材とし、ガラス系廃棄物を二
次バインダとして結合した廃棄物利用型のものを
用いるため、透水性能が良好かつ安定的でしかも
機械的強度が高く、表面のポロツキが生じず、耐
候性に優れ、熱や酸に対して強い透水部付きコン
クリート製品を、安価に製造できるというすぐれ
た効果が得られる。
According to the present invention as described above, instead of simply forming a water-permeable part by bonding coarse aggregate with cement or resin, a pre-prepared porous ceramic fired body is used, and this is molded when forming a concrete product. The porous ceramic body is made of a waste-utilizing type, in which crushed ceramic waste is used as aggregate and glass waste is used as a secondary binder. , the excellent effect of being able to inexpensively manufacture concrete products with water permeable parts that have good and stable water permeability, high mechanical strength, no surface porosity, excellent weather resistance, and resistance to heat and acids. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜dは本発明透水部を有するコンクリ
ート製品製造法の一例を段階的に示す工程説明
図、第2図a〜cは本発明によるコンクリート製
品を例示する断面図、第3図a〜gは本発明にお
ける多孔質セラミツク体の製造工程を示す説明
図、第4図は多孔質セラミツク体の骨材粒度と圧
縮強度の関係を示すグラフ、第5図は骨材粒度と
気孔率の関係を示すグラフ、第6図は骨材粒度と
気孔径の関係を示すグラフ、第7図は本発明をコ
ンクリート蓋の製造に適用した場合の製造状態を
示す断面図、第8図は製品の部分切欠平面図、第
9図ないし第11図は本発明を適用しコンクリー
ト製品の他の例を示す断面図、第12図は本発明
によるコンクリート製品の他の実施例を示す部分
的断面図である。 1……型枠、2……多孔質セラミツク体、20
……骨材、21……二次バインダ、4……製品。
Figures 1 a to d are step-by-step explanatory diagrams illustrating an example of a method for manufacturing a concrete product having a permeable part according to the present invention, Figures 2 a to c are sectional views illustrating a concrete product according to the present invention, and Figure 3 a ~g is an explanatory diagram showing the manufacturing process of the porous ceramic body in the present invention, Figure 4 is a graph showing the relationship between aggregate particle size and compressive strength of the porous ceramic body, and Figure 5 is a graph showing the relationship between aggregate particle size and porosity. Figure 6 is a graph showing the relationship between aggregate particle size and pore size, Figure 7 is a cross-sectional view showing the manufacturing state when the present invention is applied to manufacturing concrete lids, and Figure 8 is a graph showing the relationship between aggregate particle size and pore size. A partially cutaway plan view, FIGS. 9 to 11 are cross-sectional views showing other examples of concrete products to which the present invention is applied, and FIG. 12 is a partial cross-sectional view showing other examples of concrete products according to the present invention. be. 1... Formwork, 2... Porous ceramic body, 20
... aggregate, 21 ... secondary binder, 4 ... product.

Claims (1)

【特許請求の範囲】 1 コンクリート製品を得るに当たり、予め作成
した多孔質セラミツク体を型にセツトしてコンク
リートを流し込み、コンクリート製品の成形と同
時に多孔質セラミツク体を一体化接合させること
を特徴とする透水性を有するコンクリート製品の
製造法。 2 多孔質セラミツク体が、少なくとも陶磁器廃
材の破砕物を骨材としガラス系廃棄物を二次バイ
ンダとして混合−成形−焼成されたものである特
許請求の範囲第1項記載の透水性を有するコンク
リート製品の製造法。
[Claims] 1. In obtaining a concrete product, a porous ceramic body prepared in advance is set in a mold, concrete is poured into the mold, and the porous ceramic body is integrally joined at the same time as the concrete product is formed. A method for manufacturing concrete products with water permeability. 2. Water-permeable concrete according to claim 1, wherein the porous ceramic body is mixed, formed and fired using at least crushed ceramic waste as an aggregate and glass waste as a secondary binder. How the product is manufactured.
JP62060054A 1987-03-17 1987-03-17 Manufacture of concrete product having water permeability Granted JPS63227330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62060054A JPS63227330A (en) 1987-03-17 1987-03-17 Manufacture of concrete product having water permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62060054A JPS63227330A (en) 1987-03-17 1987-03-17 Manufacture of concrete product having water permeability

Publications (2)

Publication Number Publication Date
JPS63227330A JPS63227330A (en) 1988-09-21
JPH0481942B2 true JPH0481942B2 (en) 1992-12-25

Family

ID=13130987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62060054A Granted JPS63227330A (en) 1987-03-17 1987-03-17 Manufacture of concrete product having water permeability

Country Status (1)

Country Link
JP (1) JPS63227330A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737018B2 (en) * 1992-08-31 1995-04-26 東日本旅客鉄道株式会社 Concrete product coloring method
US10717674B2 (en) 2010-04-27 2020-07-21 Biomason, Inc. Methods for the manufacture of colorfast masonry
AU2016228974B2 (en) * 2015-03-10 2018-07-05 Biomason Inc. Compositions and methods for dust control and the manufacture of construction materials
WO2018081542A1 (en) 2016-10-31 2018-05-03 Biomason, Inc. Microorganism loaded aggregate and manufacturing methods
WO2019071175A1 (en) 2017-10-05 2019-04-11 Biomason, Inc. Biocementation method and system
CN110510996B (en) * 2019-09-24 2022-05-31 中电建路桥集团有限公司 Ceramic-based high-permeability brick, high-permeability pavement system and method

Also Published As

Publication number Publication date
JPS63227330A (en) 1988-09-21

Similar Documents

Publication Publication Date Title
US6616752B1 (en) Lightweight concrete
JPH0481942B2 (en)
JPH10231154A (en) Ceramic aggregate grain
US2315732A (en) Porous concrete construction and method of making the same
JPS60180971A (en) Water permeable ceramic material
JP2002210863A (en) Method for manufacturing composite cement cured body
JP2001039778A (en) Concrete flat plate and its production
JP2001152404A (en) Concrete block for water permeable pavement, manufacturing method therefor and water permeable paving slab
JPS62171972A (en) Water permeable floor material
JPH07206537A (en) Porous concrete and production of molded article thereof
JPH10151612A (en) Manufacture of composite type porous block
JP3088644B2 (en) Immediately deporous concrete molding and method for producing the same
JP3216034B2 (en) Porous sintered body and method for producing the same
JPH03232783A (en) Production of water-permeable paving block and water-permeable paving block
JP2020075825A (en) Porous splitton block
JPS60164539A (en) Light weight wall material for building
JPH10152382A (en) Water-permeable block for pavement and its production
JP3436504B2 (en) Recycling method of gypsum board, backfill material, aggregate for cement, aggregate for roadbed, brick and tile
JPH08209605A (en) Tile block for pavement provided with water permeation and drainage functions
JPH09112028A (en) Manufacture of permanent type concrete structure provided with reinforcing layer made of narrow aggregate
JPS6136158A (en) Water-permeable tile and manufacture
JPS6191056A (en) Water-permeable tile and manufacture
JP2617355B2 (en) Method for producing water-permeable ceramic plate
JPH0615432B2 (en) Method for manufacturing porous ceramics
JPH02266004A (en) Manufacturing multilayered, hardened cement block

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees