JPS63291740A - Electric power failure detection circuit for electric power regeneration device - Google Patents

Electric power failure detection circuit for electric power regeneration device

Info

Publication number
JPS63291740A
JPS63291740A JP12779187A JP12779187A JPS63291740A JP S63291740 A JPS63291740 A JP S63291740A JP 12779187 A JP12779187 A JP 12779187A JP 12779187 A JP12779187 A JP 12779187A JP S63291740 A JPS63291740 A JP S63291740A
Authority
JP
Japan
Prior art keywords
power
power supply
supply system
backward
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12779187A
Other languages
Japanese (ja)
Other versions
JP2528123B2 (en
Inventor
Toshio Igawa
井川 利夫
Shigeo Mukono
向野 茂生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62127791A priority Critical patent/JP2528123B2/en
Publication of JPS63291740A publication Critical patent/JPS63291740A/en
Application granted granted Critical
Publication of JP2528123B2 publication Critical patent/JP2528123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

PURPOSE:To make a self-exciting inverter usable through the exact detection of power receiving failure by providing a backward power detector which detects a backward power based on a regenerative power flowing at the 2nd power feed system, and a short time mock load sent to the 2nd power feed system at this detection time. CONSTITUTION:A regenerative power (route R2) circulating into a power receiving system 50 and a transformer system 51 at the time of power receiving failure is taken notice of, and a backward power relay 21 which has connected with respectively electric current and voltage elements from the seconds of the converter 25 and transformer 26 of a high pressure power distribution system 53, is connected. And the backward power relay 21 makes the direction (route P2) to be sent to the high distribution system 53 and a load 20 from a power receiving source 50 a forward power, and moreover, makes the direction (route R2) from the high distribution system 53 to the power receiving source 50 a backward power, that is, an action direction power, and each power is set. As a result, the backward power relay 21 can detect electric power heading in the power receiving source system 50 and transformer system 51 directions from a power regeneration device system 54, which is a characteristic at the power receiving failure time. Also, the breaker 22 of a mock load 23 is thrown in at the operation time of the backward power relay 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気鉄道用変電所に設けられる電力回生装置
に係り、特に受電停電検出を正確に行いうる電力回生装
置の停電検出回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power regeneration device installed in an electric railway substation, and more particularly to a power failure detection circuit for a power regeneration device that can accurately detect power reception power failure.

〔従来の技術〕[Conventional technology]

従来、電力回生装置を有する電鉄直流変電所については
、日立評論第68巻3号(1986年)第29頁から3
2頁において論じられている。
Conventionally, regarding electric railway DC substations equipped with power regeneration devices, Hitachi Review Vol. 68, No. 3 (1986), pp. 29-3
Discussed on page 2.

上記従来の装置では、電力回生装置として他励インバー
タが用いられており、自励インバータをを用いた例はな
かった。
In the above-mentioned conventional devices, a separately excited inverter is used as the power regeneration device, and there has been no example using a self-excited inverter.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、従来では自励インバータを適用された例
はなかった。その理由は、次の通りである。他励インバ
ータの場合、そのトリガパルスの発生を外部信号(受電
電圧)に基づいて作るものであるため、受電停電を次の
トリガパルスの発生前に検出すればインバータを停止さ
せることができる。これに対し、自励インバータの場合
は自らの出力電力に基づいてトリガパルスを作るもので
あるため、受電停電とは何らの関係なくトリガパルスの
発振を続け、したがって受電停電にもかかわらずインバ
ータ動作を継続してしまうことになり、その結果受電端
の不足電圧継続器に回生電力が検出されてしまうため、
系統全体の停電検出が不可能となるおそれがあるからで
ある(具体的動作は本発明の実施例と対比して後述する
)。
As mentioned above, there have been no examples of self-excited inverters being applied in the past. The reason is as follows. In the case of a separately excited inverter, the trigger pulse is generated based on an external signal (receiving voltage), so if a power failure is detected before the next trigger pulse is generated, the inverter can be stopped. On the other hand, self-excited inverters generate trigger pulses based on their own output power, so they continue to oscillate trigger pulses regardless of a power outage, so the inverter continues to operate despite power outages. As a result, regenerated power is detected by the undervoltage continuator at the receiving end.
This is because it may become impossible to detect a power outage of the entire system (specific operations will be described later in comparison with embodiments of the present invention).

上記従来技術では、自励インバータを用いた場合、受電
の停電を検出できない問題があり、インバータ・コンバ
ータなどの応用製品分野の広い自励インバータの使用が
できなかった。
In the above-mentioned conventional technology, when a self-excited inverter is used, there is a problem that a power outage in receiving power cannot be detected, and the self-excited inverter cannot be used in a wide range of application products such as inverters and converters.

本発明の目的は、応用製品分野の広い自励インバータを
使用するために、電力回生装置を用いた時の受電の停電
を正確に検出して円滑に制御しうる電力回生制御装置を
提出することにある。
An object of the present invention is to provide a power regeneration control device that can accurately detect and smoothly control a power outage when a power regeneration device is used, in order to use self-excited inverters with a wide range of application products. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、逆電力継電器と短時間定格の模擬負荷を備
えることにより達成される。
The above objectives are achieved by providing a reverse power relay and a short-time rated simulated load.

すなわち、本発明は、カ行運転時に電力系統からの受電
電力を直流に変換して電気車に供給する第1給電系と、
前記受電電力をしゃ断器を介して他の負荷に供給する第
2給電系と1回生運転時に前記電気車からの回生電力を
交流に変換して前記第2給電系の他の負荷に供給する回
生系と、を備えた電気鉄道用変電所に設けられた電力回
生制御装置であって、前記第1給電系の受電端に設けら
れた不足電圧継電器の検出信号に基づいて前記回生系を
制御するものにおいて、 前記第2給電系に流れる回生電力に基づく逆電力を検出
して当該第2給電系のしゃ断器の開命令信号を出力する
逆電力検出器と、この逆電力検出器の動作時に同期して
第2給電系に投入される短時間模擬負荷と、を備えたこ
とを特徴とするものである。
That is, the present invention provides a first power supply system that converts received power from an electric power system into direct current and supplies it to an electric vehicle during road driving;
a second power supply system that supplies the received power to other loads via a circuit breaker; and a regeneration system that converts regenerated power from the electric vehicle into alternating current and supplies it to other loads of the second power supply system during first regeneration operation. A power regeneration control device installed in an electric railway substation comprising: a power regeneration system; A reverse power detector that detects reverse power based on the regenerated power flowing to the second power supply system and outputs a command signal to open a circuit breaker of the second power supply system, and a reverse power detector that is synchronized when the reverse power detector operates. and a short-time simulated load that is applied to the second power supply system.

[作用] 受電停電時には、回生系の電力回生装置がら、第2給電
系を経由して受電側へと回生電力の電流が流れることに
なるが、逆電力継電器が第2給電系の逆方向への電力供
給を検出し、第2給電系のしゃ断器を開放することによ
り、不足電圧継電器への回生電力の回り込みを阻止する
ので正確に停止型検出することができる。そして、その
回生電力は模擬負荷により吸収する。
[Function] In the event of a power outage, regenerative power current will flow from the power regeneration device of the regenerative system to the power receiving side via the second power supply system, but the reverse power relay will flow in the opposite direction of the second power supply system. By detecting the power supply and opening the circuit breaker of the second power supply system, the regenerative power is prevented from going around to the undervoltage relay, so it is possible to accurately detect the stop type. The regenerated power is then absorbed by the simulated load.

〔実施例〕〔Example〕

次に本発明の実施例を図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

まず、電力回生装置として自励インバータを用いた場合
に生ずる現象について説明する。
First, a phenomenon that occurs when a self-excited inverter is used as a power regeneration device will be explained.

第1図は電力回生装置27として自励インバータを用い
た単線接続図である。本図において、回生制御車15(
以下回生車と称す)がカ行時、電力は電力会社より電力
の供給を受ける受電系50、交流を直流に変換する変成
器系51を通じ直流電源とし、き電系52を通じき電線
16からカ行する回生車15へと供給される(経路P1
)。
FIG. 1 is a single-line connection diagram using a self-excited inverter as the power regeneration device 27. In this figure, the regeneration control vehicle 15 (
When the regenerative vehicle (hereinafter referred to as a regenerative vehicle) is in motion, power is supplied to the DC power source through a power receiving system 50 that receives power from the power company, a transformer system 51 that converts AC to DC, and is supplied from the power line 16 through a feeding system 52. The regenerative vehicle 15 is supplied to the regenerative vehicle 15 (route P1
).

一方、駅電源や信号電源を意味する負荷20へは、受電
系50.高圧配電(以下高配と称す)系53を通じ、電
力が供給される(経路P2.)。
On the other hand, a power receiving system 50. Electric power is supplied through a high-voltage power distribution (hereinafter referred to as high-voltage distribution) system 53 (route P2.).

以上の電力供給の経路は、実線にて示した経路Ps +
 P2のとおり、カ行時において、は2回生車15への
電力と負荷2oへの電力の両方を電力会社から供給する
経路をたどることとななる。
The above power supply route is the route Ps + shown by the solid line.
As shown in P2, when the vehicle is traveling, it follows a route in which both the power to the second regeneration vehicle 15 and the power to the load 2o are supplied from the electric power company.

また、回生車15が回生制動中は1回生車15内のモー
タが発電機として働き、直流余剰電力が発生して、き電
線16の電圧を押し上げる。この電圧のはね上がりを直
流変成器14を通じ、電力回生装置10に内蔵した電力
回生制御装置27にて検出し、電力回生装置10が直流
を交流に変換(電力回生装置系54)L、、高配系53
の母線に゛電給を供給し、負荷2oにて消費する(経路
R1)。
Further, while the regenerative wheel 15 is performing regenerative braking, the motor in the first regenerative wheel 15 works as a generator, generating DC surplus power and pushing up the voltage of the feeder line 16. This voltage jump is detected by the power regeneration control device 27 built into the power regeneration device 10 through the DC transformer 14, and the power regeneration device 10 converts the DC to AC (power regeneration device system 54) L, high distribution system 53
Electric power is supplied to the bus bar of , and is consumed by the load 2o (route R1).

上記により、電力会社からの電力の供給は回生電力分軽
減し、消エネルギー効果をもたらす。
As a result of the above, the power supply from the electric power company is reduced by the amount of regenerated power, resulting in an energy saving effect.

しかしながら、電力回生中に受電停電が発生した場合、
電力回生装置系54にて交流に変換された電力は破線で
示す経路R2のごとく高配系53を通じ、受電系50お
よび変成器系51へと流れ込む、また、自励インバータ
の場合、発振タイミングを司さどる基準波形は、自ら発
振出力した波形に依存するため、発振は外部からのトリ
ガを与えなければ停止しない、このため、受電停電を検
出する受電用変成器1の2次に接続される不足電圧継電
器2は、1次側に電圧有りの条件のままとなり、従来の
自励インバータを用いた電力回生装置では、受電停電が
検出できない。
However, if a power outage occurs during power regeneration,
The electric power converted to alternating current in the power regeneration system 54 flows into the power receiving system 50 and the transformer system 51 through the high distribution system 53 as shown by the broken line R2. Since the reference waveform to be detected depends on the waveform output by itself, the oscillation will not stop unless an external trigger is applied.Therefore, the lack of power connected to the secondary of the power receiving transformer 1 that detects a power outage. The voltage relay 2 remains under the condition that voltage is present on the primary side, and a power regeneration device using a conventional self-excited inverter cannot detect a power outage.

なお、第1図において、3,4,12,13゜19.2
2はしゃ断器、5,11.18は変圧器、6は整流器、
24,25はCT、14,16はPTをしている。
In addition, in Fig. 1, 3, 4, 12, 13°19.2
2 is a breaker, 5, 11.18 is a transformer, 6 is a rectifier,
24 and 25 are doing CT, and 14 and 16 are doing PT.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明は、受電停電時に、受゛電系50および変成器系
51へと回り込む回生電力(経路Rz)に着目したもの
であり、高配系53の変流器25゜変成器26の2次よ
り、それぞれ電流・電圧要素を接続した逆電力継電器2
1を接続する。上記逆電力継電器21は、受電源50か
ら高配系53、負荷20へ送る方向(経路Pa)te正
方向電力とし、高配系53より受電源50方向(経路R
z)を逆方向電力すなわち動作方向電力として設定する
。上記の設定により、逆電力継電器21は、受電停電時
の特徴である。電力回生装置系54より受電源系50.
変成器系51方向に向う電力、破線矢印の経路R2を検
出することが可能である。
The present invention focuses on the regenerated power (route Rz) that goes around to the power receiving system 50 and the transformer system 51 during a power outage. , Reverse power relay 2 with current and voltage elements connected respectively
Connect 1. The reverse power relay 21 sends forward power in the direction (path Pa) from the receiving power source 50 to the high distribution system 53 and the load 20, and from the high distribution system 53 to the receiving power source 50 (path R
z) is set as the reverse direction power, that is, the operating direction power. With the above settings, the reverse power relay 21 is a feature at the time of a power outage. Power receiving system 50 from the power regeneration system 54.
It is possible to detect the power flowing in the direction of the transformer system 51, along the path R2 indicated by the dashed arrow.

また、上記逆電力継電器21は、受電停電を含め、下記
2点の時に動作する。
Further, the reverse power relay 21 operates in the following two situations, including a power outage.

(1)受電停電時 (2)回生電力が負荷20消費電力より大きい時このた
め、上記2点の判別を実施し、受電停電を確実に検出す
る方法が必要となる。
(1) At the time of a power outage (2) When the regenerated power is greater than the power consumption of the load 20 Therefore, there is a need for a method that performs the above two points of discrimination and reliably detects a power outage.

回生電力が経路Rzのごとく受電源50.変成器系51
方向に送られると、逆電力継電器21が動作する。これ
により上記(2)の回生電力が負荷消費電力より上回る
場合を考慮し、模擬負荷23用しゃ断器22を投入し、
高配しゃ断器17を開放する。このため、電力回生装置
系54より受電系50.変成器系51への電力の供給が
停止し、受電用変成器1には経路Rzによる回生電力の
回り込みによる電圧がかからず、受電停電の場合は、不
足電圧継電器2が動作し、回生電力が消費電力より上回
る場合は不動作のままとなり、上記(1)と(2)の判
別が可能である。
The regenerated power is transmitted to the receiving power source 50 as shown in the path Rz. Transformer system 51
direction, the reverse power relay 21 operates. As a result, in consideration of the case where the regenerated power in (2) above exceeds the load power consumption, the breaker 22 for the simulated load 23 is turned on,
Open the high voltage circuit breaker 17. Therefore, the power receiving system 50. The supply of power to the transformer system 51 is stopped, and no voltage is applied to the power receiving transformer 1 due to the regenerative power flowing through route Rz. In the case of a power receiving power outage, the undervoltage relay 2 operates and the regenerated power is If it exceeds the power consumption, it remains inactive, and it is possible to distinguish between (1) and (2) above.

受電停電の場合は、変成器系51のしゃ断器4を開放し
、き電系52への電力供給を停止し、受電電圧の回復を
待機するとともに模擬負荷23用しゃ断器22を開放す
る。
In the case of a power reception power outage, the breaker 4 of the transformer system 51 is opened, power supply to the feeding system 52 is stopped, and while waiting for the power reception voltage to recover, the breaker 22 for the simulated load 23 is opened.

受電が停電でない場合は、高配用しゃ断器17を投入し
、模擬負荷23用しゃ断器22を開放し、正規運転を経
続する。この場合、再度逆電力継電器21が動作し、し
ゃ断器のポンピング現象を防止するため、シーケンス上
、タイマによる一定時限の時間監視をもって、再度模擬
負荷23用しゃ断器22を投入、高配用しゃ断器17を
開放し、再度受電停電か、回生電力が消費電力より上回
るのかの検出の連動を実施する1以上の動作が要約して
第2図に示す。
If the power reception is not due to a power outage, the high distribution breaker 17 is turned on, the breaker 22 for the simulated load 23 is opened, and normal operation continues. In this case, in order to prevent the reverse power relay 21 from operating again and the pumping phenomenon of the breaker, the breaker 22 for the simulated load 23 is turned on again with a timer monitoring the breaker 22 for a certain period of time according to the sequence, and the breaker 22 for the high distribution breaker 17 is turned on again. FIG. 2 summarizes one or more operations that are performed in conjunction with the detection of whether there is a power outage or whether the regenerated power exceeds the power consumption.

以上により、自励インバータを電力回生装置10に用い
た場合の停電検出が可能となった。
As described above, it has become possible to detect a power outage when a self-excited inverter is used in the power regeneration device 10.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電鉄直流変電所に電力回生装置として
従来使用することのできなかった自励インバータを使用
することができる。
According to the present invention, a self-excited inverter, which could not be used conventionally, can be used as a power regeneration device in a railway DC substation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電鉄直流変電所の単線
接続図、第2図は本発明の制御フローチャートである。 1・・・受電用変成器、2・・・不足電圧継電器、1o
・・・電力回生装置、15・・・回生制動車、17・・
・高配しゃ断器、20・・・負荷、21・・・逆電力継
電器、23・・・模擬負荷、27・・・回生制御装置、
50・・・受電源、51・・・変成器源、52・・・き
電系、53・・・高圧配電系、54・・・電力回生装置
系、Pz 、P2・・・受電供給経路、R1,R2・・
・回生電力供給経路。
FIG. 1 is a single-line connection diagram of a railway DC substation showing an embodiment of the present invention, and FIG. 2 is a control flowchart of the present invention. 1... Power receiving transformer, 2... Undervoltage relay, 1o
...Power regeneration device, 15...Regenerative braking vehicle, 17...
・High-voltage breaker, 20... Load, 21... Reverse power relay, 23... Simulated load, 27... Regeneration control device,
50... Power receiving power supply, 51... Transformer source, 52... Power feeding system, 53... High voltage distribution system, 54... Power regeneration device system, Pz, P2... Power receiving supply path, R1, R2...
・Regenerative power supply route.

Claims (1)

【特許請求の範囲】 1、力行運転時に電力系統からの受電電力を直流に変換
して電気車に供給する第1給電系と、前記受電電力をし
ゃ断器を介して他の負荷に供給する第2給電系と、回生
運転時に前記電気車からの回生電力を交流に変換して前
記第2給電系の他の負荷に供給する回生系と、を備えた
電気鉄道用変電所に設けられた電力回生装置であって、
前記第1給電系の受電端に設けられた不足電圧継電器の
検出信号に基づいて前記回生系を制御するものにおいて
、 前記第2給電系に流れる回生電力に基づく逆電力を検出
して当該第2給電系のしゃ断器の開命令信号を出力する
逆電力検出器と、この逆電力検出器の動作時に同期して
第2給電系に投入される短時間模擬負荷と、を備えたこ
とを特徴とする電力回生装置の停電検出回路。
[Claims] 1. A first power supply system that converts received power from the power system into DC and supplies it to the electric vehicle during power running, and a first power supply system that supplies the received power to other loads via a circuit breaker. 2 power supply system, and a regeneration system that converts regenerative power from the electric car into alternating current during regenerative operation and supplies it to other loads of the second power supply system. A regeneration device,
The regeneration system is controlled based on a detection signal of an undervoltage relay provided at a power receiving end of the first power supply system, wherein reverse power based on regenerative power flowing to the second power supply system is detected and the second power supply system is controlled. It is characterized by comprising a reverse power detector that outputs a command signal to open a circuit breaker in the power supply system, and a short-time simulated load that is applied to the second power supply system in synchronization with the operation of the reverse power detector. Power failure detection circuit for power regeneration equipment.
JP62127791A 1987-05-25 1987-05-25 Power regeneration device Expired - Lifetime JP2528123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127791A JP2528123B2 (en) 1987-05-25 1987-05-25 Power regeneration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127791A JP2528123B2 (en) 1987-05-25 1987-05-25 Power regeneration device

Publications (2)

Publication Number Publication Date
JPS63291740A true JPS63291740A (en) 1988-11-29
JP2528123B2 JP2528123B2 (en) 1996-08-28

Family

ID=14968767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127791A Expired - Lifetime JP2528123B2 (en) 1987-05-25 1987-05-25 Power regeneration device

Country Status (1)

Country Link
JP (1) JP2528123B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065079A1 (en) * 2011-10-31 2013-05-10 川崎重工業株式会社 Regenerative emergency brake stopping system
WO2014033862A1 (en) * 2012-08-29 2014-03-06 三菱電機株式会社 Station building power supply device and method for controlling same
US10372101B2 (en) 2013-08-08 2019-08-06 Mitsubishi Electric Corporation Station auxiliary power source apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102344A (en) * 1984-10-23 1986-05-21 Mitsubishi Electric Corp Operating method of regenerative inverter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102344A (en) * 1984-10-23 1986-05-21 Mitsubishi Electric Corp Operating method of regenerative inverter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065079A1 (en) * 2011-10-31 2013-05-10 川崎重工業株式会社 Regenerative emergency brake stopping system
WO2014033862A1 (en) * 2012-08-29 2014-03-06 三菱電機株式会社 Station building power supply device and method for controlling same
US9859715B2 (en) 2012-08-29 2018-01-02 Mitsubishi Electric Corporation Station-building power supply device and method of controlling the same
US10372101B2 (en) 2013-08-08 2019-08-06 Mitsubishi Electric Corporation Station auxiliary power source apparatus

Also Published As

Publication number Publication date
JP2528123B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
JP4243321B1 (en) AC electric vehicle control device
CN111786598A (en) Motor control device and motor control method
JP2001260719A (en) Dc electromotive system for electric railroad
CN104057838A (en) Electromobile driving system and bus capacity discharge method thereof
EP3556604B1 (en) Station building power supply device
JPS63291740A (en) Electric power failure detection circuit for electric power regeneration device
CN112838662A (en) Integrated power control device, system and method and vehicle
JP3186281B2 (en) AC electric vehicle control device
JPH10243675A (en) Motor stop circuit
JP3999405B2 (en) Grid-connected inverter device and isolated operation detection method according to the device
JP3406361B2 (en) Elevator blackout operation device
KR100713840B1 (en) A recovery electric power storage system of electric rail car
KR20220154321A (en) Apparatus and method of supplying power for railway signal
JPS59172902A (en) Controller for electric rolling stock
JPH0993791A (en) Ac deltai type failure selection method
JPH05338481A (en) Feeding method for ac electric railway
JP2680367B2 (en) Power converter
JP2005210821A (en) Railcar driving and controlling device
JPH01152966A (en) Service interruption detector
KR100492740B1 (en) Regenerative Inverter of Railway Vehicles_
JPS61102344A (en) Operating method of regenerative inverter
JP3684200B2 (en) Regenerative braking control device
JPH07241001A (en) Auxiliary power supply apparatus for vehicle
JPH059941Y2 (en)
JP2654797B2 (en) Operation control method of local power generation system connected to commercial power system